TU Chemnitz Chemnitz, June 9, 2004
C. Helmberg due on: June 16, 2004

Nonlinear Optimization
Exercises 6

1. Considering the proof of Theorem VI.1 (inexact Newton), show that the {x} con-
verge to z* in the [V2f(z*)]*-norm at the same rate as the V fj converge to zero; in
particular, show for ¢ > 1
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2. Show that in the Line Search Newton Conjugate Gradients method the step direction
pr is always a descent direction.

3. Within the setting of the proof of Theorem 1X.13 show that the matrix

V2f(z*) =Y NiVie(z*) —[Ve(z¥),. .., Ven(z)]
[Ver(x*), ..., Ve (z9))F 0

is nonsingular.
4. Consider the following quadratic program in R?

min %a:TAx—b:E
s.t. z1+1>0
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Determine the optimal solutions, their Lagrange multipliers and the (strongly /weakly)
active sets for the cases
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Try to determine in each case the optimal solution in dependence of a small displace-
ment d € R* of the right hand side.



