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Abstract

For a set X of vertices of a graph fulfilling local connectedness conditions the
existence of a cycle containing X is proved.
AMS classification: 05C38, 05C45, 05C35
Keywords: Connectivity, Toughness, Cycle, Specified Vertices

1 Introduction and Results

We use [5] for terminology and notation not defined here and consider finite sim-
ple graphs only. Let G be a graph, X ⊆ V (G), and G[X] be the subgraph of G
induced by X. A set S ⊂ V (G) splits X if the graph G − S obtained from G by
removing S contains at least two components each containing a vertex of X. Let
κ(X) be infinity if G[X] is complete or the minimum cardinality of a set S ⊂ V (G)
splitting X. Given t > 0, X is called to be t−tough (in G) if for every set S ⊂ V (G)
splitting X the number of components of G− S each containing a vertex of X is at
most |S|

t
. We remark that the usual global concepts of connectedness and toughness

are obtained with X = V (G) from these local ones. We call a cycle of G containing
all vertices of X an X−cycle of G.
Results on cycles through specified vertices of a graph can be found in [2, 3, 4, 6, 7,
8, 9, 10, 11, 13, 14, 15]. Theorem 1 and Theorem 3 are consequences of results in [3]
and in [8, 15], respectively. Theorem 2 is proved in [8].

Theorem 1. ([3]) Let G be a graph, X ⊆ V (G) with |X| ≤ κ(X) ≥ 2. Then
there is an X−cycle.

Theorem 2. ([8]) Let G be a graph, X ⊆ V (G) with |X| ≤ κ(X) + 1 ≥ 3, and
e ∈ E(G[X]). Then there is an X-cycle of G containing e.

Theorem 3. ([8, 15]) Let G be a graph, X ⊆ V (G) with |X| = κ(X) + 1 ≥ 4
such that X is 1−tough. Then there is an X−cycle.

In [10] and later in [11] the notion of A−separators was introduced as follows: Let A
be a set of independent vertices of a graph G. A pair (Y, Z) is called an A−separator

of G if Y ⊆ V (G−A), Z ⊆ E(G−A−Y ), and |A| > c(Y, Z) = |Y |+ ∑
C∈C(Z)

⌊ |∂G−A−Y C|
2

⌋
.
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Here C(Z) denotes the set of components of the minimum subgraph of G containing
Z as its edge set. Furthermore, ∂GC denotes the set of vertices of C incident with
edges contained in E(G) \ E(C). It is easy to see that there is no A−cycle if there
is an A−separator.

Theorem 4. ([10, 11]) For an integer k ≥ 2 let G be a k-connected graph and
X be a set of at most k + 2 vertices of G. Then G contains an X-cycle if and only
if G has no A−separator for each A ⊆ X.

The outlined proof of Theorem 4 in [11] only used the local connectivity of X in
G instead of the global one. Therefore, even the following theorem is proved:

Theorem 5. Let G be a graph and X be a set of at least four vertices with
|X| ≤ κ(X) + 2. Then G contains an X−cycle if and only if G has no A−separator
for each A ⊆ X.

Our results are Theorem 6, Theorem 7, and Theorem 8.

Theorem 6. Let G be a graph, X ⊆ V (G) with |X| = κ(X) + 2 ≥ 5 such that
X is 1−tough. Then X is independent or there is an X−cycle.

Theorem 7. Let t > 1, G be a graph, X ⊆ V (G) with |X| = κ(X) + 2 ≥ 6
such that X is t−tough, and e ∈ E(G[X]). Then there is an X−cycle containing e.

Theorem 8. Let t > 1, G be a graph, X ⊆ V (G) with |X| = κ(X) + 2 ≥ 6
such that X is t−tough. Then there is an X−cycle.

