On cycles through specified vertices

Tobias Gerlach¹⁾, Frank Göring¹⁾, Jochen Harant¹⁾, Michal Tkáč²⁾

Department of Mathematics, Technical University of Ilmenau,

D-98684 Ilmenau, Germany

²⁾Department of Mathematics, The Faculty of Economics in Kosice, University of Economics in Bratislava, Tajovskeho 13, 04130 Kosice, Slovakia

Abstract

For a set X of vertices of a graph fulfilling local connectedness conditions the existence of a cycle containing X is proved.

AMS classification: 05C38, 05C45, 05C35

Keywords: Connectivity, Toughness, Cycle, Specified Vertices

1 Introduction and Results

We use [5] for terminology and notation not defined here and consider finite simple graphs only. Let G be a graph, $X \subseteq V(G)$, and G[X] be the subgraph of G induced by X. A set $S \subset V(G)$ splits X if the graph G - S obtained from G by removing S contains at least two components each containing a vertex of X. Let $\kappa(X)$ be infinity if G[X] is complete or the minimum cardinality of a set $S \subset V(G)$ splitting X. Given t > 0, X is called to be t-tough (in G) if for every set $S \subset V(G)$ splitting X the number of components of G - S each containing a vertex of X is at most $\frac{|S|}{t}$. We remark that the usual global concepts of connectedness and toughness are obtained with X = V(G) from these local ones. We call a cycle of G containing all vertices of X an X-cycle of G.

Results on cycles through specified vertices of a graph can be found in [2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15]. Theorem 1 and Theorem 3 are consequences of results in [3] and in [8, 15], respectively. Theorem 2 is proved in [8].

Theorem 1. ([3]) Let G be a graph, $X \subseteq V(G)$ with $|X| \leq \kappa(X) \geq 2$. Then there is an X-cycle.

Theorem 2. ([8]) Let G be a graph, $X \subseteq V(G)$ with $|X| \le \kappa(X) + 1 \ge 3$, and $e \in E(G[X])$. Then there is an X-cycle of G containing e.

Theorem 3. ([8, 15]) Let G be a graph, $X \subseteq V(G)$ with $|X| = \kappa(X) + 1 \ge 4$ such that X is 1-tough. Then there is an X-cycle.

In [10] and later in [11] the notion of A-separators was introduced as follows: Let A be a set of independent vertices of a graph G. A pair (Y, Z) is called an A-separator of G if $Y \subseteq V(G-A)$, $Z \subseteq E(G-A-Y)$, and $|A| > c(Y, Z) = |Y| + \sum_{C \in \mathcal{C}(Z)} \left\lfloor \frac{|\partial_{G-A-Y}C|}{2} \right\rfloor$.

Here $\mathcal{C}(Z)$ denotes the set of components of the minimum subgraph of G containing Z as its edge set. Furthermore, $\partial_G C$ denotes the set of vertices of C incident with edges contained in $E(G) \setminus E(C)$. It is easy to see that there is no A-cycle if there is an A-separator.

Theorem 4. ([10, 11]) For an integer $k \geq 2$ let G be a k-connected graph and X be a set of at most k + 2 vertices of G. Then G contains an X-cycle if and only if G has no A-separator for each $A \subseteq X$.

The outlined proof of Theorem 4 in [11] only used the local connectivity of X in G instead of the global one. Therefore, even the following theorem is proved:

Theorem 5. Let G be a graph and X be a set of at least four vertices with $|X| \le \kappa(X) + 2$. Then G contains an X-cycle if and only if G has no A-separator for each $A \subseteq X$.

Our results are Theorem 6, Theorem 7, and Theorem 8.

Theorem 6. Let G be a graph, $X \subseteq V(G)$ with $|X| = \kappa(X) + 2 \ge 5$ such that X is 1-tough. Then X is independent or there is an X-cycle.

Theorem 7. Let t > 1, G be a graph, $X \subseteq V(G)$ with $|X| = \kappa(X) + 2 \ge 6$ such that X is t-tough, and $e \in E(G[X])$. Then there is an X-cycle containing e.

