Introduction to Discrete Mathematics Exercise 8

- 1. A coloring of a graph G = (V, E) is a map $f : V \to C$ (color set), such that $uv \in E$ implies $f(u) \neq f(v)$. The chromatic number $\chi(G)$ is the smallest number of colors needed for a coloring of G. Determine $\chi(K_n), \chi(K_{m,n}), \chi(Q_n), \chi(P_n)$ (path), $\chi(C_n)$ (Cycle).
- 2. Determine a minimal spanning tree for the following list of edges and edge weights of a graph on 14 vertices:

$1\ 2\ 4.$	$2\ 3\ 5.$	$4\ 5\ 2.$	$6\ 7\ 2.$	8 13 3.	$10 \ 11 \ 5.$
1 8 6.	$2 \ 14 \ 3.$	$5\ 6\ 7.$	$6\ 13\ 6.$	9 10 1.	$10\ 12\ 3.$
1 11 7.	$3\ 4\ 1.$	$5\ 13\ 6.$	786.	9 11 5.	$11 \ 12 \ 6.$
1 13 1.	3 14 1.	5 14 5.	7 9 3.	9 12 6.	$13 \ 14 \ 2.$

- 3. Let G = (V, E) be an undirected graph with edge weights $w_e \in \mathbb{R}_+$ for $e \in E$. A hamiltonian cycle of G is a cycle covering V. The Travelling Salesman Problem, TSP is to determine a hamiltonian cycle of minimum weight. Give a formulation of this problem as a minimization problem over an independence system.
- 4. Prove the following:

a) Let G = (V, E) be an undirected graph, $S \subseteq V$ be an independent set of G, and $k_s \in \mathbb{N}_0$ for all $s \in S$. Let $\delta_F(s)$ denote the set $\{e \in F : s \in e\}$. Then $(E, \mathcal{F} = \{F \subseteq E : |\delta_F(s)| \leq k_s \ \forall s \in S\})$ is a matroid. b) Let D = (V, A) be a directed graph, $S \subseteq V$, $k_s \in \mathbb{N}_0$ for all $s \in S$. Let $\delta_F^-(s)$ denote the set $\{a \in A : a = (u, s) \text{ for } au \in V\}$. Then $(A, \mathcal{F} = \{F \subseteq A : |\delta_F^-(s)| \leq k_s \ \forall s \in S\})$ is a matroid.

5. Describe the systems of circuits, bases and the independence system of the matrix matroid with respect to to the columns of the following matrix: