Nonlinear Optimization Exercises 4

1. Complete the proof of Lemma III.4 by showing that for $B \succ 0$

$$1 - \frac{(g^T g)^2}{g^T B g g^T B^{-1} g} \ge 0.$$

- 2. Suppose $\{p_0, p_1, \ldots, p_{n-1}\}$ is the set of conjugate gradient directions constructed by the linear CG-Algorithm for $\frac{1}{2}x^T A x b^T x$ with $A \succ 0$. Show that $p_k, k = 1, 2, \ldots, n-1$, are all descent directions.
- 3. **Definition:** A set of vectors $\{p_0, p_1, \ldots, p_{n-1}\}$ is said to be *conjugate* with respect to a symmetric positive definite matrix A if

$$p_i^T A p_j = 0, \quad \forall i \neq j.$$

- a) Let A be an $n \times n$ symmetric positive definite matrix and $\{p_0, p_1, \ldots, p_{n-1}\}$ be a set of non-zero conjugate vectors w.r.t. A. Show that p_k , $k = 1, 2, \ldots, n-1$ are linearly independent.
- b) Consider the minimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x - b^T x$$

where A is an $n \times n$ symmetric positive definite matrix and $b \in \mathbb{R}^n$. Suppose that $\{p_0, p_1, \ldots, p_{n-1}\}$ is a set of non-zero conjugate vectors w.r.t A.

i. Show that the solution x^* of the problem can be given as

$$x^* = \sum_{i=0}^{n-1} (\frac{p_i^T b}{p_i^T A p_i}) p_i.$$

ii. Show that for any $x_0 \in \mathbb{R}^n$, the sequence $\{x_k\}$ generated according to

$$x_{k+1} = x_k + \alpha_k p_k, \quad k \ge 0$$

with

$$\alpha_k = \frac{-r_k^T p_k}{p_k^T A p_k}, \qquad r_k = A x_k - b$$

converges to the solution x^* of the problem after *n* steps.