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Abstract

We show that for threshold graphs, the eigenvalues of the signless Laplacian matrix
interlace with the degrees of the vertices. As an application, we show that the signless
Brouwer conjecture holds for threshold graphs, i.e., for threshold graphs the sum of
the k largest eigenvalues is bounded by the number of edges plus k + 1 choose 2.
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1 Introduction and main result
Given an undirected graph G = (N, E) on node set N = [n] := {1, . . . , n} for some n ∈ N
and edge set E ⊆

(N
2
)

:= {{i, j} : i, j ∈ N, i ̸= j}, the signless Laplacian is the symmetric
n × n matrix Q(G) =

∑
{i,j}∈E(ei + ej)(ei + ej)⊤, where ei denotes the i-th column of the

n × n identity matrix In. Q(G) may also be written as Q(G) = D + A, where A is the
adjacency matrix and D the diagonal degree matrix. Thus, Q(G) is positive semidefinite
and its eigenvalues may be ordered as

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

Spectral properties of the signless Laplacian Q(G) of a graph G were collected and
developed in a series of papers by Cvetković and Simić [5, 7, 6]. Nevertheless, it seems that
the spectrum of this matrix is far less understood than that of the combinatorial Laplacian
L(G) = D − A, for example.

In this note, we show an interlacing property of the eigenvalues of Q(G) when G is
a threshold graph. Essentially, our result says that the eigenvalues of a threshold graph
interlace with the degrees of the vertices.

In order to more precisely state the result, we first review some facts about threshold
graphs. This class of graphs has been discovered independently by several authors in many
distinct contexts since the 1970’s. They are an important class of graphs because of their
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numerous applications in diverse areas which include computer science, social sciences and
psychology. See, for example, [15] for a more detailed account. A threshold graph can be
characterized in many ways. We are going to view threshold graphs as given through an
iterative process steered by a binary string which starts with an isolated vertex (for the
initial digit 0 or 1), and where, at each step, either a new isolated vertex is added (digit 0),
or a dominating vertex (adjacent to all previous vertices, digit 1) is added.

Building on the notation in [10], this construction is encoded in a binary sequence
bq1

1 . . . bqr
r of length n =

∑r
k=1 qk with bk ∈ {0, 1} and qk ∈ N giving this digit’s repetitions

in the sequence for k = 1, . . . , r. For convenience, let nk =
∑k

h=1 qk for k = 0, . . . , r, so
n = nr and n0 = 0. Then the corresponding threshold graph G = (N = [n], E) has edge
set E so that for 1 ≤ i < j ≤ n

ij ∈ E ⇔ ∃k ∈ {1, . . . , r} (nk−1 < j ≤ nk ∧ bk = 1). (1)

All nodes of block k have the same degree. Their values are

pk =
{ ∑r

h=k bhqh for bk = 0,∑k
h=1 qh − 1 +

∑r
h=k+1 bhqh for bk = 1,

k = 1, . . . , r. (2)

We may and will assume the sequence of bk to be alternating, i. e., bk + bk+1 = 1 for
k = 1, . . . , r − 1. Because G is independent of the choice of the first digit, there is no loss
in generality in requiring q1 ≥ 2. It is known (see, for example, [4, 10]) that pk − bk is an
eigenvalue of Q(G) of multiplicity at least qk − 1, for k = 1, . . . , r. As a direct consequence
of the assumptions, the degrees and corresponding eigenvalues satisfy

pr−br < pr−br−2 < · · · < p1+b1+2 < p1+b1 ≤ p2−b1 − 1,

p2−b1 − 1 < p4−b1 − 1 < p6−b1 − 1 < · · · < pr−(1−br) − 1.
(3)

The results of [10] imply that the remaining r eigenvalues are those of the following
condensed signless Laplacian r × r matrix

C(G) =


p1 + b1(q1 − 1) b2

√
q1q2 b3

√
q1q3 . . . br

√
q1qr

b2
√

q1q2 p2 + b2(q2 − 1) b3
√

q2q3 . . . br
√

q2qr

b3
√

q1q3 b3
√

q2q3 p3 + b3(q3 − 1) . . . br
√

q3qr
...

...
br

√
q1qr br

√
q2qr br

√
q3qr . . . pr + br(qr − 1)

 .

