
Periodic Event Scheduling for Automated
Production Systems

Christoph Helmberg, Tobias Hofmann*, David Wenzel

Chemnitz University of Technology
*tobias.hofmann@math.tu-chemnitz.de

Abstract. Consider optimizing a periodic schedule for an automated production
plant as a last step of a more comprehensive design process. In our scenario, each
robot’s cyclic sequence of operations and trajectories between potential waiting
points have already been fully specified. Further given are those precedences that
fix sequence requirements on operations between different robots. It remains to
determine the starting time for each operation or movement of each robot within
a common cyclic time period so as to avoid collisions of robots that operate in
the same space simultaneously. So the task is to find a conflict resolving schedule
that minimizes this common periodic cycle time while observing all precedence
relations and collision avoidance constraints.

The proposed cycle time minimization problem for robot coordination has, to the
best of our knowledge, not been studied before. We develop an approach for solv-
ing it by employing binary search for determining the smallest feasible period time
of an Iso-Periodic Event Scheduling Problem (IPESP). This is a variant of the
Periodic Event Scheduling Problem where the objects that have to be scheduled
need to obey exactly the same period time. The possibility to wait arbitrarily long
at waiting points turns out to be essential to justify the use of binary search for
identifying the minimum cycle time, thereby avoiding bilinear mixed integer for-
mulations. Special properties of the given scenario admit bounds on the periodic
tension variables of an integer programming formulation. While the IPESP sub-
problems remain NP -complete in general, these bounds allow to solve real-world
instances sufficiently fast for the approach to be applicable in practice. Numerical
experiments on real-world and randomly generated data are supplied to illustrate
the potential and limitations of this approach.

Keywords. automated systems, network optimization, periodic event scheduling,
mixed-integer programming

1



1 Introduction

We consider a specific scheduling task that is one of the last steps in an involved
design system for industrial robot production plants. At this stage, most decisions
have been fixed already. The number and placement of the robots within the plant
are given. The robots will operate periodically, interwoven in a common cycle
with a yet unknown period time. For each robot the sequence of its operations
and the associated trajectories of its movements between potential waiting points
are fully specified. Certain operations on shared objects have to fulfill precedence
constraints in order to result in a meaningful production process, e.g., an object
can only be removed after it has been worked on. These precedence requirements
are also part of the input. We are, however, free to adapt the length of the period
time and to prescribe the starting times of successive operations or movements of
the individual robots within their common cycle. These decisions have to satisfy
the precedence constraints and to ensure that no collisions occur. In particular,
we are still free to decide which robot operates first in the case that a number of
robots compete for the same space while performing their individual process steps.
These decisions have a significant influence on the period time, and the aim is to
find a periodic starting time schedule that minimizes the overall period time of
the production plant.

The robot production lines under investigation. The concrete application
scenario is detailed in [10]. Here, we only enlarge on a few distinctive features that
shed more light on the scenario at hand. Each robot in our scenario executes a
fixed sequence of operations and moves between potential waiting points along a
predestined trajectory in space. We regard the waiting points as states and the
motions between them as state transitions. The states are visited periodically
in a loop. The only freedom robots have is to wait at each such state, e.g., for
letting another robot pass in order to avoid a collision if their trajectories lead
them through the same space. Because trajectories are given, a preprocessing step
allows to determine which state transitions may be executed simultaneously by
both robots and which must not overlap in time. Once this information is avail-
able, there is no need to consider the trajectories within the scheduling problem.
Indeed, their data is not even known to us. We are only given collision avoidance
constraints in a tabular form. For each pair of robots, a separate table specifies
for each pair of state transitions whether they may be executed simultaneously or
not. This clearly distinguishes our scenario from many other robotics applications,
which may incorporate online path finding algorithms, and renders it a pure of-
fline periodic scheduling problem. It also ensures that the resulting schedule can
be executed deterministically without further intervention. Such schedules are the
favored choice in large-scale production systems, such as in the automotive sector.

2



Scheduling problems in robotics that are somewhat related to the application at
hand, appear in wafer fabrication. Differing from our situation, altering the se-
quence in which a robot approaches the states is an additional challenge. How-
ever, a simpler setup helps to compensate this. As described by [1] or [30], the
interdependencies in the production process have a linear or tree-like topology,
respectively. This allows the authors to derive tailored algorithms with polyno-
mial running time. In contrast, our application admits more complex interactions
between robots, resulting in a computationally hard problem for which we cannot
hope for such an algorithm; see Theorem 12.

Surprisingly, we find a suitable framework for our scenario in the context of train
timetabling, which may not seem very similar at first glance. However, train lines
can be seen as a fixed periodic sequence of passages between stations, at which a
train may stop. Likewise, a robot moves from one program point to the next and
can wait there for some time. Furthermore, two trains must not use the same track
at the same time. This corresponds to our collision avoidance constraints, which
ensure that two robots do not enter a shared space simultaneously. There are two
major differences in this analogy. First, the period time is given for a railway
schedule, while we seek the minimum period time with a valid schedule for the
robots to make production fast and effective. And second, train lines may differ
in their period time, while in our scenario robots have to perform their sequence
exactly once in each production cycle.

Mathematical Contributions to Periodic Scheduling Problems. In train
timetabling as well as robot system scheduling, one is confronted with temporal
precedences, collision avoidance constraints, and of course periodic processes. In
the realm of train timetabling, several effective solution approaches are based on
the Periodic Event Scheduling Problem (PESP) introduced by [26]. Besides its
application to train networks, the PESP has also been proposed for the Periodic
Job Shop Problem or traffic light scheduling; see [26] or [8], respectively. The rich
modeling capabilities of the PESP in the context of train timetable generation are
presented comprehensively by [15]. While the PESP proves to be well applicable,
[25] and, using a different proof idea, [22] established its NP -completeness.

Our scientific and technological interest lies in transferring and adapting the mod-
eling capabilities of the PESP to this new application field in the design of au-
tomated production lines. In order to sketch the main ideas we first recall the
definition of the PESP. For this, let N denote the set of natural numbers starting
from one, and use N0 := N∪{0}. Furthermore, all times are regarded as multiples
of some unsplittable time unit, whence parameters and variables are considered as
integers.

3



Figure 1: Motion Points and Corresponding Graph Structure
The graph theoretic robot cycle naturally emerges from the programmed path.

Definition 1 (PESP). Given a directed graph G = (V,A), vectors l, u ∈ NA, as
well as a period time T ∈ N, the task of the Periodic Event Scheduling Problem
is to find vectors x ∈ NV

0 and p ∈ ZA such that for any a = (α, β) ∈ A the time
window constraint

la ≤ xβ − xα + T pa ≤ ua

is satisfied.

