Introduction to Discrete Mathematics Exercise 5

1. Prove the following equations:
(a) $O(f(n)) O(g(n))=O(f(n) g(n))$,
(b) Falls $f(n)>0 \forall n \in \mathbb{N}$, dann $O(f(n) g(n))=f(n) O(g(n))$,
(c) $O(f(n))+O(g(n))=O(|f(n)|+|g(n)|)$.
2. Let $f(n)=n^{2}$ (n even) and $f(n)=2 n$ (n odd). Verify

- $f(n)=O\left(n^{2}\right)$,
- not $f(n)=o\left(n^{2}\right)$, and
- not $n^{2}=O(f(n))$.

3. Let $T(n)=2 T(\lfloor\sqrt{n}\rfloor)+\lg n$. Verify (for suitable powers of 2) $T(n)=$ $O(\lg n \lg \lg n)$.
4. Suppose, there's an n-step-algorithm for input length n. Suppose further, step i uses i^{2} operations. Verify, that the running time of the algorithm is $O\left(n^{3}\right)$.
5. Usually, multiplication of $n \times n$ matrices needs $\Theta\left(n^{3}\right)$ flops (flowting point operations '*' and ' + '), especially 8 multiplications for $n=2$. The following method of Strassen works with only 7 multiplications:
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), B=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$. Prove, that the elements of $A B$ are sums of terms $\pm m_{i}$ sind, while $m_{1}=(a+d)(\alpha+\delta), m_{2}=(c+d) \alpha$, $m_{3}=a(\beta-\delta), m_{4}=d(\gamma-\alpha), m_{5}=(a+b) \delta, m_{6}=(a-c)(\alpha+\beta)$, $m_{7}=(b-d)(\gamma+\delta)$. How many additions/substractions are contained in the usual calculation? How additions/substractions uses Strassens method? Find a method, to calculate the product of two $n \times n$-matrices using only $\Theta\left(n^{\log _{2} 7}\right)$ flops.
Hint: Quarter the matrices and use recursion starting at $n=2$.