In Theorem 8 we establish that these remaining signless Laplacian eigenvalues of the
threshold graph G interlace with pk − bk. More precisely, for C = C(G) we prove the
inequalities

λ1(C) ≤ pr−br ≤ λ2(C) ≤ pr−br−2 ≤ · · · ≤ λ r−br−b1+1
2

(C) ≤ p1+b1

and

p2−b1 −1 ≤ λ r−br−b1+1
2 +1(C) ≤ p4−b1 −1 ≤ λ r−br−b1+1

2 +2(C) ≤ · · · ≤ pr−(1−br) −1 ≤ λr(C).

This interlacing property gives rise to the main result Theorem 13 which sheds some light
on the distribution of the signless Laplacian spectrum of graphs. The trivial upper bound
2n − 1 on the largest signless Laplacian eigenvalue of a graph G — called the signless
spectral radius of G — is frequently an obstacle for obtaining meaningful upper bounds
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involving this spectral parameter. For threshold graphs, however, this interlacing property
may be used to obtain tighter bounds for the sum of the largest eigenvalues. Indeed,
together with a subtle sharpening for a special case, the bounds suffice to establish the
signless Brouwer conjecture [1] for threshold graphs in Theorem 19.

The remainder of the paper is organized as follows. The next section is devoted to
prove our main result. In Section 3 we interpret the result and give an estimate of the
eigenvalues growth with the evolution of a binary sequence defining a threshold graph. In
Section 4, as an application of the interlacing property for threshold graphs, we prove that
the signless Brouwer conjecture holds for threshold graphs.

2 Proof of the main result
We will make heavy use of the following direct consequence of the Courant-Fischer Theorem.

Theorem 1. Given a symmetric matrix A ∈ Rn×n and h ∈ {1, . . . , n}, for any choice of
vectors v1, . . . , vh−1 ∈ Rn and u1, . . . , un−h ∈ Rn there holds

min
x⊥v1, . . . , vh−1

∥x∥ = 1

x⊤Ax ≤ λh(A) ≤ max
x⊥u1, . . . , un−h

∥x∥ = 1

x⊤Ax.

If h − 1 or n − h is zero, x ranges over Rn in the respective expression.

We recall and use a number of further consequences of the Courant-Fischer Theorem.

Theorem 2 (Weyl Inequalities – [14],Theorem 4.3.1). Let M and N be two n × n
real symmetric matrices. Then

λi(M + N) ≤ λi+j(M) + λn−j(N),

for 1 ≤ i ≤ n and 0 ≤ j ≤ n − i, and

λi(M + N) ≥ λi−j+1(M) + λj(N)

for 1 ≤ i ≤ n and 1 ≤ j ≤ i.

Theorem 3 (Cauchy Interlacing – [14],Theorem 4.3.28). Let A be a real, symmet-
ric n × n matrix and let B be a principal submatrix of A with order m × m. Then, for
k = m, · · · , 1,

λk+n−m(A) ≥ λk(B) ≥ λk(A).

Theorem 4 (Interlacing for a rank-one perturbation – [14], Corollary 4.3.9).
Let A ∈ Rn×n be a symmetric matrix and let z ∈ Rn be a vector. Then the eigenvalues of
A and A + zz⊤ satisfy

λh(A) ≤ λh(A + zz⊤) ≤ λh+1(A), h = 1, 2, . . . , n − 1,

λn(A) ≤ λn(A + zz⊤).
(4)

In order to relate the eigenvalues of the signless Laplacian matrix of a general graph
G to those of its complement, note that the signless Laplacian of the complete graph is
Q(Kn) =

∑
{i,j}∈([n]

2 )(ei +ej)(ei +ej)⊤ = (n−2)In +1n1⊤
n , where 1 denotes the vector of all

ones of given or appropriate dimension. With this the signless Laplacian of the complement
graph Ḡ = (N,

(N
2
)
\E) of G computes to Q(Ḡ) = Q(Kn)−Q(G) = (n−2)In+1n1⊤

n −Q(G).
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Lemma 5. Let Q = Q(G) be the signless Laplacian of a graph G on n nodes and let
Q̄ = Q(Ḡ) represent its complement, then

max{n − 2 − λn(Q̄), 0} ≤ λ1(Q) ≤ n − 2 − λn−1(Q̄) ≤ λ2(Q) ≤ · · ·
· · · ≤ λn−1(Q) ≤ n − 2 − λ1(Q̄) ≤ min{n − 2, λn(Q)}.

