Introduction to Discrete Mathematics Exercise 6

1. Prove, that any two longest paths of a connected graph share a common vertex!
2. Let $G=(V, E)$. For given $V^{\prime} \subseteq V$ the set of vertices in $V \backslash V^{\prime}$ having at least one neighbor in V^{\prime} is denoted by $R\left(V^{\prime}\right)$. Prove $b(G) \geq \max _{1 \leq s \leq|V|\left|V^{\prime}\right|=s}\left|R\left(V^{\prime}\right)\right|$!
3. Prove that an edge is a bridge if and only if it is not contained in a cycle! In which graphs the edge set contains bridges only?
Prove that a graph is bridgeless, if it contains vertices of even degree only.
4. The complete bipartite graph $K_{1, n-1}$ is called star.

Prove or disprove:
a) If G has diameter 2 then G contains a spanning star (a star covering $V(G))$.
b) If G contains a spanning star, then the diameter of G is two.
5. For a graph $G=(V, E)$ the complementary graph (denoted by \bar{G}) is the graph $\left(V, E=\binom{V}{2} \backslash E\right)$. Prove for a k-regular graph G on n vertices:
The numbers of triangles in G and \bar{G} add up to $\binom{n}{3}-\frac{n}{2} k(n-k-1)$, exactly.

