Einführung in die Diskrete Mathematik Solution to exercise 5, problem 1

Prove
a) $O(f(n)) O(g(n))=O(f(n) g(n))$,
b) if $\forall n: f(n)>0$, then $O(f(n) g(n))=f(n) O(g(n))$, and
c) $O(f(n))+O(g(n))=O(|f(n)|+|g(n)|)$.

Lösung:

a)

If $h(n) \in O(f(n)) O(g(n))$, then there are functions h_{f} and h_{g} such that

- $\forall n: h(n)=h_{f}(n) h_{g}(n)$
- $\exists n_{f}, c_{f}: \forall n \geq n_{f}:\left|h_{f}(n)\right| \leq c_{f}|f(n)|$
- $\exists n_{g}, c_{g}: \forall n \geq n_{g}:\left|h_{g}(n)\right| \leq c_{g}|g(n)|$

Therefore, $\forall n \geq \max \left\{n_{f}, n_{g}\right\}$ we have $|h(n)|=\left|h_{f}(n)\right| \times\left|h_{g}(n)\right| \leq c_{f} c_{g}|f(n) g(n)|$ and $h(n) \in$ $O(f(n) g(n))$ becomes obvious (with $n_{h}=\max \left\{n_{f}, n_{g}\right\}$ and $c_{h}=c_{f} c_{g}$).

If $h(n) \in O(f(n) g(n))$, then there are positive numbers n_{h} and c_{h} such that $\forall n \geq n_{h}:|h(n)| \leq$ $c_{h}|f(n) g(n)|$. We have to prove, that there are functions $h_{f}(n) \in O(f(n))$ and $h_{g}(n) \in O(g(n))$ such that $h(n)=h_{f}(n) h_{g}(n)$.

We define h_{f} in such a way, that $h_{f}(n)=0 \rightarrow h(n)=0$ (we have to be able to divide non-zero values $h(n)$ by $\left.h_{f}(n)\right)$ and $h_{f}(n) \in O(f(n))$:

$$
h_{f}(n)=\left\{\begin{array}{rll}
f(n) & : & n \geq n_{h} \\
1 & : & n<n_{h}
\end{array}\right.
$$

The latter condition is obvious (with $n_{f}=n_{h}$ and $c_{f}=1$), while the former condition holds because of the following:
If $h_{f}(n)=0$ we know $f(n)=0, n \geq n_{h}$ and therefore $0 \leq|h(n)| \leq c_{h}|f(n)|=0$.
We define h_{g} in such way, that $\forall n: h_{f}(n) h_{g}(n)=h(n)$.

$$
h_{g}(n)=\left\{\begin{array}{rll}
\frac{h(n)}{h_{f}(n)} & : & h_{f}(n)>0 \\
0 & : & h_{f}(n)=0
\end{array}\right.
$$

Our condition holds, because if $h_{f}(n)=0$ we know already, that $h(n)=0=0^{2}$. It remains to prove $h_{g}(n) \in O(g(n))$. We choose $c_{g}=c_{h}$ and $n_{g}=n_{h}$. If $h_{f}(n)=0$, we get obviously $\left|h_{g}(n)\right|=$ $0 \leq c_{g}|g(n)|$. If $h_{f}(n)>0$, we get $\forall n \geq n_{g}:\left|h_{g}(n)\right|=\left|\frac{h(n)}{h_{f}(n)}\right|=\frac{|h(n)|}{|f(n)|} \leq \frac{c_{h}|f(n) g(n)|}{|f(n)|}=c_{g}|g(n)|$, and the proof is done.
b) Because $f(n) \in O(f(n))$ we get $\{f(n)\} \subseteq O(f(n))$ and therefore:

$$
f(n) O(g(n))=\{f(n)\} O(g(n)) \subseteq O(f(n)) O(g(n))
$$

It remains to prove $h(n) \in f(n) O(g(n))$ for all h with $h(n) \in O(f(n)) O(g(n))$. If $h(n) \in$ $O(f(n)) O(g(n))$ then there is an h_{f} with $h_{f}(n) \in O(f(n))$ and an h_{g} with $h_{g}(n) \in O(g(n))$ with $\forall n: h_{f}(n) h_{g}(n)=h(n)$. But then for large enough n (in the previous notation $n \geq n_{h}=$ $\max \left\{n_{f}, n_{g}\right\}$) we have $|h(n)|=\left|h_{f}(n)\right|\left|h_{g}(n)\right| \leq c_{f}|f(n)| c_{g}|g(n)|=c_{f} c_{g}|f(n) g(n)|$ and with $c_{h}=$ $c_{f} c_{g}$ the proof is done.
c) $\subseteq: \forall n \geq \max \left\{n_{f}, n_{g}\right\}:|h(n)|=\left|h_{f}(n)+h_{g}(n)\right| \leq\left|h_{f}(n)\right|+\left|h_{g}(n)\right| \leq c_{f}|f(n)|+c_{g}|g(n)| \leq$ $\max \left\{c_{f}, c_{g}\right\}(|f(n)|+|g(n)|)$
\supseteq : Define $h_{f}(n)=h(n)$ and $h_{g}(n)=0$ if $|f(n)| \geq|g(n)|$ and $h_{f}(n)=0, h_{g}(n)=h(n)$ otherwise. We have $h(n)=h_{f}(n)+h_{g}(n)$ If $h_{f}(n) \neq 0$ we have
$2 c_{h}|f(n)|=c_{h}(|f(n)|+|f(n)|) \geq c_{h}(|f(n)|+|g(n)|) \geq|h(n)|=\left|h_{f}(n)\right|$ and therefore:

$$
h_{f}(n) \in O(f(n))
$$

If $h_{g}(n) \neq 0$ we have
$2 c_{h}|g(n)|=c_{h}(|g(n)|+|g(n)|) \geq c_{h}(|f(n)|+|g(n)|) \geq|h(n)|=\left|h_{g}(n)\right|$ and therefore:

$$
h_{g}(n) \in O(g(n))
$$

This completes the proof.