Proof. The signless Laplacian is positive semidefinite, so λ1(Q) ≥ 0 and λ1(Q̄) ≥ 0. By
Q = 11⊤ + (n − 2)In − Q̄ the statement follows from Theorem 4. □

If now G is a threshold graph, we notice that Equ. (1) establishes that the complement
graph Ḡ of G is defined by the binary sequence (1 − b1)q1 . . . (1 − br)qr . This sequence is
again alternating with q1 ≥ 2. The degrees p̄i of the blocks of the complement graph satisfy

p̄k = n − 1 − pk for k = 1, . . . , r. (5)

Up to the specification of the eigenvectors the following result has already been observed
in [10].

Lemma 6. Let bq1
1 . . . bqr

r be a binary sequence specifying a threshold graph G on n =∑r
k=1 qk nodes with block degrees pk and put n0 = 0, nk =

∑k
h=1 qh for k = 1, . . . , r. For

k ∈ {1, . . . , r} its signless Laplacian Q(G) has an eigenvalue pk − bk of multiplicity at least
qk − 1 with an associated orthogonal basis of eigenvectors

v
(k)
1 =


0nk−1

1
−1

0n−nk−1−2

 , v
(k)
2 =


0nk−1

1
212
−1

0n−nk−1−3

 , . . . , v
(k)
qk−1 =


0nk−1
1

qk−11qk−1
−1

0n−nk−1−qk

 .

Proof. Direct computation shows (v(k)
i )⊤v

(k)
j = 0 for 1 ≤ i < j < qk. Let v be any of

these vectors. By (1) columns nk−1 + 1 to nk of row i ≤ nk−1 or row i > nk of Q have the
same value bk, so (Qv)i = 0 for these i. It remains to consider the principal submatrix Q′

on indices i = nk−1 + 1, . . . , nk. The case bk = 0 yields Q′ = pkIk, so Qv = pkv; the case
bk = 1 yields Q′ = 1qk

1⊤
qk

+ (pk − 1)Iqk
, so Qv = (pk − 1)v. □

Lemma 6 describes n − r eigenvalues of Q via its eigenvectors. It is proved in [10] that the
remaining r eigenvalues are those of C = C(G). By (5) the condensed signless Laplacian
C̄ = C(Ḡ) of the complement graph may be computed via

C̄ = (n − 2)Ir + q̂q̂⊤ − C with q̂ = (√q1, . . . ,
√

qr)⊤.

So the eigenvalues of C and C̄ satisfy the same interlacing property as those of Q and Q̄.

Lemma 7. Let C be the condensed signless Laplacian of a threshold graph G specified by
a binary sequence bq1

1 . . . bqr
r on n =

∑r
k=1 qk nodes and let C̄ represent its corresponding

complement, then

max{n − 2 − λr(C̄), 0} ≤ λ1(C) ≤ n − 2 − λr−1(C̄) ≤ λ2(C) ≤ · · ·
· · · ≤ λr−1(C) ≤ n − 2 − λ1(C̄) ≤ min{n − 2, λr(C)}.

Proof. The matrices C and C̄ are positive semidefinite, thus λ1(C) ≥ 0 and λ1(C̄) ≥ 0.
By C = q̂q̂⊤ + (n − 2)Ir − C̄ the statement again follows from Theorem 4. □

We are going to prove the following bounds on the eigenvalues of C.
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Theorem 8. Let bq1
1 . . . bqr

r be an alternating binary sequence with q1 ≥ 2 specifying a
threshold graph G on n =

∑r
k=1 qk nodes with block degrees pk and C its condensed signless

Laplacian.

(0 ≤) λ1(C) ≤ pr−br ≤ λ2(C) ≤ pr−br−2 ≤ · · · ≤ λ r−br−b1+1
2

(C) ≤ p1+b1

and

p2−b1 −1 ≤ λ r−br−b1+1
2 +1(C) ≤ p4−b1 −1 ≤ λ r−br−b1+1

2 +2(C) ≤ · · · ≤ pr−(1−br) −1 ≤ λr(C).

We break the proof into four intermediate steps.

Observation 9. For i = 1, . . . , r−br−b1+1
2 there holds λi(C) ≤ pr−br−2i+2.