Theorem 8. Let t > 1, G be a graph, $X \subseteq V(G)$ with $|X| = \kappa(X) + 2 \ge 6$ such that X is t-tough. Then there is an X-cycle.

2 Remarks

Using the properties that

 (π_1) A is t-tough if B is t-tough for $A \subseteq B \subseteq V(G)$ and

$$(\pi_2) \ \kappa(A) \ge \kappa(B) \ if \ A \subseteq B \subseteq V(G),$$

global versions of the previous theorems are obtained if $\kappa(X)$, X is 1-tough, and X is t-tough are replaced by $\kappa(V(G))$, V(G) is 1-tough, and V(G) is t-tough, respectively.

Given two disjoint sets A and B of vertices. Let $K_{A,B}$ be the complete bipartite graph with $V(K_{A,B}) = A \cup B$ and $E(K_{A,B}) = \{ab | a \in A, b \in B\}$. For $|B| \ge 2$ and $b, b' \in B$ $(b \ne b')$ let $K_{A,B}(b,b')$ be the graph obtained from $K_{A,B}$ by adding the edge bb'.

The graph $K_{A,B}$ with |A| = k + 1 and |B| = k is an example showing that Theorem 1 (X = A) is best possible and that Theorem 3 (X = A) and Theorem 6 $(X = A \cup \{b\}, b \in B)$ do not hold without the assumption that X is 1-tough, respectively.

The graph $K_{A,B}(b,b')$ with |A| = |B| = k shows that Theorem 7 does not hold without the assumption that X is t-tough with t > 1 $(X = A \cup \{b, b'\})$.

Let j, k, and l be three positive integers with $j \geq k$ and $j \geq l$. Given three disjoint sets X, B, and C of vertices such that $X = \{x_1, x_2, \ldots, x_j\}, B = \{b_1, b_2, \ldots, b_k\}$, and $C = \{c_1, c_2, \ldots, c_l\}$, respectively. We define the graph G(j, k, l) by $V(G(j, k, l)) = X \cup B \cup C$ and $E(G(j, k, l)) = \{c_{i_1}c_{i_2}| 1 \leq i_1 < i_2 \leq l\} \cup \{xb| x \in X; b \in B\} \cup \{x_ic_i| 1 \leq i \leq l\} \cup \{bc| b \in B; c \in C\}$. Clearly, G(j, k, l) is k-connected. The graph G(k+2, k, 3) is an example showing that Theorem 8 does not hold without the assumption that K is K-tough with K-1. The graph K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-2 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-2 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that Theorem 8 does not hold for K-1 is an example showing that K-1 is an example showin

Considering three edges of K_4 incident with a common vertex and subdividing each of them by a vertex shows that Theorem 6 is also not true if $\kappa(X) = 2$.

Consider the graph $K_{A,B}(b,b')$ with |A| = |B| = 3. Let $a, a' \in A$ $(a \neq a')$ and $b'' \in B \setminus \{b,b'\}$. The graph obtained by subdividing the edge ab'' by an vertex u, subdividing the edge a'b'' by an vertex v, and adding the edge uv shows that Theorem 7 does not hold if $\kappa(X) = 3$ $(X = A \cup \{b,b'\})$.

Given $k \geq 2$, let G(k) be the graph consisting of a disjoint union of a clique H on 2k-1 vertices and a $K_{X,B}$ with |X|=2k-1, |B|=k-1, and, additionally, a matching between X and the vertices of H. G(2) and G(3) show that Theorem 3 and Theorem 8 do not hold with $\kappa(X)=2$ and $\kappa(X)=3$, respectively.

3 Proofs

For $A, B \subseteq V(G)$ an A-B-path is a path P between A and B such that $|V(P) \cap A| = |V(P) \cap B| = 1$. A common vertex of A and B is also an A-B-path. A set $S \subseteq V(G)$ separates A and B if any A-B-path contains a vertex in S. Let N(v) be the neighbourhood of $v \in V(G)$. Without mentioning in each case, we shall use the following properties.

