Nonlinear Optimization
 Exercises 4

1. Complete the proof of Lemma III. 4 by showing that for $B \succ 0$

$$
1-\frac{\left(g^{T} g\right)^{2}}{g^{T} B g g^{T} B^{-1} g} \geq 0
$$

2. Suppose $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ is the set of conjugate gradient directions constructed by the linear CG-Algorithm for $\frac{1}{2} x^{T} A x-b^{T} x$ with $A \succ 0$. Show that $p_{k}, k=1,2, \ldots, n-1$, are all descent directions.
3. Definition: A set of vectors $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ is said to be conjugate with respect to a symmetric positive definite matrix A if

$$
p_{i}^{T} A p_{j}=0, \quad \forall i \neq j
$$

a) Let A be an $n \times n$ symmetric positive definite matrix and $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ be a set of non-zero conjugate vectors w.r.t. A. Show that $p_{k}, \quad k=1,2, \ldots, n-1$ are linearly independent.
b) Consider the minimization problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} A x-b^{T} x
$$

where A is an $n \times n$ symmetric positive definite matrix and $b \in \mathbb{R}^{n}$. Suppose that $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ is a set of non-zero conjugate vectors w.r.t A.
i. Show that the solution x^{*} of the problem can be given as

$$
x^{*}=\sum_{i=0}^{n-1}\left(\frac{p_{i}^{T} b}{p_{i}^{T} A p_{i}}\right) p_{i} .
$$

ii. Show that for any $x_{0} \in \mathbb{R}^{n}$, the sequence $\left\{x_{k}\right\}$ generated according to

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}, \quad k \geq 0
$$

with

$$
\alpha_{k}=\frac{-r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}}, \quad r_{k}=A x_{k}-b
$$

converges to the solution x^{*} of the problem after n steps.