2 Remarks

Using the properties that
(π1) A is t−tough if B is t−tough for A ⊆ B ⊆ V (G) and
(π2) κ(A) ≥ κ(B) if A ⊆ B ⊆ V (G),
global versions of the previous theorems are obtained if κ(X), X is 1−tough, and
X is t−tough are replaced by κ(V (G)), V (G) is 1−tough, and V (G) is t−tough,
respectively.
Given two disjoint sets A and B of vertices. Let KA,B be the complete bipartite
graph with V (KA,B) = A ∪ B and E(KA,B) = {ab| a ∈ A, b ∈ B}. For |B| ≥ 2 and
b, b

′ ∈ B (b 6= b
′
) let KA,B(b, b

′
) be the graph obtained from KA,B by adding the edge

bb
′
.

The graph KA,B with |A| = k + 1 and |B| = k is an example showing that Theorem
1 (X = A) is best possible and that Theorem 3 (X = A) and Theorem 6 (X =
A∪{b}, b ∈ B) do not hold without the assumption that X is 1−tough, respectively.
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The graph KA,B(b, b
′
) with |A| = |B| = k shows that Theorem 7 does not hold

without the assumption that X is t−tough with t > 1 (X = A ∪ {b, b′}).
Let j, k, and l be three positive integers with j ≥ k and j ≥ l. Given three disjoint
sets X, B, and C of vertices such that X = {x1, x2, . . . , xj}, B = {b1, b2, . . . , bk}, and
C = {c1, c2, . . . , cl}, respectively. We define the graph G(j, k, l) by V (G(j, k, l)) =
X ∪ B ∪ C and E(G(j, k, l)) = {ci1ci2| 1 ≤ i1 < i2 ≤ l} ∪ {xb| x ∈ X; b ∈
B} ∪ {xici| 1 ≤ i ≤ l} ∪ {bc| b ∈ B; c ∈ C}. Clearly, G(j, k, l) is k−connected. The
graph G(k+2, k, 3) is an example showing that Theorem 8 does not hold without the
assumption that X is t− tough with t > 1. The graph G(k + 3, k, 5) is an example
showing that Theorem 8 does not hold for |X| = κ(X) + 3.
Considering three edges of K4 incident with a common vertex and subdividing each
of them by a vertex shows that Theorem 6 is also not true if κ(X) = 2.
Consider the graph KA,B(b, b

′
) with |A| = |B| = 3. Let a, a

′ ∈ A (a 6= a
′
) and

b
′′ ∈ B \ {b, b′}. The graph obtained by subdividing the edge ab

′′
by an vertex u,

subdividing the edge a
′
b
′′

by an vertex v, and adding the edge uv shows that Theorem
7 does not hold if κ(X) = 3 (X = A ∪ {b, b′}).
Given k ≥ 2, let G(k) be the graph consisting of a disjoint union of a clique H on
2k − 1 vertices and a KX,B with |X| = 2k − 1, |B| = k − 1, and, additionally, a
matching between X and the vertices of H. G(2) and G(3) show that Theorem 3
and Theorem 8 do not hold with κ(X) = 2 and κ(X) = 3, respectively.

3 Proofs

For A,B ⊆ V (G) an A−B−path is a path P between A and B such that |V (P )∩A| =
|V (P )∩B| = 1. A common vertex of A and B is also an A−B−path. A set S ⊆ V (G)
separates A and B if any A−B−path contains a vertex in S. Let N(v) be the neigh-
bourhood of v ∈ V (G). Without mentioning in each case, we shall use the following
properties.

(π3) Let A,B,B′ ⊆ V (G) such that B′ ⊆ B. If S ⊆ V (G) separates A and B
then S also separates A and B′.
(π4) Let a ∈ A ⊆ V (G) and κ(A) < ∞. Then |N(a)| ≥ κ(A) or A ⊆ {a} ∪N(a).
(π5) Let A ⊂ V (G) and b ∈ V (G) \ A. If |A| ≥ κ(A ∪ {b}) then A and N(b) cannot
be separated by a set of at most κ(A ∪ {b})− 1 vertices .

