Introduction to Discrete Mathematics Exercise 13

1. Solve the balancing problem, if it is known that the wrong coin is heavier.
2. Let n and q be non negative integers and let $q \geq 2$. Prove that there is a complete (n, q)-tree if and only if $n-1$ is a multiple of $q-1$.
3. Let $x^{*} \in S=\{1, \ldots, n\}$ be unknown. We are only able to test $x^{*}<i$ $(i=1, \ldots, n)$ with answers yes or no. Prove that $L=\lceil\lg n\rceil$ is the optimal running time of an algorithm searching for x !
4. Let $\left(p_{1}, \ldots, p_{n}\right)$ be a distribution and $q \geq 2$. Prove, that $\bar{L}\left(p_{1}, \ldots, p_{n}\right) \leq$ $\bar{L}\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ holds.
5. Prove that every permutation $a_{1}, a_{2}, \ldots, a_{n}$ of the numbers $1, \ldots, n$ can be ordered to $1, \ldots, n$ by gradual exchanging neighbouring elements.
Example: $3123 \rightarrow 1324 \rightarrow 1234$
Find the minimum number of exchanges to order an arbitrary such permutation!