- (π_3) Let $A, B, B' \subseteq V(G)$ such that $B' \subseteq B$. If $S \subseteq V(G)$ separates A and B then S also separates A and B'.
- (π_4) Let $a \in A \subseteq V(G)$ and $\kappa(A) < \infty$. Then $|N(a)| \ge \kappa(A)$ or $A \subseteq \{a\} \cup N(a)$.
- (π_5) Let $A \subset V(G)$ and $b \in V(G) \setminus A$. If $|A| \ge \kappa(A \cup \{b\})$ then A and N(b) cannot be separated by a set of at most $\kappa(A \cup \{b\}) 1$ vertices.

For a set \mathcal{P} of paths put $V(\mathcal{P}) = \bigcup_{P \in \mathcal{P}} V(P)$. A more detailed version of Menger's Theorem ([12]) is the following lemma ([1]).

Lemma 1. ([1]) Let s be a non-negative integer, G be a graph, $A, B \subseteq V(G)$ such that A and B cannot be separated by a set of at most s vertices. Furthermore, let Q be a set of s disjoint A - B-paths. Then there is a set \mathcal{R} of s+1 disjoint A - B-paths, such that $A \cap V(Q) \subset A \cap V(\mathcal{R})$ and $B \cap V(Q) \subset B \cap V(\mathcal{R})$.

Lemma 2. Let G be a graph, $X \subseteq V(G)$ with $|X| = \kappa(X) + 2 \ge 4$. Moreover, let $a \in X$, C be a cycle with $X \setminus \{a\} \subseteq V(C) \subseteq V(G) \setminus \{a\}$ such that there is an $\{a\} - V(C) - path \ W$ containing a vertex $b \in X \setminus \{a\}$. Then there is an X - cycle or there is a set $Y \subseteq V(G) \setminus X$ with $|Y| = \kappa(X) - 1$ such that G contains a subdivision of $K_{X \setminus \{b\}, Y \cup \{b\}}$.

Proof of Lemma 2. Assume that G has no X-cycle and put $Z = X \setminus \{a\}$. Let ϕ be an arbitrary but fixed orientation of C. For $u, v \in V(C)$ let [u, v] be the subpath of C from u to v following ϕ . Denote by (u, v) the path obtained from [u, v] by deleting $\{u, v\}$. If |V([u, v])| = 2 then (u, v) is considered to be empty. Put A = N(a), B = V(C), B' = Z, s = 1 and let Q contain the $N(a) - \{b\}$ -subpath of W. Using (π_2) , (π_5) , and Lemma 1 repeatedly, consider a set P of $\kappa(X) - \{a\} - V(C)$ -paths having only a in common. Note that P contains an $\{a\} - \{b\}$ -path. For $P \in P$ let $T(P) \in V(P) \cap V(C)$. Put $T(P) = \bigcup_{P \in P} \{T(P)\}$. If $\kappa(X) = 2$, then we are done with $Y = T(P) \setminus \{b\}$. In the sequel let $\kappa(X) \geq 3$. Given $v \in V(C)$, $S \subseteq V(C)$, $S - \{v\} \neq \emptyset$, let $v_S^+ \in S \setminus \{v\}$ and $v_S^- \in S \setminus \{v\}$ such that $V((v, v_S^+)) \cap S = \emptyset$ and $V((v_S^-, v)) \cap S = \emptyset$, respectively. Because there is no X-cycle we have $|V([z, z_Z^+]) \cap T(P)| \leq 1$ for $z \in Z$, hence,

(a)
$$|V((z, z_Z^+)) \cap T(\mathcal{P})| = 1 \text{ for } z \in Z \setminus \{b_Z^-, b\} \text{ and } V((b_Z^-, b_Z^+)) \cap T(\mathcal{P}) = \{b\}.$$