Proof. Choosing the r− i vectors e1, e2, . . . , er−br−2i+1, er−br−2i+3, er−br−2i+5, . . . , er−1+br

for the right hand side u vectors in Theorem 1 restricts x to the coordinates er−br−2i+2,
er−br−2i+4, . . . , er−br (all these indices k satisfy bk = 0), so the bound is obtained by the
maximum eigenvalue of the submatrix

pr−br−2i+2 0 . . . 0

0 pr−br−2i+4
. . . ...

... . . . . . . 0
0 . . . 0 pr−br

 .

The statement now follows from (3) and Theorem 1. □

Observation 10. For i = 1, . . . , r−1+br+b1
2 there holds pr+br+1−2i − 1 ≤ λr−i+1(C).

Proof. Choosing the r − i vectors e1, e2, . . . , er+br−2i, er+br−2i+2, er+br−2i+4, . . . , er−br

for the left hand side v vectors in Theorem 1 restricts x to the coordinates er+br−2i+1,
er+br−2i+3, . . . , er+br−1 (all these indices k satisfy bk = 1), so the bound is obtained by
the minimum eigenvalue of the submatrix

q̄q̄⊤ +


pr+br−2i+1 − 1 0 . . . 0

0 pr+br−2i+3 − 1 . . . ...
... . . . . . . 0
0 . . . 0 pr+br−1 − 1

 with q̄ =


√

qr+br−2i+1√
qr+br−2i+3

...√
qr+br−1

 .

Because q̄q̄⊤ is positive semidefinite, the smallest diagonal element is certainly a lower
bound, thus the statement again follows from (3) and Theorem 1. □

Observation 11. For i = 2, . . . , r−1+br+b1
2 there holds λr−i+1(C) ≤ pr+br+3−2i − 1.

Proof. Without loss of generality it suffices to consider the case br = 1. Indeed, in the
case br = 0 we may split off the eigenvector er to eigenvalue pr = 0 of C and work with
the principal submatrix C ′ on indices i = 1, . . . , r − 1. This C ′ is the condensed matrix of
the threshold graph corresponding to the sequence bq1

1 . . . b
qr−1
r−1 and its eigenvalues coincide

with the remaining ones of C. Thus let br = 1 and pr = n − 1 in the following.
For i = 2 the statement follows directly from Lemma 7 by λr−1(C) ≤ n − 2.
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For i > 2 first choose the i − 2 vectors u1 = er, u2 = er−2, . . . , ui−2 = er−2(i−3).
Orthogonality with respect to these vectors already restricts x to the submatrix

Ĉ +
∑i−2

j=1 qr+2−2jIr+4−2i 0 · · · 0

0 pr+5−2i
. . . ...

... . . . . . . 0
0 · · · 0 pr−1

 ,

where Ĉ is the condensed signless Laplacian of the threshold graph bq1
1 . . . 1qr+4−2i . By the

same argument as above Lemma 7 yields λr+4−2i−1(Ĉ) ≤
∑r+4−2i

j=1 qj − 2 and

λr+4−2i−1(Ĉ +
i−2∑
j=1

qr+2−2jIr+4−2i) ≤
r+4−2i∑

j=1
qj − 2 +

i−2∑
j=1

qr+2−2j
(2)= pr+4−2i − 1.

Now choose ui−1 to hold the Perron vector to the largest eigenvalue of Ĉ on components 1
to r + 4 − 2i and zero otherwise, then by (3) and Theorem 1 the value pr+4−2i − 1 is an
upper bound on λr−i+1(C). □

Observation 12. For i = 2, . . . , r−br−b1+1
2 there holds pr−br−2i+4 ≤ λi(C).

Proof. Consider the condensed signless Laplacian C̄ of the complement graph (1 −
bi)q1 . . . (1 − br)qr with degrees p̄i satisfying (5). For i = 2, . . . , r−1+(1−br)+(1−b1)

2 Obser-
vation 11 proves λr−i+1(C̄) ≤ p̄r+(1−br)+3−2i − 1. Therefore Lemma 7 and (5) establish
λi(C) ≥ n − 2 − λr−i+1(C̄) ≥ n − 2 − (n − 1 − pr−br+4−2i − 1) = pr−br+4−2i. □

Observations 9–12 prove Theorem 8. Together with Lemma 6 the latter gives rise to
the main result, which is more conveniently stated in terms of the degree sequence
dn(G) ≥ · · · ≥ d1(G) of the graph. Furthermore, if b1 = 1 and the number k̄ of ones in the
binary sequence exceeds q1, it will be possible to improve the bound on the larger “central”
eigenvalue λ r−br−b1+1

2 +1(C) by one.