Figure 1 illustrates the link between a real robot’s trajectory and its individual cy-
cle in the graph structure. The states the robots visit during their respective cyclic
sequence form the set of nodes V with some of the arcs in A ⊂ V × V encoding
the precedence relations within the individual sequences. Collision avoidance con-
straints and further precedence relations will be encoded by further arcs between
two robot cycles, as described in Section 2. For each state α ∈ V the xα vari-
ables will give the point in time within the period time T , at which the respective
robot will start the transition from α to its successor. For each precedence relation
a = (α, β) the time window constraint specifies the lower and upper bounds on
the time difference in starting times xα and xβ modulo the time period T . This
modulo operation is implemented by suitably choosing pa ∈ Z. The range of pos-
sible values that these offset variables pa can attain, has a decisive influence on
the problem’s properties. If these variables could be fixed in advance, the PESP
could be solved in O(|V | · |A|) time; see for example [14]. It turned out that one
of the many integer programming formulations of the PESP, the so-called Cycle
Periodicity Formulation introduced by [21], seems to be a good choice in order
to reduce the number of integer variables in a PESP instance. In this formula-
tion it is sufficient to require the appearing Cycle Periodicity Constraints only for
ν = |A| − |V |+ 1 fundamental cycles of a connected PESP instance; see [21]. We
adapt these aspects to our scenario in Section 3. [16] further showed that instead
of fundamental cycle bases one can choose integral ones, which form a wider class
of cycle bases. In order to reduce the domain of the offset variables, the Minimum
Integral Cycle Basis Problem and related issues have been studied. An overview
is given by [17] or [13]

4



Valid inequalities for integer programming formulations of the PESP and related
polyhedral aspects were investigated by many authors. [25] established the cycle
inequalities and [22] the change-cycle inequalities. [23] investigated node-disjoint
chain inequalities, [20] studied flow and chain flow inequalities, whereas [18] estab-
lished multi-circuit cuts. Typically, these inequalities are used in branch-and-cut
implementations that incorporate different separation heuristics. As [5] or [3]
present, these frameworks may also comprise satisfiability methods as those of
[7] or local improvement heuristics like the modulo network simplex algorithm,
which is described by [24]. Despite of these efforts, the PESP is considered to be
a notoriously hard problem; see [4] or [3]. Moreover, the computational results
on the usefulness of the different classes of valid inequalities show an ambivalent
picture; see [28] or [18]. However, there are very recent works that promise further
progress. For example, [2] provide a pseudo-polynomial time separation algorithm
for cycle inequalities and [19] propose flip inequalities that generalize both, the
cycle and change cycle inequalities.

A modeling alternative to the PESP might in principle be given by the Max-Plus-
Algebra framework as it is described by [6] or [9] for train timetabling applications.
However, the constraint structure could not cover all periodicity and precedence
requirements of our setting. Indeed, as with the models for wafer fabrication, Max-
Plus-Algebra approaches allow algorithms with polynomial running time, whereas
Theorem 12 states that the problem at hand is NP -complete.

Outline of this research. In Section 2 we describe in detail how to formalize
the given application as a scheduling problem and show in Proposition 7 that all
occurring modeling aspects can be realized within the PESP framework. Even-
tually, this gives rise to a variant of the PESP that we call Iso-Periodic Event
Scheduling Problem (IPESP). A decisive difference between the scenario at hand
to other PESP applications is that our goal is to realize the minimum period time,
which causes nonlinear time window constraints. We provide sufficient conditions
in Proposition 8 that allow to solve this optimization problem by employing a
binary search approach. Moreover, we show that relaxing these conditions might
cause feasibility issues. In Section 3 we prove that in spite of the iso-periodicity
constraints the IPESP remains NP -complete. Furthermore, we adapt the Cycle
Periodicity Formulation of the PESP to our scenario and provide admissible a
priori bounds on the appearing integer periodic tension variables. Finally, in Sec-
tion 4, we present numerical results for real-world as well as generated instances,
which demonstrate the practical usability of our approach.

5



2 Modeling Inter-Linked Robot Cycles

Let R be a finite set of robots. For each robot r ∈ R we are given a state set

Vr = {0, 1, . . . , nr − 1} with 2 ≤ nr ∈ N

that the robot has to cyclically run through. A robot with only one state would
be mathematically trivial and practically useless. If we need to address two or
more robots at the same time, we subscript the states with the respective robot
index, i.e. 0r, 1r, . . . or αr, to circumvent ambiguity. The direct successor and direct
predecessor of some state α ∈ Vr shall be abbreviated by

α ′ := (α + 1) mod nr and ′α := (α− 1) mod nr.

We remark that in [10] the alternative numbering scheme from 1 to nr has been
chosen, as it simplifies the notation in preparation algorithms. The cyclic sequence
of state transitions will be represented by the arc set

Ar := {(0, 1), (1, 2), . . . , (nr − 1, 0)}

of a directed simple closed walk on Vr. The state sets Vr are pairwise disjoint by
definition. Likewise the transition sets Ar do not intersect. All states or transitions
are collected in

V =
⋃̇
r∈R

Vr or
◦
A =

⋃̇
r∈R

Ar,

respectively. The task is to find a minimum period time T ∈ N as well as an
assignment of starting times x ∈ {0, . . . , T − 1}V that satisfy the subsequent
constraints, of which three types are distinguished. We opted for the commonly
used start formulation, though the arrival time could be utilized equivalently.

Transition time windows. If α, β ∈ V , denote by

d(α, β) := (xβ − xα) mod T

the duration in time units elapsing from starting in state α until starting in state β.
Be aware that this starting in the two states may also address different robots. For
each pair of cyclically successive states a := (α, α ′) ∈

◦
A (indeed it is an element

of Ar for some robot r ∈ R), the duration d(a) := d(α, α ′) has to respect given
lower bounds

◦
l ∈ NÅ and upper bounds ◦u ∈ NÅ, i.e.,

◦
la ≤ d(a) ≤ ◦

ua for a ∈
◦
A. (1)

The minimum transition times are given. The traversed distances or motion speeds
of the robots are only limited by technology and have no influence on the model’s

6



(

(
(

(

xα
xβ + l(β,β ′)

xγ
xδ + l(δ,δ ′)

Good case 2

0 = T

((

(

(

xα

xβ + l(β,β ′)

xγxδ + l(δ,δ′)

Conflict

0 = T

(

(

(

(

xα

xβ + l(β,β ′)

xγ

xδ + l(δ,δ ′)
Good case 1

0 = T

Figure 2: Clock Visualization
The two modulo intervals from (3) are put on the circle; see [26, p. 554]. Their intersection must
be empty.

properties. Since actually all production steps are to be finished within the period
time T , the upper bounds can always be assumed to range within 1 ≤ ◦

ua ≤ T − 1
if they exist. Larger values otherwise yield inactive constraints.

Period homogeneity. Furthermore, all robots have to run through their states
with the same period. Formally,∑

a∈Ar

d(a) = T for r ∈ R. (2)

This is different to train timetabling, where several cycle periods can be wanted.
In a production line, a robot cannot proceed with a whole new run when others
are still working on the old item. Of course, a robot’s job may be to, e.g., attach
two pieces to one item. However, then a cycle needs the two distinctive operations
to be completed in one run.