(b) Given $z, z' \in Z \setminus \{b\}$, there is no $\{z\} - \{z'\}$ -path Q such that $V(Q) \cap (V(C) \cup V(\mathcal{P})) = \{z, z'\}$,

otherwise, it is easy to see that there is an X-cycle. Consider $z \in Z \setminus \{b\}$ and, using (a), let $p = z_{Z \cup T(\mathcal{P})}^- \in T(\mathcal{P})$, $p' = z_{Z \cup T(\mathcal{P})}^+ \in T(\mathcal{P})$, $q = z_{V(C)}^- \in N(z)$, and $q' = z_{V(C)}^+ \in N(z)$. Note that the cases p = q, p = q = b, p' = q' or p' = q' = b are included. Put A = N(z), $B = (V(C) \cup V(\mathcal{P})) \setminus V((p,p'))$, t = 2, $Q = \{[p,q], [q',p']\}$, $B' = X \setminus \{z\}$, note (π_2) , (π_3) , and (π_4) , and apply Lemma 1. \mathcal{R} contains a $\{y\} - \{p\}$ -path P, a $\{y'\} - \{p'\}$ -path P', and a $\{y''\} - \{p''\}$ -path P'' where $\{q,q'\} \subset \{y,y',y''\} \subseteq N(z)$ and $p'' \in B$. The cycle obtained from C by replacing [p,p'] by the union of P, P', $\{z\}$, and the two edges zy,zy' is again denoted by C, i.e. in the sequel the cycle C may vary permanently without changing the notation C. The path obtained by adding z and the edge zy'' to P'' is a $\{z\} - (V(C) \cup V(\mathcal{P})) \setminus \{z\}$ -path with this new cycle C. Again using the assumption that there is no X-cycle it is easy to see that $p'' \in T(\mathcal{P})$. Hence, using Lemma 1 and possibly varying C repeatedly, we obtain (c).

(c) Given $z \in Z \setminus \{b\}$, there is a set $\mathcal{R}(z)$ of $\kappa(X) - 2 \quad \{z\} - (V(C) \cup V(\mathcal{P})) - paths$ having only z in common and ending all in $T(\mathcal{P}) \setminus \{z_{Z \cup T(\mathcal{P})}^-, z_{Z \cup T(\mathcal{P})}^+\}$.

By (b), a path from $\mathcal{R}(z)$ and a path from $\mathcal{R}(z')$ can intersect only in $T(\mathcal{P})$ if

 $z, z' \in Z \setminus \{b\}$ and $z \neq z'$. With $Y = T(\mathcal{P}) \setminus \{b\}$, the union of C and of all paths in \mathcal{P} and in $\mathcal{R}(z)$ for $z \in Z \setminus \{b\}$ is the desired subdivision of $K_{X \setminus \{b\}, Y \cup \{b\}}$.

Proof of Theorem 6. Assume that there is an edge connecting $a, b \in X$ and that there is no X-cycle of G. Using (π_1) , (π_2) , $\kappa(X \setminus \{a\}) \geq \kappa(X) = |X| - 2 = |X \setminus \{a\}| - 1$, and Theorem 2, there is a cycle containing $X \setminus \{a\}$. With Lemma 2, there is a set $Y \subseteq V(G) \setminus X$ with $|Y| = \kappa(X) - 1$ such that G contains a subdivision of $K_{X \setminus \{b\}, Y \cup \{b\}}$. The graph obtained from $K_{X \setminus \{b\}, Y \cup \{b\}}$ by deleting the $\kappa(X)$ vertices of $Y \cup \{b\}$ has $\kappa(X) + 1$ components, each containing exactly one vertex of $X \setminus \{b\}$. Since there is no X-cycle of G and $\kappa(X) \geq 3$ an easy case study shows that there is no path in $G - (Y \cup \{b\})$ connecting two of these components - contradicting that X is 1-tough.

Lemma 3. Let G be a graph, $X \subseteq V(G)$ with $|X| = \kappa(X) + 2 \ge 4$, and e an edge connecting two vertices $a, b \in X$. Then there is an X-cycle containing the edge e or there are a set $Y \subseteq V(G) \setminus (X \setminus \{a,b\})$ with $|Y| = \kappa(X)$ and two vertices $y, y' \in Y$ such that G contains a subdivision of $K_{X \setminus \{a,b\},Y}(y,y')$ and the $\{y\} - \{y'\}$ -path of the subdivision contains the edge e.

