Introduction to Discrete Mathematics Exercise 3

1. Suppose, the random number X is either 0 or 1 . Prove

$$
V X=E X \cdot E(1-X)
$$

2. The fields of a 4×7 chessboard are colored arbitrarily with colors black and white. Prove the existance of a rectangle with uniquely colored corners! Is this true even for a 4×6 chessboard?
3. Prove Markov's Inequality:

If the random variable X takes only nonnegative values, then

$$
P(X \geq t) \leq E(X) / t
$$

Use Markov's inequality to prove Chebyshev's Inequality:
For a random variable X and a real number $\alpha \geq 0$ the following holds:

$$
p(|X-E X| \geq \alpha) \leq \frac{V X}{\alpha^{2}}
$$

4. Using the previous results, find a bound for the probability of a permutation of n elements to have $k+1$ fix points. (All permutaitions shall have equal probability.)
5. Show Ramsey's Theorem: Let k and l be integers with $k, l \geq 2$. Then there is a smallest integer $R(k, l)$ (called Ramsey number) such that the following holds: On a meeting of $n \geq R(k, l)$ persons there are always either k persons such that each of this k persons knows all of that k persons, or l persons such that each of this l persons knows no other of that l persons.

Hint: For all integers k, l prove $R(k, 2)=k$ and $R(2, l)=l$ Prove $R(k, l) \leq$ $R(k-1, l)+R(k, l-1)$ Use induction to prove Ramsey's Theorem.
Prove additionally $R(k, l) \leq\binom{ k+l-2}{k-1}$.