For a set P of paths put V (P) =
⋃

P∈P V (P ). A more detailed version of Menger’s
Theorem ([12]) is the following lemma ([1]).

Lemma 1. ([1]) Let s be a non-negative integer, G be a graph, A,B ⊆ V (G)
such that A and B cannot be separated by a set of at most s vertices. Furthermore,
let Q be a set of s disjoint A − B−paths. Then there is a set R of s + 1 disjoint
A−B−paths, such that A ∩ V (Q) ⊂ A ∩ V (R) and B ∩ V (Q) ⊂ B ∩ V (R).
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Lemma 2. Let G be a graph, X ⊆ V (G) with |X| = κ(X) + 2 ≥ 4. Moreover,
let a ∈ X, C be a cycle with X \ {a} ⊆ V (C) ⊆ V (G) \ {a} such that there is an
{a} − V (C)−path W containing a vertex b ∈ X \ {a}. Then there is an X−cycle or
there is a set Y ⊆ V (G) \X with |Y | = κ(X)− 1 such that G contains a subdivision
of KX\{b},Y ∪{b}.

Proof of Lemma 2. Assume that G has no X−cycle and put Z = X \ {a}. Let φ
be an arbitrary but fixed orientation of C. For u, v ∈ V (C) let [u, v] be the subpath
of C from u to v following φ. Denote by (u, v) the path obtained from [u, v] by delet-
ing {u, v}. If |V ([u, v])| = 2 then (u, v) is considered to be empty. Put A = N(a),
B = V (C), B′ = Z, s = 1 and let Q contain the N(a)− {b}−subpath of W . Using
(π2), (π5), and Lemma 1 repeatedly, consider a set P of κ(X) {a} − V (C)−paths
having only a in common. Note that P contains an {a} − {b}−path. For P ∈ P let
T (P ) ∈ V (P )∩V (C). Put T (P) =

⋃
P∈P{T (P )}. If κ(X) = 2, then we are done with

Y = T (P)\{b}. In the sequel let κ(X) ≥ 3. Given v ∈ V (C), S ⊆ V (C), S−{v} 6= ∅,
let v+

S ∈ S\{v} and v−S ∈ S\{v} such that V ((v, v+
S ))∩S = ∅ and V ((v−S , v))∩S = ∅,

respectively. Because there is no X−cycle we have |V ([z, z+
Z ])∩T (P)| ≤ 1 for z ∈ Z,

hence,

(a) |V ((z, z+
Z )) ∩ T (P)| = 1 for z ∈ Z \ {b−Z , b} and V ((b−Z , b+

Z)) ∩ T (P) = {b}.

(b) Given z, z′ ∈ Z \ {b}, there is no {z} − {z′}-path Q such that V (Q) ∩ (V (C) ∪
V (P)) = {z, z′},

otherwise, it is easy to see that there is an X−cycle. Consider z ∈ Z \ {b} and,
using (a), let p = z−Z∪T (P) ∈ T (P), p′ = z+

Z∪T (P) ∈ T (P), q = z−V (C) ∈ N(z), and

q′ = z+
V (C) ∈ N(z). Note that the cases p = q, p = q = b, p

′
= q

′
or p

′
= q

′
= b are

included. Put A = N(z), B = (V (C) ∪ V (P)) \ V ((p, p′)), t = 2,Q = {[p, q], [q′, p′]},
B′ = X \ {z}, note (π2), (π3), and (π4), and apply Lemma 1. R contains a
{y} − {p}−path P , a {y′} − {p′}−path P ′, and a {y′′} − {p′′}−path P ′′ where
{q, q′} ⊂ {y, y′, y′′} ⊆ N(z) and p′′ ∈ B. The cycle obtained from C by re-
placing [p, p′] by the union of P , P ′, {z}, and the two edges zy, zy′ is again de-
noted by C, i.e. in the sequel the cycle C may vary permanently without chang-
ing the notation C. The path obtained by adding z and the edge zy′′ to P ′′ is a
{z}− (V (C)∪V (P))\{z}−path with this new cycle C. Again using the assumption
that there is no X−cycle it is easy to see that p′′ ∈ T (P). Hence, using Lemma 1
and possibly varying C repeatedly, we obtain (c).