Theorem 13. Let G be a threshold graph with n vertices represented by the binary sequence
bq1

1 . . . bqr
r . Denote the degree sequence of G by dn(G) ≥ · · · ≥ d1(G) and the number of

ones in the binary sequence of G by k̄ =
∑r

i=1 biqi. Then, the eigenvalues of G satisfy

λn ≥ dn − 1 ≥ λn−1 ≥ · · · ≥ λn+1−k̄ ≥ dn+1−k̄ − 1 ≥ dn−k̄ ≥ λn−k̄ ≥ · · · ≥ d1 ≥ λ1 ≥ 0.

Furthermore, if b1 = 1 and k̄ > q1, then λn−k̄+q1
≥ dn−k̄+q1

.

Proof. Note that br = 0 results in appending qr isolated nodes or, equivalently in appending
zero rows and columns which does not influence the other eigenvalues and eigenvectors. So
for simplifying notation we assume without loss of generality br = 0. Then according to (2)
and (3) the degrees satisfy

d1 = · · · = dqr = pr < dqr+1 = · · · = dqr+qr−2 = pr−2 < · · · ≤ dn−k̄ = p1+b1 ≤ p2−b1 − 1,
p2−b1 = dn−k̄+1 = · · · = dn−k̄+q2−b1

< p4−b1 = · · · < pr−1 = dn−qr−1+1 = · · · = dn.

With this Theorem 8 and Lemma 6 yield the general eigenvalue bounds.
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Now assume b1 = 1 and q1 < k̄. This implies q2 ≥ 1. Then, by (2) and the relation
above, dn−k̄ = p2 = k̄ − q1, dn−k̄+1 = · · · = dn−k̄+q1

= k̄ − 1, and the (k + 1) × (k + 1)
matrix

M =



dn 1 · · · 1 1 1
1 dn−1 · · · 1 1 1

· · · · · · · · ·
1 1 · · · k − 1 1 0
1 1 · · · 1 k − 1 0
1 1 · · · 0 0 k − q1


is a principal submatrix of Q(G) for a suitable index reordering. The matrix

Q(X) =



k 1 · · · 1 1 1
1 k · · · 1 1 1

· · · · · · · · ·
1 1 · · · k − 1 1 0
1 1 · · · 1 k − 1 0
1 1 · · · 0 0 k − q1


is the signless Laplacian matrix of the graph X obtained from Kk+1 by removing a copy of
Kq1,1. Hence, the matrix Q(X) may be written as

Q(X) = Q(Kk+1) − Q((k − q1)K1 ∪ Kq1,1).

The signless Laplacian Q(Kq1,1) has an eigenvalue zero with eigenvector (1⊤
q1 , −1)⊤. There-

fore the smallest q1 eigenvalues of the matrix −Q((k − q1)K1 ∪ Kq1,1) are its only nonzero
eigenvalues. Thus, by the Weyl inequalities of Theorem 2,

λq1+1(X) ≥ λ1(Kk+1) + λq1+1(−Q((k − q1)K1 ∪ Kq1,1))
= k − 1 + 0
= k − 1.

Now, we notice that M = Q(X) + F , where

F = Diag(dn − k, dn−1 − k, · · · , dn−k+q1+1 − k, 0, · · · , 0).

Therefore, again by Theorem 2 we obtain

λq1+1(M) ≥ λq1+1(X) + λ1(F )
= λq1+1(X).

Since M is a principal submatrix of Q(G), we may apply Cauchy’s interlacing Theorem 3
to obtain

λn−k+q1
(G) ≥ λq1+1(M) ≥ λq1+1(X) ≥ k − 1.

Now, the proof follows because when b1 = 1 we have dn−k̄+q1
= p1 = k̄ − 1 by (2). □

3 Discussion
We first give an example of the interlacing result and an interpretation based on the Ferrers
diagram of a threshold graph.
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Example 14. Let G be the threshold graph with binary sequence bq1
1 . . . bq8

8 = 02120101013.
We have n = 12 and r = 8. Let λi, i = 1, . . . , 12, be the eigenvalues of Q(G) and let γj,
j = 1, . . . , 8, be the eigenvalues of C(G) (note that γi = λj, for some i and j). The signless
Laplacian spectrum is (approximately)

{2.46158, 3.50373, 4.49073, 5.68371, 7, 7, 7.84337, 8.68471, 9.49912, 10, 10, 17.83303}.