Collision avoidance. Finally, the simultaneous execution of certain subsequences
of state transitions may cause conflicts in pairs of robots, leading to collision
avoidance constraints. For two robots r, s ∈ R, r < s, these restrictions are given
by a subset

Cr,s ⊂
{
{(β, γ), (δ, α)} | α, β ∈ Vr, γ, δ ∈ Vs

}
,

where an element {(β, γ), (δ, α)} ∈ Cr,s encodes that any actions of robot r follow-
ing state α up to state β ′ and any concurrent actions of robot s following state γ
up to state δ ′ are forbidden. With the modulo-inspired interval notation for times
i, j,

(i, j)
∣∣∣
T

:=


(i, j) if i ≤ j < T,

(i, T ) ∪ [0, j mod T ) if i < T ≤ j,

(i, T ) ∪ [0, j) if j < i < T,

7



the collision avoidance constraints are given by the expression

(xα, xβ + l(β,β ′))
∣∣∣
T
∩ (xγ, xδ + l(δ,δ ′))

∣∣∣
T

= ∅ for {(β, γ), (δ, α)} ∈ Cr,s, r, s ∈ R. (3)

Keep in mind that the second-listed state in these pairs is the one before the
relevant border state, an arrival time like xβ + l(β,β ′) is specified in the intervals’
right limit. Additional waiting time in a collision-free state β ′ should no longer
block motion, so xβ ′ would be too late. Again, all such robot pair sets are collected
in C := ⋃̇

r,s∈R Cr,s.

One way to think of the above interval notation is the clock visualization, which
already [26] made use of. Condition (3) then means that the time intervals in which
certain operations are to be performed must not overlap, which is illustrated in
Figure 2. Moreover, if in practice two points on the respective trajectories give
rise to a collision, then this is also considered to happen close by, whence the
intervals are open. As a consequence, condition (3) for example does not interdict
the robots being in their border states α and γ at the same time, whereas moving
from state α to state α ′ and beyond until state β ′ is not allowed when the other
robot is moving from state γ to state δ ′. After all, the set structures described
can be summarized as follows.

Definition 2 (IPEC). The tuple (R, V,
◦
A, C,

◦
l,
◦
u) is the Iso-Periodic Event Con-

figuration.

The term “Iso-Periodic” refers to the periodic structure of the operations that have
to be performed as well as to the requirement that all robots in a production line
have to work with the same frequency. In this notation, the scheduling problem
reads as follows.

Definition 3 (CTMP). For an IPEC, the Cycle Time Minimization Problem is

minimize T
subject to (1), (2), (3),

T ∈ N, x ∈ {0, . . . , T − 1}V .

Whereas this original problem formulation reveals the motivation of its constraints,
there is a more developable and concise formulation, which is related to the PESP.
The graphG in Definition 1 contains the structure of the set of constraints, and it is
a helpful tool for visualizing instances of these problems. As in other applications,
see [26] or [15], the set structures underlying the CTMP can also be interpreted
graph-theoretically. When looking at the IPEC, (V,

◦
A) consists of several isolated

simple closed walks, i.e. it is a disconnected graph. Our inequalities (1) obviously
are of the same type as the time window constraints of the PESP. In contrast, the

8



constraints (3) do not fit into the preferable scheme. Consequently, the formulation
should be made more tractable. A closer look unveils that C consists of pairs of
edges between states of two different robots. These will be added to the IPEC
graph, connecting the individual robot cycles. Hence, define

A :=
◦
A ∪

⋃
{c1,c2}∈C

{c1, c2}.

The lower and upper bounds have been defined for all edges in
◦
A. The new edges

c ∈ A \
◦
A will get bounds too, coming from the collision avoidance constraints.

The vectors
◦
l,
◦
u ∈ NÅ are extended to vectors l, u ∈ NA by defining the value for

any edge c ∈ {c1, c2} ∈ C via

lc :=
◦
l(β,β ′) and uc := T for c = (β, γ) ∈ A \

◦
A. (4)

The rationale behind this choice is that robot s may continue from state γ = γs
only if robot r has reached state β ′ = βr

′, i.e., in requiring (4), we guarantee

xγ ≥ xβ +
◦
l(β,β ′),

linking the starting times of one robot to the ones of another. In order to refor-
mulate the CTMP within the PESP framework it will be convenient to associate a
particular circuit with each pair of collision constraint arcs. To build this, we add
to the collision constraint arcs two directed paths, leading on the respective robot
cycle from the head of one collision constraint arc to the tail of the other one. So,
for each of the elements {(βr, γs), (δs, αr)} ∈ C, we extract the directed paths

Arα,β := {(α, α ′), . . . , (′β, β)} ⊂ Ar,

Asγ,δ := {(γ, γ ′), . . . , (′δ, δ)} ⊂ As

and define the blocking circuit as the simple closed walk

D({(βr, γs), (δs, αr)}) := {(βr, γs)} ∪ Asγ,δ ∪ {(δs, αr)} ∪ Arα,β.

Remark 4. The definition of the robot cycle segments is a bit sloppy. Of course,
the segment also could consist of only one edge (β = α ′) or even might be empty
(β = α). This advances technical details that often can be disregarded in return
for easier notation. The definition of the circuit is correct in any case.

Also note that the edges of such a blocking circuit have all the same orientation
and for practically relevant settings, we may assume α ≤ β and γ ≤ δ in any

9



collision edge pair. This restriction is not mandatory, but further simplifies certain
explanations. In consequence, there is no blocking in all of the robots’ first states,
and the existence of a schedule is granted for T large enough by just letting the
robots move one after the other. This assumption is justified by the industrial
habit of a home position for security reasons. We do not need to prohibit collision
segments extending over the modulus in our investigations, but be aware that then
contradicting constraints could emerge, preventing the success of the search for a
solution.

We finally remark that a blocking circuit can also originate from technological
precedence relations rather than from the need to avoid physical collisions. The
model for such interdependencies is the same.

The special knowledge on the collision edge pairs is now stored in the collective
set of inter-linking circuits

D :=
⋃̇
C∈C

D(C),

which can be understood as practically motivated, additional information. In sum-
mary, the collision information has been modeled directly into the graph structure,
while the problem characteristics are kept available in distinguishing certain sub-
structures through the blocking circuit set.

Definition 5 (IPEN). For an IPEC, the associated Iso-Periodic Event Network
is the tuple (R, V,A,D, l, u).

The general structure of the resulting graphs is illustrated in Figure 3. Condi-
tion (4) for example requires that arc c1 gets the same lower bound as arc a. The
introduced circuit D for a collision edge pair C = {c1, c2} ∈ C is also highlighted
at the sample network. Based on such data, we then regard the following problem.

Definition 6 (IPESP). For an IPEN, the Iso-Periodic Event Scheduling Problem
is

minimize T
subject to la ≤ xβ − xα + T pa ≤ ua for a = (α, β) ∈ A,∑

a∈Ar

pa = 1 for r ∈ R,∑
d∈D

pd = 1 for D ∈ D,

T ∈ N, x ∈ {0, . . . , T − 1}V , p ∈ {0, 1}A.

