Introduction to Discrete Mathematics Exercise 13

- 1. Solve the balancing problem, if it is known that the wrong coin is heavier.
- 2. Let n and q be non negative integers and let $q \ge 2$. Prove that there is a complete (n, q)-tree if and only if n 1 is a multiple of q 1.
- 3. Let $x^* \in S = \{1, \ldots, n\}$ be unknown. We are only able to test $x^* < i$ $(i = 1, \ldots, n)$ with answers yes or no. Prove that $L = \lceil \lg n \rceil$ is the optimal running time of an algorithm searching for x!
- 4. Let (p_1, \ldots, p_n) be a distribution and $q \ge 2$. Prove, that $\overline{L}(p_1, \ldots, p_n) \le \overline{L}(\frac{1}{n}, \ldots, \frac{1}{n})$ holds.
- 5. Prove that every permutation a_1, a_2, \ldots, a_n of the numbers $1, \ldots, n$ can be ordered to $1, \ldots, n$ by gradual exchanging neighbouring elements.

Example: $3123 \rightarrow 1324 \rightarrow 1234$

Find the minimum number of exchanges to order an arbitrary such permutation!