As theory predicts, repeated lines within the Ferrers diagram lead to signless Laplacian
eigenvalues of G determined by Lemma 6:

λ10 = λ11 = 10 and λ5 = λ6 = 7.

By the bounds in Theorem 8, the remaining signless Laplacian eigenvalues of G are those
of C and satisfy:

γ1 ≤ 3 ≤ γ2 ≤ 4 ≤ γ3 ≤ 5 ≤ γ4 ≤ 7 ≤ γ5 ≤ 8 ≤ γ6 ≤ 9 ≤ γ7 ≤ 10 ≤ γ8.

Note, the bounds hold independently of whether the integral values pk −bk are eigenvalues of
G or not. Geometrically we can illustrate the bounds in Theorem 8 by the Ferrers diagram

— its rows of boxes display the sorted degree sequence — in the following way.

γ8 = λ12

10 = λ11

10 = λ10

γ7 = λ9

γ6 = λ8

γ5 = λ7

7 = λ6

7 = λ5

γ4 = λ4

γ3 = λ3

γ2 = λ2

γ1 = λ1

b8

b8

b8

b6

b4

b2

b2

b1

b1

b3

b5

b7

Figure 1: Illustration of the interlacing on the Ferrers diagram

The next result investigates the development of the eigenvalues upon appending a one
to the binary construction sequence.

Theorem 15. Let bq1
1 . . . bqr

r be an alternating binary sequence with q1 ≥ 2 specifying a
threshold graph G on n =

∑r
k=1 qk nodes and eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. The

eigenvalues 0 ≤ λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
n+1 of the signless Laplacian of the threshold graph G′

specified by bq1
1 . . . bqr

r 1 satisfy

0 ≤ λ′
i ≤ λi + 1 ≤ λ′

i+1 for i = 1, . . . , n. (6)

Furthermore, max{n + 1, λn + 2} ≤ λ′
n+1.
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Proof. Because

0 ⪯ Q(G′) =
[

Q(G) 0n×1
01×n 0

]
+

n∑
i=1

(ei + en+1)(ei + en+1)⊤ =
[

Q(G) 1n×1
11×n n − 1

]
+ In+1,

inequalities (6) follow directly from Cauchy’s interlacing Theorem 3.
λ′

n+1 ≥ n+1 is a consequence of the maximum eigenvalue of
∑n

i=1(ei +en+1)(ei +en+1)⊤

being n + 1 (eigenvector (11×n, n)⊤). Suppose now λn + 2 > n + 1, i. e., λn > n − 1.
Then Theorem 13 ensures λ′

n ≤ n − 1 < λn and trace Q(G′) = trace Q(G) + 2n yields∑n+1
i=1 λ′

i =
∑n

i=1 λi +2n =
∑n−1

i=1 (λi +1) +λn +1 +n =
∑n−1

i=1 (λi +1) +(n−1)+ (λn +2) >∑n
i=1 λ′

i + λn + 2, implying that λ′
n+1 > λn + 2. □

4 The signless Brouwer conjecture for threshold graphs
For an integer k with 1 ≤ k ≤ n, we denote by Sk(G) the sum of the k largest signless
Laplacian eigenvalues of a graph G, that is Sk(G) =

∑n
i=n+1−k λi(Q(G)). Ashraf et al [1]

posed the following conjecture.

Conjecture 16 (Signless Brouwer Conjecture [1]). Let G be a graph with n vertices.
Then

Sk(G) ≤ |E| +
(

k + 1
2

)
,

where k is an integer with 1 ≤ k ≤ n.

This conjecture was motivated by Brouwer’s Conjecture [2], which states that the same
inequality is valid for the sum of the k largest Laplacian eigenvalues of a graph G and
has been studied by many researchers. For recent results on Brouwer’s Conjecture see
[8, 9, 11, 12, 16, 17, 13].

Ashraf el al. [1] proposed Conjecture 16 and proved it for graphs with at most 10
vertices, for all graphs when k ∈ {1, 2, n − 1, n} and for regular graphs. Because trees
satisfy Brouwer’s Conjecture (see, for example, [9]) and the spectrum of Q(G) is equal to
the spectrum of L(G) when G is bipartite, Conjecture 16 holds for trees.