Note that in contrast to the classical PESP, the term T pa is quadratic, since T
is not constant here, but it is well suited to represent the given practical scenario.
We will see in an instant that the time windows for robot transitions are directly

10



V1

V2

V3

V4 V5

D

A3

A4

c1

c2

a

Figure 3: Graph of an IPEN
This illustration concerns a simple network of five robots. Here, robots 1 and 2 have no inter-
links. In contrast, between robots 2 and 3, two collision edge pairs are added. For the pair of
robots 3 and 4, the blocking circuit D is constructed from the collision edge pair {c1, c2} by
joining them with segments A3 and A4 of the robot cycles.

transferred from the CTMP to the IPESP. For this, recall our general assumption
ua < T . The period homogeneity is just rewritten, too. The collision avoidance is
more challenging. Each pair of C gives a similar constraint for blocking synchro-
nization and two new time windows for inter-linking switches.

Proposition 7. Solving the CTMP and the derived IPESP is equivalent.

Proof. Constraint (1) of the CTMP demands for a = (α, β) ∈ Ar, r ∈ R, that

la ≤ d(a) ≤ ua,

⇔ la ≤ (xβ − xα) mod T ≤ ua,

⇔ la ≤ xβ − xα + T pa ≤ ua with a pa ∈ {0, 1}.

The last equivalence holds because x ∈ {0, . . . , T − 1}V and hence xβ − xα ∈
(−T + 1, T − 1). Since we assumed u < T within the CTMP, the modulus T has
to be added once, or there is nothing to correct. This argumentation covers all
a ∈

◦
A. The inter-linking arcs are included in a similar fashion later on.

11



Constraint (2) of the CTMP reads

T =
∑
a∈Ar

d(a) =
∑

a=(α,β)∈Ar

(xβ − xα + T pa)

=
∑

(α,β)∈Ar

(xβ − xα) + T
∑
a∈Ar

pa = T
∑
a∈Ar

pa for r ∈ R.

This is satisfied if and only if∑
a∈Ar

pa = 1 for r ∈ R.

Notice that the latter means that exactly one edge of a robot cycle has an offset
variable pa = 1, while the others are stuck to pa = 0.

Finally, constraint (3) of the CTMP requires that for C = {(β, γ), (δ, α)} ∈ Cr,s,
r, s ∈ R,

(xα, xβ + l(β,β ′))
∣∣∣
T
∩ (xγ, xδ + l(δ,δ ′))

∣∣∣
T

= ∅.
The comparison with the IPESP notation needs a case differentiation that replaces
the modulo intervals above.

Case 1: xα > xβ + l(β,β ′) and xγ > xδ + l(δ,δ ′). This is impossible, because
otherwise, falling back to the last two lines of the definition of the interval notation,
0 is contained in both intervals, violating condition (3). Likewise, this case is not
possible in an IPESP formulation. Because of xα > xβ, the “date line” for robot
r’s cycle (at which the modulo time jump takes place) is somewhere on the path
from α to β. That is, one of the arcs a ∈ Arα,β must have a non-vanishing offset
variable pa = 1. (Keep in mind that Arα,β 6= ∅ due to α 6= β.) Analogously, the
other inequality implies the existence of an b ∈ Asγ,δ with pb = 1. This would lead
to the contradiction

1 =
∑

d∈D(C)
pd ≥ pa + pb = 2.

Case 2: xα ≤ xβ + l(β,β ′) and xγ ≤ xδ + l(δ,δ ′). Here, we have xα < xα ′ < . . . < xβ,
which is equivalent to pa = 0 for all a ∈ Arα,β, and xγ < xγ ′ < . . . < xδ, which is
equivalent to pa = 0 for all a ∈ Asγ,δ (if there are some). While all starting times
have values less than T due to the problem definition, the arrival times may exceed
the period time. Similar to the left bound of the intervals, also the right bounds
xβ + l(β,β ′) and xδ + l(δ,δ ′) have to be differentiated in accordance with the modulo
interval definition.

Case 2a: Both do not exceed T . Referring to Figure 2 middle for an illustration,
condition (3) then simply is

(xα, xβ + l(β,β ′)) ∩ (xγ, xδ + l(δ,δ ′)) = ∅,

12



which is equivalent to that

either xβ + l(β,β ′) ≤ xγ or xδ + l(δ,δ ′) ≤ xα.

These inequalities in fact are the additional IPESP time window constraints (for
edges in A\

◦
A) with zero offset. Reminding that exactly one of them is valid, there

is one p equal to zero, while the reversed inequality enforces the other p to be one.
In consequence,∑
d∈D(C)

pd =
∑
c∈C

pc = 1 and l(β,γ) ≤ xγ − xβ + T p(β,γ), l(δ,α) ≤ xα − xδ + T p(δ,α).

This is, in view of Definition 5, what was to be shown.

Case 2b: One is less than T , the other bigger or equal. If, without loss of gener-
ality, xβ + l(β,β ′) ≥ T , the first interval is split into two parts:[

(xα, T ) ∪ [0, xβ + l(β,β ′) mod T )
]
∩ (xγ, xδ + l(δ,δ ′)) = ∅.

This is only realizable when

xβ + l(β,β ′) − T ≤ xγ and xδ + l(δ,δ ′) ≤ xα,

so, we again have one edge of the collision pair with p(β,γ) = 1 and one with p(δ,α) =
0. The ordering of the intervals we encountered in Case 2a appears similarly, but
is fixed automatically depending on which time jumps.

Case 2c: Both are at least T . As in Case 1, the intersection can only be non-empty;
both intervals extend to T . But here, arcs on the robot cycles not necessarily exist,
or their offset variables vanish anyway. The contradiction must hence be based on
the collision edge pair. Considerations like in Case 2b yield p(β,γ) = 1 and p(δ,α) = 1
here.

Case 3: xα > xβ + l(β,β ′) and xγ ≤ xδ + l(δ,δ ′) or xα ≤ xβ + l(β,β ′) and xγ >
xδ + l(δ,δ ′). Due to symmetry considerations, we restrict ourselves to the first
situation. Analyzing the inequalities, we see that this case occurs exactly when
pa = 1 for some a ∈ Arα,β 6= ∅ and pa = 0 for all a ∈ Asγ,δ. Again, we need to split
with respect to the right bound of the interval. But this time, it can occur only
for the second constraint.

Case 3a: xδ + l(δ,δ ′) < T . This is also illustrated in the right image of Figure 2.
Condition (3) then becomes[

(xα, T ) ∪ [0, xβ + l(β,β ′))
]
∩ (xγ, xδ + l(δ,δ ′)) = ∅,

13



α

β

δ

γ

[1, 2][1, 2] [1, T − 1] [1, T − 1]

d

[4, T − 1]

[1, 2]
[1, T − 1]

a

b

c

[1, T − 1]

[1, 2][1, 2]

[1, 2]

Figure 4: Illustrations to Problems with Constant Upper Bounds
The depicted graph structures demonstrate feasibility issues that arise when relaxing the con-
dition of non-constant upper bounds in Proposition 8, as pointed out in Remark 10. In the
pictures, lower and upper bounds are assigned to the arcs in form of time intervals.

looking almost like Case 2b. We easily see p(β,γ) = 0 and p(δ,α) = 0 in the inequal-
ities here and get as desired∑
d∈D(C)

pd =
∑
a∈Ar

pa = 1 and l(β,γ) ≤ xγ − xβ + T p(β,γ), l(δ,α) ≤ xα − xδ + T p(δ,α).

