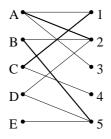
Chemnitz University of Technology Dr. F. Göring


Introduction to Discrete Mathematics Exercise 10

1. Let B be the independence matrix of G = (V, E) formed of the elements of the field with elements 0, 1 (addition 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1; multiplication $0 = 0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0$, $1 = 1 \cdot 1$).

Show that $A \subset E$ is independent in the graphic matroid if and only if the representing columns of B are independent. (The sum over a nonempty subset of this columns never is the zero column.)

2. For the following bipartite graph we start with the bold drawn matching X. Present the next two auxiliary graphs D_X according to the next two iterations in the matroid cut algorithm of Edmonds. Here matroid 1 is represented at the part A-E and matroid 2 is represented at the part 1-5. Find R!

Hint: A subset of edges is independent in one of the matroids, if no vertex of its part is incident with more than one edge of the subset.

3. Find a maximum matching (and prove maximality) of the bipartite graph on 7 + 7 vertices given by the following adajacency matrix:

	1	2	3	4	5	6	7
1	1	1	0	1	0	1	0
2	0	1	1	0	0	0	0
3	0	1	0	0	0	1	0
4	0	1	1	0	0	1	0
5	1	0	1	1	1	0	1
6	0	0	1	0	0	1	0
7	0	1	0	0	0 0 0 0 1 0 1	0	1

- 4. How can one apply shortest path algorithms for directed graphs also to undirected graphs with non negative edge weights? Is this possible for arbitrary edge weights, too?
- 5. For all $i \in \{2...7\}$ calculate the shortest 1i-paths of the directed graph given by the following matrix of edge weights. Here missing entries indicate missing edges.

	1	2	3	4	5	6	7
1			4		3		
2			1	3	2		
3	1	9	5	8	3	2	1
4		4	5		8	6	3
5	1		1	2		3	1
6		1	1	3	2		
7	2	4	3	$\frac{2}{3}$		2	