## Introduction to Discrete Mathematics Exercise 10

1. Let $B$ be the independence matrix of $G=(V, E)$ formed of the elements of the field with elements 0,1 (addition $0+0=1+1=0,0+1=1+0=1$; multiplication $0=0 \cdot 0=0 \cdot 1=1 \cdot 0,1=1 \cdot 1)$.
Show that $A \subset E$ is independent in the graphic matroid if and only if the representing columns of $B$ are independent. (The sum over a nonempty subset of this columns never is the zero column.)
2. For the following bipartite graph we start with the bold drawn matching $X$. Present the next two auxiliary graphs $D_{X}$ according to the next two iterations in the matroid cut algorithm of Edmonds. Here matroid 1 is represented at the part $A-E$ and matroid 2 is represented at the part 1-5. Find $R$ !
Hint: A subset of edges is independent in one of the matroids, if no vertex of its part is incident with more than one edge of the subset.

3. Find a maximum matching (and prove maximality) of the bipartite graph on $7+7$ vertices given by the following adajacency matrix:

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 6 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 7 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

4. How can one apply shortest path algorithms for directed graphs also to undirected graphs with non negative edge weights? Is this possible for arbitrary edge weights, too?
5. For all $i \in\{2 \ldots 7\}$ calculate the shortest $1 i$-paths of the directed graph given by the following matrix of edge weights. Here missing entries indicate missing edges.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  | 4 | 10 | 3 |  |  |
| 2 |  |  | 1 | 3 | 2 | 11 |  |
| 3 |  | 9 |  | 8 | 3 | 2 | 1 |
| 4 |  | 4 | 5 |  | 8 | 6 | 3 |
| 5 | 1 |  | 1 | 2 |  | 3 | 1 |
| 6 |  | 1 | 1 | 3 | 2 |  |  |
| 7 | 2 | 4 | 3 |  |  | 2 |  |