Case 3b: xδ + l(δ,δ ′) ≥ T . Obviously, the intersection of the intervals would
be non-empty. Recalling Case 2c, we obtain p(δ,α) = 1, so that the blocking
synchronization sum is two. In both formulations, this case was excluded.

Note that in contrast to the classical PESP our formulation also contains the
objective to minimize T . This causes nonlinearities T pa in the constraints. In
the implementations, we accomplish this by solving the corresponding feasibility
problem for a given T and employing binary search for reducing the period time.
This approach is based on the following observation.

Proposition 8. Consider an IPESP instance having upper bounds ua = T − ca
with ca ∈ N for each a ∈ A. A solution x ∈ {0, . . . , T − 1}V , p ∈ {0, 1}A of the
corresponding feasibility problem for a fixed T ∈ N remains feasible for ua = T ′−ca
with T ′ = T + 1.

Proof. Let x ∈ {0, . . . , T − 1}V , p ∈ {0, 1}A be a solution for a given T ∈ N,
as required. Then this solution also satisfies the time window constraints for
T ′ = T + 1, because

la ≤ xβ − xα + T pa < xβ − xα + T ′pa and
xβ − xα + T ′pa = xβ − xα + T pa + pa ≤ T − ca + pa ≤ T + 1− ca = T ′ − ca.

In view of Definition 6, nothing else remains to be shown.

14



Remark 9. In our application, all upper bounds can be set to ua = T −1. So any
feasible solution of the IPESP for some T is also valid for any larger time. Thus
there is a monotonous behavior when varying T , which allows to apply the search.
Actually, for real-world data sets the bounds often can be reduced even more to
ua = T −∑a∈K la where the index set K ⊂ A describes the complement of some
directed circuit containing a. Obviously, if a is part of an individual robot cycle,
it must reserve enough time for the remaining state transitions.

Remark 10. Relaxing the condition of non-constant upper bounds in Proposi-
tion 8 might cause feasibility issues. Consider the two examples given in Figure 4.
An IPESP having the triangle on the left as a subgraph may be feasible for T = 6,
but cannot have a feasible solution for T = 7. Even worse, having non-constant
upper bounds in every closed walk is still not sufficient. The occurrence of just
a few constantly bounded arcs may cause feasibility issues, as illustrated by the
instance on the right of Figure 4. For example, it is solvable for T = 5 with
starting times xα = 0, xβ = 2, xγ = 4 and xδ = 1, but it is infeasible for T = 6.
Starting w.l.o.g. in state α at time xα = 0 implies xβ ∈ [1, 2] and thus xγ ∈ [2, 4]
and xδ ∈ [3, 6) ∪ {0} by the bounds of arcs a, b and c, respectively. Taking into
account the constraint of arc d yields xα ∈ [1, 5], contradicting xα = 0.

Remark 11. An alternative to the binary search approach presented here, is
given by [27]. They treat T as a real variable in an interval [0, U ] with U chosen
sufficiently large and handle the quadratic term T pa by linearizing the time window
constraints

la ≤ xβ − xα + T p(α,β) ≤ ua for a = (α, β) ∈ A.

As described by [29], a term T p containing a binary variable p and a real variable
T can be rewritten by introducing a new variable z = T p subject to the constraints

0 ≤ z ≤ Up and T − U(1− p) ≤ z ≤ T.

This allows to reformulate the associated cycle time minimization problem as a
mixed-integer linear program that can be solved directly. However, in contrast to
the binary search approach, the above linearization introduces a number of ad-
ditional variables and constraints to the model. Furthermore, the focus in [27]
is on the PESP and not on the frequently used CPF. This is probably due to
the fact that the integer variables in the latter model are not binary and thus its
constraints are more challenging to linearize. Nevertheless, comparing these ap-
proaches in both underlying applications (train timetabling and robot scheduling)
is an interesting question for further research.

15



3 The IPESP and its Properties

This section clarifies the complexity status of the IPESP, establishes a Cycle Pe-
riodicity Formulation for it and closes with bounds for the integer offset variables
in this formulation. It is well known that the original PESP is NP -complete; see
[25]. But the IPESP involves more structural requirements on the underlying con-
straint graph than the classical PESP and has additional conditions on the integer
offset variables. Thus, the IPESP represents a special case of the PESP and con-
sequently does not automatically have to be NP -complete as well. However, the
following statement clears this matter.

Theorem 12. The feasability version of the IPESP is NP -complete.

For the proof of this statement it is useful to recall the following definition.

Definition 13 (k-Coloring Problem). For a simple graph G = (V,E), the k-
Coloring Problem asks for an assignment f : V → {1, . . . , k} satisfying

f(v1) 6= f(v2) for each {v1, v2} ∈ E.

The k-Coloring Problem is one of Karp’s [12] classical NP -complete problems. The
idea of reducing the PESP to this problem can be found in [25], and it can also
be adopted to establish the NP -completeness of the IPESP. Together with some
transformation ideas, which are also illustrated in Figure 5, this is presented next.

Proof of Theorem 12. We show that for each given graph G one can construct an
instance (R, V,A,D, l, u) of the IPESP that has a periodic solution in {0, . . . , T−1}
if and only if G has a valid coloring with T colors. The process is explained in
the following. Corresponding to any node vr in G, we create a simple closed 2-
walk Vr := {vr, vr′}, Ar := {(vr, vr′), (vr′, vr)}, which represents one robot cycle
with minimum number of states. Now take the edges {vr, vs} of G and set Cr,s :=
{{(vr, vs), (vs, vr)}}. (The collision edge pair touches the robot cycles in only one
point. There are no segments on the robot cycles.) The sets V , A, and C or D
then can be built by collecting the elementary parts in union sets as described in
Section 2. By choosing la := 1 as well as ua := T for each a ∈ A, this constitutes
an IPEN.

Taking one of the feasible solutions x ∈ {0, . . . , T − 1}V and p ∈ {0, 1}A of the
associated IPESP for prescribed T , one in particular gets for each collision pair
set Cr,s,

1 ≤ xs − xr + T p(r,s), 1 ≤ xr − xs + T p(s,r), p(r,s) + p(s,r) = 1,

16



 

Figure 5: Construction Principles for Relating IPESP to the T -Coloring Problem
The nodes of the T -coloring graph (left) are replaced by 2-cycles and the edges by a pair of
opposite edges.

where all the states vr are directly identified with the robot number r ∈ R. Simi-
larly looking constraints for arcs on the robot cycles exist too, as all Ar have the
same two-edged shape. However, these are not important for the aim, and the vr′
are no longer of interest. Because of x ∈ {0, . . . , T − 1}V , the collision constraints
are equivalent to

xs 6= xr mod T for {vr, vs} ∈ E.

This defines a T -coloring on G, since all neighbored nodes bear different dis-
crete starting times that are in one-to-one correspondence with the available color
palette.