(c) Given z ∈ Z \ {b}, there is a set R(z) of κ(X)− 2 {z}− (V (C)∪ V (P))−paths
having only z in common and ending all in T (P) \ {z−Z∪T (P), z

+
Z∪T (P)}.

By (b), a path from R(z) and a path from R(z′) can intersect only in T (P) if
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z, z′ ∈ Z \ {b} and z 6= z′. With Y = T (P) \ {b}, the union of C and of all paths in
P and in R(z) for z ∈ Z \ {b} is the desired subdivision of KX\{b},Y ∪{b}. 2

Proof of Theorem 6. Assume that there is an edge connecting a, b ∈ X and
that there is no X−cycle of G. Using (π1), (π2), κ(X \ {a}) ≥ κ(X) = |X| − 2 =
|X \ {a}| − 1, and Theorem 2, there is a cycle containing X \ {a}. With Lemma 2,
there is a set Y ⊆ V (G) \X with |Y | = κ(X)− 1 such that G contains a subdivision
of KX\{b},Y ∪{b}. The graph obtained from KX\{b},Y ∪{b} by deleting the κ(X) vertices
of Y ∪ {b} has κ(X) + 1 components, each containing exactly one vertex of X \ {b}.
Since there is no X−cycle of G and κ(X) ≥ 3 an easy case study shows that there
is no path in G− (Y ∪ {b}) connecting two of these components - contradicting that
X is 1−tough. 2

Lemma 3. Let G be a graph, X ⊆ V (G) with |X| = κ(X) + 2 ≥ 4, and e an
edge connecting two vertices a, b ∈ X. Then there is an X−cycle containing the
edge e or there are a set Y ⊆ V (G) \ (X \ {a, b}) with |Y | = κ(X) and two vertices
y, y

′ ∈ Y such that G contains a subdivision of KX\{a,b},Y (y, y
′
) and the {y}− {y′}−

path of the subdivision contains the edge e.

Proof of Lemma 3. We use the notation as in the proof of Lemma 2. Assume
that G has no X−cycle containing e. Let c ∈ X \ {a, b} and put Z = X \ {c}.
Since |Z| = κ(X) + 1, by π1, π2, and Theorem 2 there exists a cycle C contain-
ing Z and the edge e. Let φ be choosen such that [a, b] = e. Using (π2) and
Lemma 1 repeatedly, there must be a set P of {c} − V (C)−paths having only c in
common, with |P| = κ(X). If κ(X) = 2, then we are done with Y = T (P). In
the sequel let κ(X) ≥ 3. Because there is no X-cycle of G containing e we have
|V ([z, z+

Z ])∩T (P)| ≤ 1 for z ∈ Z \{a}. Proceeding in a similar manner as in Lemma
2 to prove the properties (a)-(c), we obtain

(α) |V ((z, z+
Z )) ∩ T (P)| = 1 for z ∈ Z \ {a−Z , a, b} and |V ((a−Z , b+

Z)) ∩ T (P)| = 2.

(β) Given z, z′ ∈ Z \ {a, b}, there is no {z} − {z′}-path Q such that
V (Q) ∩ (V (C) ∪ V (P)) = {z, z′}.

(γ) Given z ∈ Z \{a, b}, there is a set R(z) of κ(X)−2 {z}−(V (C)∪V (P))−paths
having only z in common and ending all in T (P) \ {z−Z∪T (P), z

+
Z∪T (P)}.

