Nonlinear Optimization

Exercises 1

1. Compute the gradient $\nabla f_{i}(x)$ and Hessian matrix $\nabla^{2} f_{i}(x)$, for $i=1,2$

- $f_{1}(x)=x^{T} Q x+b^{T} x$, with $Q^{T}=Q \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}$.
- $f_{2}(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}, \quad x \in \mathbb{R}^{2} \quad$ (Rosenbrock function.)

2. Let A be a symmetric matrix of order n. Show that the following statements are equivalent:
i) A is positive semidefinite, i.e., $v^{T} A v \geq 0 \quad \forall v \in \mathbb{R}^{n}$.
ii) $\lambda_{i} \geq 0$ where λ_{i} is an eigenvalue of $A, \quad i=1,2, \ldots, n$.
iii) $\exists C \in \mathbb{R}^{m \times n}$ such that $A=C^{T} C$ (and $\operatorname{rank}(C)=\operatorname{rank}(A)$).
3. Generate various symmetric 2×2 matrices via specifying their eigenvalues (not necessarily all positive) and eigenvectors and, using Matlab, produce mesh and contour plots of the respective quadratic functions.
4. Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the linear model of f at \bar{x} is

$$
f(\bar{x})+\nabla f(\bar{x})^{T}(x-\bar{x})
$$

and the quadratic model of f at \bar{x} is

$$
f(\bar{x})+\nabla f(\bar{x})^{T}(x-\bar{x})+\frac{1}{2}(x-\bar{x})^{T} \nabla^{2} f(\bar{x})(x-\bar{x}) .
$$

Write a Matlab routine that generates for an arbitrary point in $[-1,2] \times\left[-\frac{1}{2}, 3\right]$ a mesh plot of the Rosenbrock function with its linear and quadratic model.
5. Suppose Newton's method is applied to $f(x)=\cos (x)$.
a) Find a starting point so that (in theory) the sequence of iterates diverges.
b) Find a starting point so that the iterates alternate between two non optimal points.
c) If the procedure starts from a point near 0 , then to what point does the method converge? Why?
d) Determine the maximal interval containing π so that for all starting points in this interval the iterates remain in this interval and converge to π.