Conversely, for a given T -Coloring of G with colors {0, . . . , T − 1}, one can assign
to the variable xr = xvr the corresponding color value of vr and set for the second
robot states xvr

′ := (xr + 1) mod T . Furthermore, allocate offset one to the reverse
edge of every pair between two nodes by putting

p(α,β) :=

1 if xα > xβ,

0 if xα < xβ
for (α, β) ∈ A (i.e. in Ar or C ∈ Cr,s).

Thanks to the construction, the assignment is uniquely determined. The chosen
values satisfy 1 ≤ xβ − xα + T p(α,β) ≤ T for a = (α, β) ∈ A. Moreover, it is
D(C) = C and thus, for C = {(vr, vs), (vs, vr)} ∈ C, it follows∑

d∈D(C)
pd = p(r,s) + p(s,r) = 1.

Analogously, ∑a∈Ar
pa = 1 is implied for r ∈ R. So, one has a valid solution for

the instance (R, V,A,D, l, u). By this, the reduction is complete.

After all, as with the PESP, we cannot hope for an efficient algorithm solving the
IPESP in general, unless P = NP . Nevertheless, some techniques were developed

17



that are helpful to solve the PESP satisfactory in the light of the underlying
application. We transfer these approaches to the IPESP. One of the ideas is based
on considering tension variables instead of node potentials, which goes back to [21].

Definition 14 (Periodic tension). Given a directed graph G = (V,A), a node
potential x ∈ {0, . . . , T − 1}V , and some T ∈ N, a vector y ∈ NA is called periodic
tension if

∃ p ∈ {0, 1}A ∀ a = (α, β) ∈ A : ya = xβ − xα + T pa.

With this, the time window inequalities can be interpreted as equalities—the usual
Cycle Periodicity Constraints. The period homogeneity and the blocking synchro-
nizations become constraints of the same (but even simpler) shape.

Lemma 15 (CPCs). Let (R, V,A,D, l, u) be an IPEN and x ∈ {0, . . . , T − 1}V
with p ∈ {0, 1}A be the solution of the corresponding IPESP. Then the related
periodic tension y ∈ NA satisfies the Cycle Periodicity Constraints∑
b∈B+

yb −
∑
b∈B−

yb = T qB for a qB ∈ Z for simple closed walks B in G = (V,A),

∑
a∈Ar

ya = T for r ∈ R,

∑
d∈D

yd = T for D ∈ D.

In this, B+ denotes the set of forward arcs and B− the set of backward arcs when
choosing an arbitrary orientation for the simple closed walk B.

Note that by construction of the IPEN, we actually have y ∈ {1, . . . , T − 1}A.

Proof. Let B be an arbitrary simple closed walk in G. Then∑
b∈B+

yb −
∑
b∈B−

yb =
∑

b=(α,β)∈B+

(xβ − xα + T pb)−
∑

b=(α,β)∈B−
(xβ − xα + T pb)

= T

∑
b∈B+

pb −
∑
b∈B−

pb

 = T qB by choosing qB :=
∑
b∈B+

pb −
∑
b∈B−

pb ∈ Z.

Recall that for r ∈ R the cycle Ar is directed. So,∑
a∈Ar

ya =
∑

a=(α,β)∈Ar

(xβ − xα + T pa) = T
∑
a∈Ar

pa = T,

and an analogous statement is obtained for every circuit D ∈ D.

18



These observations lead to an alternative formulation of the IPESP, because [21]
showed that it suffices to require the CPCs on only some selected simple closed
walks—a so-called fundamental cycle basis—in order to guarantee the validity in
general. [16, 17] extended the result by proving that any integral cycle basis of
the PESP constraint graph will serve the same purpose. Strictly speaking, the
previous publications even investigated a broader setting with real-valued node
potentials and integer offsets. Our additional restrictions do not harm the trans-
formation procedure from the IPESP to the upcoming formulation in Definition 16
and back. In the end, since the dimension of the cycle space of a graph G = (V,A)
is ν = |A| − |V |+ 1, just ν Cycle Periodicity Constraints must be demanded in
rewriting an IPESP equivalently.

Definition 16 (ICPF). For an IPEN (R, V,A,D, l, u) let B be a set of simple
closed walks in G so that B ∪{Ar}r∈R ∪D contains an integral cycle basis B̃ of G.
Then the corresponding IPESP Cycle Periodicity Formulation is

minimize T

subject to
∑
b∈B+

yb −
∑
b∈B−

yb = T qB for B ∈ B,∑
a∈Ar

ya = T for r ∈ R,∑
d∈D

yd = T for D ∈ D,

la ≤ ya ≤ ua for a ∈ A,
T ∈ N, y ∈ {1, . . . , T − 1}A, q ∈ ZB.

An advantage of the ICPF over the previous IPESP formulation is its smaller
number of integer offset variables. However, these cumulative variables are no
longer binary. So it is reasonable to investigate bounds on the so-called cycle
offset variables in this formulation. The following refinement of Odijk’s [25] result
provides cycle inequalities for the ICPF. For this, observe that each simple closed
walk in an IPEN is composed of directed paths that are either part of some cycle
Ar for an r ∈ R or consist simply of an edge in some C ∈ C. Since all these paths
are directed, one can denote the set of forward directed arcs in B by

B+ = P1 ∪ · · · ∪ Pm+

and the set of backward directed arcs by

B− = Q1 ∪ · · · ∪Qm− ,

19



V1

V2 V3

B
B+

V1

V2 V3

B
B+

Figure 6: Complementary Structures
The simple closed walk B is split into B+ (and B−) depending on the direction of the arcs
(left). The complement B+ is constructed by joining B− with complementary walks of B+’s
components. For instance, P1 and P1 are dotted, Q1 and Q1 are dashed.

respectively. For such components Pk or Qk, the complement in regard of the type
is introduced as

Pk :=

Ar \ Pk if Pk ⊂ Ar for an r ∈ R,
D(C) \ Pk if Pk ∈ C for an C ∈ C.

Finally, all these can be collected in the multisets

B+ := B− ∪̇
m+⋃̇
k=1

Pk and B− := B+ ∪̇
m−⋃̇
k=1

Qk.

The construction is illustrated in Figure 6. The complementary walks can be used
in obtaining quite tight estimates.

Theorem 17. Regard the ICPF for an IPEN as stated in Definition 16. For any
simple closed walk B in B, the cycle offset variable qB ∈ Z is bounded by−m− + 1

T

∑
a∈B−

la

 ≤ qB ≤

m+ −
1
T

∑
a∈B+

la

 .

20



Proof. By the cycle periodicity constraint for B, one gets

T qB =
∑
b∈B+

yb −
∑
b∈B−

yb =
m+∑
k=1

∑
b∈Pk

yb −
∑
b∈B−

yb =
m+∑
k=1

T −∑
a∈Pk

ya

−∑
b∈B−

yb

= m+ T −
m+∑
k=1

∑
a∈Pk

ya −
∑
b∈B−

yb = m+ T −
∑
a∈B+

ya ≤ m+ T −
∑
a∈B+

la and

T qB =
∑
b∈B+

yb −
∑
b∈B−

yb =
∑
b∈B+

yb −
m−∑
k=1

∑
b∈Qk

yb =
∑
b∈B+

yb −
m−∑
k=1

T −∑
a∈Qk

ya


= −m− T +

m−∑
k=1

∑
a∈Qk

ya +
∑
b∈B+

yb = −m− T +
∑
a∈B−

ya ≥ −m− T +
∑
a∈B−

la.