Proof of Lemma 3. We use the notation as in the proof of Lemma 2. Assume that G has no X-cycle containing e. Let $c \in X \setminus \{a,b\}$ and put $Z = X \setminus \{c\}$. Since $|Z| = \kappa(X) + 1$, by π_1 , π_2 , and Theorem 2 there exists a cycle C containing Z and the edge e. Let ϕ be choosen such that [a,b] = e. Using (π_2) and Lemma 1 repeatedly, there must be a set \mathcal{P} of $\{c\} - V(C)$ -paths having only c in common, with $|\mathcal{P}| = \kappa(X)$. If $\kappa(X) = 2$, then we are done with $Y = T(\mathcal{P})$. In the sequel let $\kappa(X) \geq 3$. Because there is no X-cycle of G containing e we have $|V([z, z_Z^+]) \cap T(\mathcal{P})| \leq 1$ for $z \in Z \setminus \{a\}$. Proceeding in a similar manner as in Lemma 2 to prove the properties (a)-(c), we obtain

$$(\alpha) |V((z, z_Z^+)) \cap T(\mathcal{P})| = 1 \text{ for } z \in Z \setminus \{a_Z^-, a, b\} \text{ and } |V((a_Z^-, b_Z^+)) \cap T(\mathcal{P})| = 2.$$

- (β) Given $z, z' \in Z \setminus \{a, b\}$, there is no $\{z\} \{z'\}$ -path Q such that $V(Q) \cap (V(C) \cup V(\mathcal{P})) = \{z, z'\}$.
- (γ) Given $z \in Z \setminus \{a, b\}$, there is a set $\mathcal{R}(z)$ of $\kappa(X) 2$ $\{z\} (V(C) \cup V(\mathcal{P})) paths$ having only z in common and ending all in $T(\mathcal{P}) \setminus \{z_{Z \cup T(\mathcal{P})}^-, z_{Z \cup T(\mathcal{P})}^+\}$.

Let $y, y' \in V((a_Z^-, b_Z^+)) \cap T(\mathcal{P})$ such that $V([y, y']) \cap Z = \{a, b\}$. By (β) , a path from $\mathcal{R}(z)$ and a path from $\mathcal{R}(z')$ can intersect only in $T(\mathcal{P})$ if $z, z' \in Z \setminus \{a, b\}$ and $z \neq z'$. With $Y = T(\mathcal{P})$, the union of C and of all paths in \mathcal{P} and in $\mathcal{R}(z)$ for $z \in Z \setminus \{a, b\}$ is the desired subdivision of $K_{X\setminus \{a, b\}, Y}(y, y')$.

Proof of Theorem 7. Assume that there is an e edge connecting $a, b \in X$ and

that there is no X-cycle of G containing e. Let $c \in X \setminus \{a,b\}$. Using (π_1) , (π_2) , $\kappa(X \setminus \{c\}) \geq \kappa(X) = |X| - 2 = |X \setminus \{c\}| - 1$, and Theorem 2, there is a cycle containing $X \setminus \{c\}$ and the edge e. With Lemma 4, there are a set $Y \subseteq V(G) \setminus (X \setminus \{a,b\})$ with $|Y| = \kappa(X)$ and two vertices $y, y' \in Y$ such that G contains a subdivision of $K_{X \setminus \{a,b\},Y}(y,y')$ and the $\{y\} - \{y'\}$ - path of the subdivision contains the edge e = ab. The graph obtained from $K_{X \setminus \{a,b\},Y}(y,y')$ by deleting the $\kappa(X)$ vertices of Y has $\kappa(X)$ components, each containing exactly one vertex of $X \setminus \{a,b\}$. Since there is no X-cycle of G containing the edge e and $\kappa(x) \geq 4$ an easy case study shows that there is no path in G - Y connecting two of these components - contradicting that X is t-tough with t > 1.

Lemma 4. Let G be a graph and $X \subseteq V(G)$. If $2 \le \kappa(X) \le |X| \le 2(\kappa(X) - 1)$ and G contains an A-separator for an $A \subseteq X$ then the toughness of X in G is at most $2 - \frac{\kappa(X) + 2}{|X|}$.

