Nonlinear Optimization

Exercises 2

1. Derivative-free line search: A function $f: D \rightarrow \mathbb{R}$ with convex $D \subset \mathbb{R}^{n}$ is strictly quasiconvex if, for each $x_{1}, x_{2} \in D$ with $f\left(x_{1}\right) \neq f\left(x_{2}\right)$,

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\} \quad \forall \alpha \in(0,1)
$$

Show: Let f be strictly quasiconvex on the interval $[a, b]$ and $a \leq \lambda<\mu \leq b$. If $f(\lambda)>f(\mu)$, then $f(\alpha) \geq f(\mu) \forall \alpha \in[a, \lambda]$. If $f(\lambda) \leq f(\mu)$ then $f(\alpha) \geq f(\lambda) \forall \alpha \in[\mu, b]$.
(a) For the Fibonacci sequence $F_{0}=F_{1}=1, F_{n+2}=F_{n+1}+F_{n}\left(n \in \mathbb{N}_{0}\right)$ describe an algorithm that reduces in each iteration $0 \leq k \leq n-1$ the search interval $\left[a_{k}, b_{k}\right.$] by evaluating in

$$
\lambda_{k}=a_{k}+\frac{F_{n-k-1}}{F_{n-k+1}}\left(b_{k}-a_{k}\right) \text { and } \mu_{k}=a_{k}+\frac{F_{n-k}}{F_{n-k+1}}\left(b_{k}-a_{k}\right)
$$

(b) Do the same for the Golden Section Method with $\theta=\frac{\sqrt{5}-1}{2}$ and

$$
\lambda_{k}=a_{k}+(1-\theta)\left(b_{k}-a_{k}\right), \quad \mu_{k}=a_{k}+\theta\left(b_{k}-a_{k}\right)
$$

2. Line search by interpolation: Given a function $\Phi(\alpha): \mathbb{R} \rightarrow \mathbb{R}$,
(a) construct a quadratic function going through $\Phi(0)$ with slope $\Phi^{\prime}(0)$ and through $\Phi\left(\alpha_{0}\right)$.
(b) Build a cubic with the same properties using an additional point $\Phi\left(\alpha_{1}\right)$.
3. Design a smooth strictly convex function where Newton's method without line search does not converge.
4. Prove that for $0<\lambda_{1} \leq \cdots \leq \lambda_{n}$

$$
\max _{\xi_{i} \geq 0, \sum \xi_{i}=1}\left(\sum_{i=1}^{n} \xi_{i} \lambda_{i}\right)\left(\sum_{i=1}^{n} \xi_{i} \frac{1}{\lambda_{i}}\right)=\frac{1}{4} \frac{\left(\lambda_{1}+\lambda_{n}\right)^{2}}{\lambda_{1} \lambda_{n}}
$$

5. Consider the problem

$$
\min f(x, y)
$$

where $f(x, y)=\frac{c x^{2}+y^{2}}{2}, \quad(x, y) \in \mathbb{R}^{2}, \quad 0<c<1$. Show that, starting at $x_{0}=(1, c)$, the steepest descent method with exact line search generates the points

$$
x_{k}=\left(q^{k},(-1)^{k} c q^{k}\right), \quad k=1,2,3, \ldots
$$

where $q=\frac{1-c}{1+c}$. How many iterations are necessary to get to the minimum within an accuracy of 10^{-6} in case $c=10^{-3}$.