The statement to be shown follows via dividing these inequalities by T and through
the integrality of qB.

4 Computational Results

In order to study the practical usability of the PESP in the context of the described
robot scheduling task, we implemented and compared the problem formulations
from Definitions 6 and 16. Our implementations incorporate standard prepro-
cessing procedures, which allow for example to eliminate nodes of degree one or
two from the constraint graph. An overview of such techniques can be found
in [14] or [5]. Of the several types of valid inequalities that have been proposed
to bound PESP instance variables, we only employed the cycle type inequalities
of Theorem 17. While including further types would strengthen the formulations,
according to [28] or [18] most of them gave rise to ambivalent results concerning
computation time. In view of the requirements of our industrial partners, the
strength of inequalities is not the focus of this study. Rather, the computational
results presented here are intended to illustrate the potential and limitations of
the two conceptual approaches for realistic instance types and sizes.

For the analysis, we were provided with several instances originating from working
industrial plants. The practical background is explained in [10] and the character-
istics of the instances are summarized in Table 1. All of them have a comparable
number of robots |R|. In typical applications, there are about seven to twelve
robots commonly present in well-separable sealed production groups of higher com-
plexity. However, one observes significant variations in the amount of inter-linking
blocking constraints |C| ranging from 26 to 350. This is the result of different
layouts of the facilities. Robots standing far away do not share much working space,

21



Instance |R| |C| |V | |A| ν

r1 10 73 811 957 147
r2 11 26 1544 1596 53
r3 10 159 544 862 319
r4 11 197 641 1035 395
r5 11 197 620 1014 395
r6 11 222 930 1374 445
r7 9 187 448 822 375
r8 10 280 536 1096 561
r9 10 350 512 1212 701

Table 1: Real-World Instances

1 sec

1min

1 hr

1 day

C
PU

tim
e
in

s

100

101

102

103

104

105

r1 r2 r3 r4 r5 r6 r7 r8 r9

ICPF
IPESP

Figure 7: Computation Time of Real-World Instances
The times of the examples in IPESP and ICPF formulation were recorded on a 4×3400MHz
machine using Gurobi 7.5 for solving mixed-integer linear programs. Small instances (r1–r7) are
treated in seconds, whereas more complex graphs (r8,r9) may take hours.

whereas a geometrically clustered positioning increases the potential for conflict
situations. The actual sizes |V | and |A| result from practical factors like the robots’
traces. But from the algorithmic perspective, the number of program points is less
important, as successive path segments without any inter-links are merged within
the preprocessing steps. The calculated periods T are in a range from 47 to 86
seconds. Similar cycle times are widespread in application, although also some
processes exist that might consume several minutes.

22



Instance |R| |C| |V | |A| ν

Gs1 5 200 125 525 401
Gs2 5 400 125 925 801
Gs3 5 600 125 1325 1201
Gm1 10 200 250 650 401
Gm2 10 400 250 1050 801
Gm3 10 600 250 1450 1201
Gl1 15 400 375 775 401
Gl2 15 800 375 1175 801
Gl3 15 1200 375 1575 1201

Table 2: Generated Instance Classes

C
PU

tim
e
in

s

100

101

102

103

104

105

1 sec

1min

1 hr

Gs1 Gs2 Gs3 Gm1 Gm2 Gm3 Gl1 Gl2 Gl3

ICPF
IPESP

Figure 8: Computation Time of Generated Instances
For each of the instance classes ten random examples were generated and solved with the same
hard- and software. The graph displays the mean as well as minimum and maximum of the
computation time required for finding optimal solutions for each of the two problem formulations.

Table 1 also shows the respective cyclomatic number ν = |A| − |V | + 1. This
parameter is commonly assumed to correlate with the hardness of PESP instances;
see [5]. According to the rating given in [19], one iteration of our binary search on
instances r1 and r2 is easy, while r3 to r7 can be regarded as medium. Instances
r8 and r9 are medium to hard, again to be solved several times. Indeed, the last
two instances are the hardest real-world-instances that were available to us so far.

23



Figure 9: Real-World vs. Generated Instance
On the left is the graph of r8 from Table 1, which is an already demanding instance. Clearly, the
many connections between the robot cycles induce a highly nonlinear structure unlike in other
production models. The right image depicts one generated example of the moderate class Gm1
according to Table 2. Similar structures are visible in both; especially some heavier links to
non-direct neighbors appear sporadically. In fact, the parameters matching r8 would likely put
it into the class Gm2. This can also be seen by the darker image reflecting the larger number of
connections.

The evaluation time for the nine examples is depicted in Figure 7. Apparently,
about 200 blocking constraints are mastered with both formulations in very short
time. In contrast, instance r8 with 280 added connection pairs was finished after
some hours. The small costs for assembling the ICPF here are compensated by the
reduced time for solving smaller-dimensional systems. An even more inter-linked
graph as the one induced by r9 is only handled effectively as ICPF (consuming
less than three hours), while the IPESP formulation did not find an end within
two weeks. That is why the Cycle Periodicity Formulation (ICPF) is preferred for
obtaining optimal solutions. Nevertheless, the first steps of the binary search in
any formulation are processed quite fast. And similar to r8, after only three hours
the solution range was already bounded to few seconds; more precisely, the time
span then was restricted to ten percent of the optimal value.

In order to investigate the limits of the discussed approaches, we have set up an
IPESP instance generator, which is available online along with the instances that
are addressed in this section; see [11]. This generator, developed together with
our industry partners, comprises parameters for the numbers of robots and their
motion points, as well as the density and complexity of the desired instances. With
the appropriate parameter configuration, realistic instances can be replicated (see
Figure 9 for a comparison), and specific scenarios that have not yet been considered
can be generated additionally.

24



Table 2 summarizes the randomized instance classes we used in our analysis. Each
of them contains ten randomly generated samples for the specified parameters. The
classes Gm1, Gm2, and Gm3 reflect the sizes of real-world instances. They are
differentiated with respect to the amount of additional connectivity induced by the
blocking constraints. The separation into little, average, and highly inter-linked
instances was also introduced for smaller and larger numbers of robots, resulting
in the classes Gs# and Gl# for numerical experiments. Clearly, the ICPF admits
a narrower and lower range for the computation time. While for small instances
this is of little importance, the r9-inspired medium classes substantiate the need
for the reformulation. Furthermore, larger (generated) instances are undoubtedly
tractable with a decent waiting time, too.