In [18], Yang and You studied and proved that Conjecture 16 is satisfied by unicyclic
graphs, bicyclic graphs and tricyclic graphs with k ̸= 3. More recently, Chen et al. [3]
proved that Conjecture 16 is true for all graphs when k = n − 2.

In this section, as an application of the main result, we prove that Conjecture 16 is true
for threshold graphs. We begin by proving some technical lemmas. Lemma 17 provides an
expression for dn−k̄(G).

Lemma 17. Let G be a threshold graph with n vertices and alternating binary sequence
bq1

1 . . . bqr
r . We have that dn−k̄ = k̄ − q1b1.

Proof. It follows from the definition that k̄ =
∑r

h=1 bhqh and dn−k̄ represents the degree
of vertices of the first block of zeros.

If b1 = 0 then the first block of zeros is the first block of the binary sequence of G and
its degree is p1 =

∑n
h=1 bhqh = k̄ − q1b1. If b1 = 1 then the first block of zeros is the second

block of the binary sequence of G and its degree is p2 =
∑r

h=3 bhqh = k̄ − q1b1. □

9



Figure 2: The red vertices have degree dn−k̄.

Figure 2 illustrates Lemma 17. On the left, we see the threshold graph given by
B1 = 12021301, in which n = 9, b1 = 1, q1 = 2 and k̄ = 6. The red vertices, which represent
the first block of zeroes, have degree p2 = dn−k̄ = d3 = k̄−q1b1 = 6−2 = 4. On the right, we
have the threshold graph given by B2 = 031202101, in which n = 10, b1 = 0, q1 = 3 and k̄ = 4.
The red vertices (the first block of zeroes) have degree p1 = dn−k̄ = d6 = k̄−q1b1 = 6−2 = 4.

In the next lemma we present a lower bound for the number of edges of the graph as a
function of its sequence of degrees.

Lemma 18. Let G be a threshold graph with n vertices and alternating binary sequence
bq1

1 . . . bqr
r . For k ≤ k̄, we have that

n∑
i=n+1−k

di −
(

k

2

)
+
(

k̄ − k

2

)
+ q1(k̄ − k)(1 − b1) ≤ |E|.

Proof. The term
∑n

i=n+1−k di adds the degrees of the k last one-vertices in the binary
sequence. In relation to all edges |E| the

(k
2
)

edges between these vertices are counted twice
while at least the

(k̄−k
2
)

edges among the first k̄ − k one-vertices are not counted in the
sum. Furthermore, if b1 = 0, there are q1(k̄ − k) edges between the last k̄ − k one-vertices
and the first q1 zero-vertices that were still not counted. This completes the proof. □

Figure 3: An illustration of the proof of Lemma 18.

Figure 3 illustrates the proof of Lemma 18. We see the threshold graph given by the
binary sequence B = 03101012. As n = 9 and k̄ = 4, consider k = 2. The black edges are
counted in dn + dn−1, with the thick black edge counted twice. The red edges amount to(k̄−k

2
)

+ q1(k̄ − k)(1 − b1). The blue edge is not counted.
Now, we proceed with the proof of the main result of this section.

10



Theorem 19. Let G be a threshold graph with n vertices. For any integer k with 1 ≤ k ≤ n
there holds

n∑
i=n+1−k

λi(Q(G)) ≤ |E| +
(

k + 1
2

)
.

Proof. Let bq1
1 . . . bqr

r be the alternating binary sequence with q1 ≥ 2 specifying the
threshold graph G, and k̄ be the number of ones in this sequence. By Theorem 13,

λn ≥ dn − 1 ≥ · · · ≥ λn+1−k̄ ≥ dn+1−k̄ − 1 ≥ dn−k̄ ≥ λn−k̄ ≥ · · · ≥ d1 ≥ λ1. (7)

Summing the n + 1 − k̄ smallest signless Laplacian eigenvalues we have that

n−k̄∑
i=1

λi ≥
n−1−k̄∑

i=1
di.

From Lemma 17, adding dn−k̄ = k̄ − q1b1 on both sides of the above inequality we obtain

n−k̄∑
i=1

(di − λi) ≤ k̄ − q1b1.

