Introduction to Discrete Mathematics Exercise 4

1. How many positive integers ≤ 1000000 are of the form n^{k} where n and k are integers and $k>2$?
Hints: Why can we think about k as a prime? How many such integers >1 do we find?
2. Generalize the principle of inclusion and exclusion:

Let P_{1}, \ldots, P_{m} be properties of elements of an n element set S. Prove that the number of elements satisfying exactly t of this properties equals

$$
\sum_{i_{1}<\ldots<i_{t}} N\left(P_{i_{1}} \ldots P_{i_{t}}\right)-\binom{t+1}{t} \sum_{i_{1}<\ldots<i_{t+1}} N\left(P_{i_{1}} \ldots P_{i_{t+1}}\right)+\ldots \pm\binom{ m}{t} N\left(P_{1} \ldots P_{m}\right)
$$

3. Calculate $\sum_{k=1}^{n}(-1)^{k} k$ and $\sum_{k=1}^{n}(-1)^{k} k^{2}$!

Hint: Use isolation of terms!
4. Prove that for every positive integer n there is a unique finite sequence $\left(m_{1}, \ldots, m_{t}\right)$ of integers such that $n=F_{m_{1}}+\ldots F_{m_{t}}, m_{i} \geq m_{i+1}+2$, and $m_{t} \geq 2$ holds.

5 . Let A_{n} be the number of possibilities to fill a $2 \times n$-rectangle with nonintersecting 1×2 dominoes. Find a recursion for A_{n} and calculate A_{n} explicitly! Hint: It is possible to turn the dominoes!

