Introduction to Discrete Mathematics Exercise 5

- 1. Prove the following equations:
 - (a) O(f(n))O(g(n)) = O(f(n)g(n)),
 - (b) Falls $f(n) > 0 \ \forall n \in \mathbb{N}$, dann O(f(n)g(n)) = f(n)O(g(n)),
 - (c) O(f(n)) + O(g(n)) = O(|f(n)| + |g(n)|).
- 2. Let $f(n) = n^2$ (*n* even) and f(n) = 2n (*n* odd). Verify
 - $f(n) = O(n^2)$,
 - not $f(n) = o(n^2)$, and
 - not $n^2 = O(f(n))$.
- 3. Let $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$. Verify (for suitable powers of 2) $T(n) = O(\lg n \lg \lg n)$.
- 4. Suppose, there's an *n*-step-algorithm for input length *n*. Suppose further, step *i* uses i^2 operations. Verify, that the running time of the algorithm is $O(n^3)$.
- 5. Usually, multiplication of $n \times n$ matrices needs $\Theta(n^3)$ flops (flowting point operations '*' and '+'), especially 8 multiplications for n = 2. The following method of **Strassen** works with only 7 multiplications:

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Prove, that the elements of AB are sums of terms $\pm m_i$ sind, while $m_1 = (a + d)(\alpha + \delta)$, $m_2 = (c + d)\alpha$, $m_3 = a(\beta - \delta)$, $m_4 = d(\gamma - \alpha)$, $m_5 = (a + b)\delta$, $m_6 = (a - c)(\alpha + \beta)$, $m_7 = (b - d)(\gamma + \delta)$. How many additions/substractions are contained in the usual calculation? How additions/substractions uses Strassens method? Find a method, to calculate the product of two $n \times n$ -matrices using only $\Theta(n^{\log_2 7})$ flops.

Hint: Quarter the matrices and use recursion starting at n = 2.