Let y, y
′ ∈ V ((a−Z , b+

Z)) ∩ T (P) such that V ([y, y
′
]) ∩ Z = {a, b}. By (β), a path

from R(z) and a path from R(z′) can intersect only in T (P) if z, z′ ∈ Z \ {a, b}
and z 6= z′. With Y = T (P), the union of C and of all paths in P and in R(z) for
z ∈ Z \ {a, b} is the desired subdivision of KX\{a,b},Y (y, y

′
). 2

Proof of Theorem 7. Assume that there is an e edge connecting a, b ∈ X and
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that there is no X−cycle of G containing e. Let c ∈ X \ {a, b}. Using (π1), (π2),
κ(X \{c}) ≥ κ(X) = |X|−2 = |X \{c}|−1, and Theorem 2, there is a cycle contain-
ing X \ {c} and the edge e. With Lemma 4, there are a set Y ⊆ V (G) \ (X \ {a, b})
with |Y | = κ(X) and two vertices y, y

′ ∈ Y such that G contains a subdivision
of KX\{a,b},Y (y, y

′
) and the {y} − {y′}− path of the subdivision contains the edge

e = ab. The graph obtained from KX\{a,b},Y (y, y
′
) by deleting the κ(X) vertices of Y

has κ(X) components, each containing exactly one vertex of X \ {a, b}. Since there
is no X−cycle of G containing the edge e and κ(x) ≥ 4 an easy case study shows
that there is no path in G − Y connecting two of these components - contradicting
that X is t−tough with t > 1. 2

Lemma 4. Let G be a graph and X ⊆ V (G). If 2 ≤ κ(X) ≤ |X| ≤ 2(κ(X)− 1) and
G contains an A−separator for an A ⊆ X then the toughness of X in G is at most
2− κ(X)+2

|X| .

Proof of Lemma 4. Let (Y, Z) be an A−separator for an A ⊆ X such that
|Y | is maximum. Furthermore, let κ(X) = k, |A| = a, |X| = x, |Y | = y, |C(Z)| = z,
and

∑
C∈C(Z)

|∂G−A−Y C| = r. Because of the maximality of |Y |, |∂G−A−Y C| is an odd

number at least three for each C ∈ C(Z). Furthermore, c(Y, Z) = y + r−z
2
≤ a− 1. If

we delete the set T (Y, Z) consisting of Y and all but one vertex of ∂G−A−Y C of each
C ∈ C(Z) then we get at least a components. Let t = |T (Y, Z)|. Because (Y, Z) is an
A−separator we get t ≤ y+2(a−y−1) = 2a−y−2. Starting with (y+2)x ≤ (y+2)a,
subtracting this inequality from 2xa = 2xa, and dividing the resulting inequality by
the positive integer x we get t ≤ y + 2(a − y − 1) ≤

(
2− y+2

x

)
a which proves the

Lemma in the case that y ≥ k.
Therefore it suffices to disprove the assumption y < k: We get r ≥ (k − y)a by
Menger’s theorem ([6]) used for each vertex of A in G− Y . Notice that (Y, Z) is an
A−separator and thus no vertex of G−Y −Z can be connected in G−Y −Z with two
vertices of A. This leads to a− 1 ≥ c(Y, Z) ≥ y + r

3
≥ y + a

3
(k− y), hence, k− y ≤ 2.

If k − y = 2 then a − 1 ≥ y + 2
3
a and 2(k − 1) ≥ x ≥ a ≥ 3(y + 1) = 3(k − 1)

- contradicting k ≥ 2. Consequently, the remaining case is y = k − 1. In this
case r ≥ a + z − 1 holds, since G− Y has a component containing A. This leads to
a−1 ≥ c(Y, Z) = y+ r−z

2
≥ y+ a−1

2
and finally we are done with k = y+1 ≤ a+1

2
≤ x+1

2

- contradicting 2k − 2 ≥ x. 2

If we combine Theorem 5 and Lemma 4 with |X| = κ(X) + 2 we obtain Theo-
rem 8. 2
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