5 Conclusion and Outlook

We have introduced a special cycle time minimization problem that appears in a
final stage of a more comprehensive design system for industrial robot production
plants and showed in detail that this formulation is equivalent to an iso-frequency-
variant of the PESP, which we call IPESP. This problem remains NP -complete,
regardless of the restricted setting—in terms of synchronized individual periods
and additional blocking relations compatible with the well-known cycle periodic-
ity constraints. For the better computational treatment, reasonable bounds on the
integer variables in the problem’s cycle periodicity formulation could be identified.
The study confirms the applicability of the model and implies that it should be us-
able even with larger-sized instances. The techniques established in other contexts
motivated by different applications were successfully adapted to work also in the
case of linked robot cycles with collision avoidance. Figures 7 and 8 illustrate that
ICPF computations do not take more than three hours and are hence comparable
to known train timetabling calculations. For the application at hand, this is an
acceptable time.

From a computational perspective, it would be interesting to explore the lineariza-
tion idea from Remark 11 as an alternative to the binary search approach on which
our implementations are based on. The search interval containing the optimal so-
lution is narrowed down suitably fast. Locating the exact value, however, can still
be expensive, typically because almost feasible instances are hard to eliminate. In
view of this and the recent article of [19], it may therefore be worth to consider
adding their newly introduced flip inequalities, which generalize those inequalities
that were reported most useful in practical computations. Additional separation
strategies could be based on concepts developed in [2]. Because the bounds on the
integer variables in the constraints representing the ICPF strongly depend on the

25



choice of the underlying cycle basis, a deeper understanding of integral cycle bases
might help to further reduce the calculation time. The theoretical question on the
complexity status of the minimum integral cycle basis problem is still open and
an intriguing research topic by itself.

From a practical point of view, extending the model for sensitivity aspects is of
interest, as this possibly allows to guidedly alter the plant if the cycle time aimed
for is proven unreachable under the current design. For this and for safety as
well as robustness reasons it would be helpful to identify among all solutions with
optimal period time those for which distances between robots are maximized.

Acknowledgments

This research has been supported by the European Union project ERDF / SAB
100206299. We thank our collaboration partners Fraunhofer IWU and in particular
Leadec Industrial Services for tests with real-world data as well as giving expertise
in establishing models and analyzing results.

References

[1] Liping Bai, Naiqi Wu, Zhiwu Li, and MengChu Zhou. Optimal one-wafer
cyclic scheduling and buffer space configuration for single-arm multicluster
tools with linear topology. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 46(10):1456–1467, 2016.

[2] Ralf Borndörfer, Heide Hoppmann, Marika Karbstein, and Niels Lindner.
Separation of cycle inequalities in periodic timetabling. Discrete Optimization,
35:100552, 2020.

[3] Ralf Borndörfer, Niels Lindner, and Sarah Roth. A concurrent approach to
the periodic event scheduling problem. Journal of Rail Transport Planning &
Management, 15:100175, 2020.

[4] Matteo Fischetti and Andrea Lodi. Optimizing over the first Chvátal closure.
Mathematical Programming, 110(1):3–20, 2007.

[5] Marc Goerigk and Christian Liebchen. An improved algorithm for the pe-
riodic timetabling problem. In 17th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

26



[6] Rob M. P. Goverde. Railway timetable stability analysis using max-plus sys-
tem theory. Transportation Research Part B: Methodological, 41(2):179–201,
2007.

[7] Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall, Jens
Opitz, and Peter Steinke. Solving periodic event scheduling problems with
SAT. In International conference on industrial, engineering and other appli-
cations of applied intelligent systems, pages 166–175. Springer, 2012.

[8] Refael Hassin. A flow algorithm for network synchronization. Operations
Research, 44(4):570–579, 1996.

[9] Bernd Heidergott, Geert Jan Olsder, and Jacob Van Der Woude. Max Plus at
work: modeling and analysis of synchronized systems: a course on Max-Plus
algebra and its applications, volume 48. Princeton University Press, 2014.

[10] Tobias Hofmann and David Wenzel. How to minimize cycle times of robot
manufacturing systems. Optimization and Engineering, pages 1–19, 2020.

[11] Tobias Hofmann and David Wenzel. IPESP instance generator. Chemnitz
University of Technology, 2020.

[12] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

[13] Telikepalli Kavitha, Christian Liebchen, Kurt Mehlhorn, Dimitrios Michail,
Romeo Rizzi, Torsten Ueckerdt, and Katharina A. Zweig. Cycle bases in
graphs characterization, algorithms, complexity, and applications. Computer
Science Review, 3(4):199–243, 2009.

[14] Christian Liebchen. Periodic timetable optimization in public transport. dis-
sertation.de, 2006.

[15] Christian Liebchen and Rolf H. Möhring. The modeling power of the periodic
event scheduling problem: railway timetables—and beyond. In Algorithmic
methods for railway optimization, pages 3–40. Springer, 2007.

[16] Christian Liebchen and L. Peeters. On cyclic timetabling and cycles in graphs.
Technical Report 761/2002, TU Berlin, 2002.

[17] Christian Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling.
Discrete Optimization, 6(1):98–109, 2009.

[18] Christian Liebchen and Elmar Swarat. The second Chvátal closure can yield
better railway timetables. In 8th Workshop on Algorithmic Approaches for

27



Transportation Modeling, Optimization, and Systems (ATMOS’08). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[19] Niels Lindner and Christian Liebchen. Determining all integer vertices of the
PESP polytope by flipping arcs. Technical Report 20-19, ZIB, 2020.

[20] Thomas Lindner. Train schedule optimization in public rail transport. Tech-
nische Universität Braunschweig, 2000.

[21] Karl Nachtigall. A branch and cut approach for periodic network programming.
Institut für Mathematik, 1994.

[22] Karl Nachtigall. Cutting planes for a polyhedron associated with a periodic
network. DLR Report, 1996.

[23] Karl Nachtigall. Periodic network optimization and fixed interval timetables.
DLR Report, 1998.

[24] Karl Nachtigall and Jens Opitz. A modulo network simplex method for solving
periodic timetable optimisation problems. In Operations Research Proceedings
2007, pages 461–466. Springer, 2008.

[25] Michiel A. Odijk. Construction of periodic timetables. Pt. 1. A cutting plane
algorithm. TU Delft, 1994.

[26] Paolo Serafini and Walter Ukovich. A mathematical model for periodic
scheduling problems. SIAM Journal on Discrete Mathematics, 2(4):550–581,
1989.

[27] Daniel Sparing and Rob M. P. Goverde. A cycle time optimization model for
generating stable periodic railway timetables. Transportation Research Part
B: Methodological, 98:198–223, 2017.

[28] Jonas Christoffer Villumsen. Construction of timetables based on periodic
event scheduling. Technical University of Denmark, 2006.

[29] Paul H. Williams. Model building in mathematical programming. John Wiley
& Sons, 2013.

[30] Fajun Yang, Naiqi Wu, Yan Qiao, and Rong Su. Polynomial approach to
optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via
petri nets. IEEE/CAA Journal of Automatica Sinica, 5(1):270–280, 2017.

28


	Introduction
	Modeling Inter-Linked Robot Cycles
	The IPESP and its Properties
	Computational Results
	Conclusion and Outlook