The trace
∑n

i=1 λi =
∑n

i=1 di = 2|E| now gives rise to

n∑
i=n+1−k̄

(λi − di) =
n−k̄∑
i=1

(di − λi) ≤ k̄ − q1b1.

Adding k̄ on both sides, we obtain
n∑

i=n+1−k̄

[λi − (di − 1)] ≤ 2k̄ − q1b1, (8)

where λi − (di − 1) ≥ 0 for i = n + 1 − k̄, . . . , n by (7).
We first consider

∑n
i=n+1−k λi for k ≤ k̄. Relation (8) asserts

n∑
i=n+1−k

λi ≤
n∑

i=n+1−k

di + 2k̄ − q1b1 − k. (9)

With Lemma 18 this allows one to bound the sum of the largest k eigenvalues by
n∑

i=n+1−k

λi ≤

≤ |E| + 1
2[4k̄ − 2q1b1 − 2k + k(k − 1) − (k̄ − k)(k̄ − k − 1) − 2q1(k̄ − k)(1 − b1)]

= |E| + 1
2[k2 + k̄ − (k̄ − k)2 + (k̄ − k)(4 − 2q1 + 2q1b1) − 2q1b1]. (10)

It remains to check that for k ≤ k̄ the term added to |E| is at most
(k+1

2
)
, or

k2 + k̄ − (k̄ − k)2 + (k̄ − k)(4 − 2q1 + 2q1b1) − 2q1b1 ≤ (k + 1)k

which simplifies to

−(k̄ − k)2 + (k̄ − k)[5 − 2q1(1 − b1)] − 2q1b1 ≤ 0.
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Consider first the case b1 = 0. We have (k̄ − k)[(5 − 2q1) − (k̄ − k)] ≤ 0. If k̄ − k = 0 the
result follows. If k̄ − k ≥ 1, we notice that 5 − 2q1 ≤ 1, since q1 ≥ 2, and the result follows.

For b1 = 1, we have −(k̄ − k)2 + 5(k̄ − k) − 2q1 ≤ 0. We notice that this expression
represents a parabola in (k̄ − k), and its maximum ensures that

−(k̄ − k)2 + 5(k̄ − k) − 2q1 ≤ 25 − 8q1
4 .

If q1 ≥ 3, it follows that −(k̄ − k)2 + 5(k̄ − k) − 2q1 ≤ 0 for k̄ − k integer. If q1 = 2, it
follows that −(k̄ − k)2 + 5(k̄ − k) − 2q1 ≤ 0 for k̄ − k ≤ 1 and k̄ − k ≥ 4.

It remains to consider the cases with b1 = 1, q1 = 2 and k = k̄ − 2, k̄ − 3. We have

λn−k+2(G) ≥ k − 1

by Theorem 13. Thus, when k = k − 2,
n∑

i=n−k+3

λi =
n∑

i=n−k+2

λi − λn−k+2(G)

≤ |E| +
(

k

2

)
− λn−k+2(G)

≤ |E| +
(

k

2

)
− (k − 1)

= |E| +
(

k − 1
2

)
,

because the case k = k̄ − 1 was already proved. Similarly, when k = k − 3, since
λn−k+3 ≥ λn−k+2 ≥ k − 1,

n∑
i=n−k+4

λi =
n∑

i=n−k+3

λi − λn−k+3(G)

≤ |E| +
(

k − 1
2

)
− λn−k+3(G)

≤ |E| +
(

k − 1
2

)
− (k − 1)

≤ |E| +
(

k − 2
2

)
.

For k ≥ k̄ + 1 we proceed by induction on k. For the induction basis consider k = k̄ + 1.
By λn−k̄ ≤ dn−k̄ = k̄ − q1b1 ≤ k̄ there holds

n∑
i=n−k̄

λi =
n∑

i=n+1−k̄

λi + λn−k̄ ≤ |E| +
(

k̄ + 1
2

)
+ k̄ ≤ |E| +

(
k̄ + 2

2

)
.

For k > k̄ + 1, we have λn+1−k ≤ dn+1−k ≤ dn−k̄ = k̄ − q1b1 ≤ k̄ ≤ k. Consequently,

n∑
i=n+1−k

λi =
n∑

i=n+2−k

λi + λn+1−k ≤ |E| +
(

k

2

)
+ k = |E| +

(
k + 1

2

)
.

This completes the proof. □
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