## Introduction to Discrete Mathematics Exercise 7

1. A set $S$ of vertices of a graph $G$ is called independent if the $G[S]$ (maximal subgraph of $G$ with vertex sut $S$, subgraph of $G$ induced by $S$ ) is edgeless (i.e. $G$ contains no edge connecting vertices of $S$ ) $\alpha(G)=\max \{|U|$ : $U$ independent $\}$ is called independence number of $G$. Calculate $\alpha(G)$ for cycles and paths $G$ on $n$ vertices!
2. Let $G$ be a graph without vertices of odd degree. Show that $G$ we can replace all edges of $G$ by directed edges in such a way, that in the resulting digraph $D$ for all vertices $u$ the equation $d_{D}^{-}(u)=d_{D}^{+}(u)$ holds!
3. Let $G=(V, E)$ be a connected graph. Define $r(u)=\max \{d(u, v): v \neq u\}$ for all $u \in V$. The graph parameter $r(G)=\min \{r(u): u \in V\}$ is called radius of $G$, the graph parameter $Z(G)=\{u \in V: r(u)=r(G)\}$ is called center of $G$. Show that the center of $G$ either is a vertex or consists of two neighboring vertices!
4. Let $d_{1} \geq \ldots \geq d_{n}>0$ be a sequence of natural numbers. Show, that $\left(d_{1}, \ldots, d_{n}\right)$ is the degree sequence of a tree, if and only if $\sum_{i=1}^{n} d_{i}=2 n-2$ holds!
5. A graph on 10 vertices is given by the following adjacency lists:
1: $6,5,3,2$
4: $2,3,5$
7: 10
10: 7
2: $1,3,4$
5: $4,3,1,6$
8: 9
3: 1,5,4,2
6: 1,9,5
9: 8,6

Run a BFS and a DFS algorithm starting with $v_{0}=1$ using the given order of adjacencies and figure out the resulting edge sets and vertex numberings!