Proof of Lemma 4. Let (Y,Z) be an A-separator for an $A \subseteq X$ such that |Y| is maximum. Furthermore, let $\kappa(X) = k, |A| = a, |X| = x, |Y| = y, |\mathcal{C}(Z)| = z$, and $\sum_{C \in \mathcal{C}(Z)} |\partial_{G-A-Y}C| = r$. Because of the maximality of $|Y|, |\partial_{G-A-Y}C|$ is an odd number at least three for each $C \in \mathcal{C}(Z)$. Furthermore, $c(Y,Z) = y + \frac{r-z}{2} \le a-1$. If we delete the set T(Y,Z) consisting of Y and all but one vertex of $\partial_{G-A-Y}C$ of each $C \in \mathcal{C}(Z)$ then we get at least a components. Let t = |T(Y,Z)|. Because (Y,Z) is an A-separator we get $t \le y + 2(a-y-1) = 2a-y-2$. Starting with $(y+2)x \le (y+2)a$, subtracting this inequality from 2xa = 2xa, and dividing the resulting inequality by the positive integer x we get $t \le y + 2(a-y-1) \le \left(2 - \frac{y+2}{x}\right)a$ which proves the

Therefore it suffices to disprove the assumption y < k: We get $r \ge (k-y)a$ by Menger's theorem ([6]) used for each vertex of A in G-Y. Notice that (Y,Z) is an A-separator and thus no vertex of G-Y-Z can be connected in G-Y-Z with two vertices of A. This leads to $a-1 \ge c(Y,Z) \ge y + \frac{r}{3} \ge y + \frac{a}{3}(k-y)$, hence, $k-y \le 2$. If k-y=2 then $a-1 \ge y + \frac{2}{3}a$ and $2(k-1) \ge x \ge a \ge 3(y+1) = 3(k-1)$ - contradicting $k \ge 2$. Consequently, the remaining case is y=k-1. In this case $r \ge a+z-1$ holds, since G-Y has a component containing A. This leads to $a-1 \ge c(Y,Z) = y + \frac{r-z}{2} \ge y + \frac{a-1}{2}$ and finally we are done with $k=y+1 \le \frac{a+1}{2} \le \frac{x+1}{2}$ - contradicting $2k-2 \ge x$.

Lemma in the case that $y \geq k$.

If we combine Theorem 5 and Lemma 4 with $|X| = \kappa(X) + 2$ we obtain Theorem 8.

References

- [1] T. Böhme, F. Göring, J. Harant, Menger's Theorem, Journal of Graph Theory 37(2001)35-36.
- [2] B. Bollobás, G. Brightwell, Cycles through specified vertices, Combinatorica 13(1993)147-155.
- [3] H. Broersma, H. Li, J. Li, F. Tian, H.J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171(1997)43-54.
- [4] V. Chvátal, P. Erdös, A note on hamiltonian circuits, Discrete Math. 2(1972)111-113.
- [5] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173(2000).
- [6] G.A. Dirac, 4-chromatische Graphen und vollständige 4-Graphen, Math. Nachr. 22(1960)51-60.
- [7] I. Fournier, Thèse d'Etat, LRI, Université de Paris-Sud, France, 1985.
- [8] J. Harant, On paths and cycles through specified vertices, accepted in Discrete Math.
- [9] D.A. Holton, B.D. McKay, M.D. Plummer, C. Thomassen, A nine point theorem for 3-connected cubic graphs, Combinatorica 2(1982)53-62.
- [10] A. K. Kelmans and M. V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38(1982)317-322.
- [11] M. V. Lomonosov, Cycles Through Prescribed Elements in a Graph, *Paths, flows, and VLSI-layout* 215-234, Algorithms and Combinatorica **9**, Springer, Berlin, 1990
- [12] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
- [13] M. D. Plummer, E.L. Wilson, On cycles and connectivity in planar graphs, Canad. Math. Bull. 16(1973)283-288.
- [14] T. Sakai, Long paths and cycles through specified vertices in k-connected graphs, Ars Combinatoria 58(2001)33-65.
- [15] M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Can J. Math. 19(1967)1319-1328.