Übungsblatt 3

Komplexe Zahlen

1. Stellen Sie folgende komplexe Zahlen in der Polarform (trigonometrischen Form) dar:

$$a) \ \frac{i-1}{i+1}, \quad b) \ \frac{i+1}{i-1}, \quad c) \ (1+i)^2.$$

- 2. Berechnen Sie $2^{-1000} \left(\frac{1}{1+i} + \frac{1}{1+3i} \frac{3+2i}{2+i} \right)^{2004}$.
- 3. Es sei $z = \frac{1}{1 + i\sqrt{3}}$. Für welche $n \in \mathbb{N}$ ist z^n reell?
- 4. Es sei z=a+b i = $r(\cos\varphi+\mathrm{i}\sin\varphi)\in\mathbb{C}$, wobei $a,b\in\mathbb{R}, r>0, \varphi\in[0,2\pi)$. Bestimmen Sie den Realteil, Imaginärteil, Betrag und das Argument folgender komplexer Zahlen:

a)
$$\overline{z}$$
, b) \overline{z}^{-1} , c) z^2 , d) i z, e) $z\overline{z}$.

5. Geben Sie alle komplexen Lösungen folgender Gleichungen in der algebraischen Darstellung an:

a)
$$z^3 = 1$$
, b) $z^3 = i$, c) $(z - 3i)^6 = -64$.

6. Drücken Sie $\cos(n\,\varphi)$ und $\sin(n\,\varphi)$, wobei $n\in\mathbb{N}$ und $\varphi\in\mathbb{R}$, mittels Potenzen von $\cos\varphi$ und $\sin\varphi$ aus.