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Abstract

For a set X of vertices of a graph fulfilling local connectedness conditions the
existence of a cycle containing X is proved.
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1 Introduction and Results

We use [5] for terminology and notation not defined here and consider finite sim-
ple graphs only. Let G be a graph, X C V(G), and G[X] be the subgraph of G
induced by X. A set S C V(G) splits X if the graph G — S obtained from G by
removing S contains at least two components each containing a vertex of X. Let
#(X) be infinity if G[X] is complete or the minimum cardinality of a set S C V(G)
splitting X. Given t > 0, X is called to be t—tough (in G) if for every set S C V(G)
splitting X the number of components of G — S each containing a vertex of X is at
most @ We remark that the usual global concepts of connectedness and toughness
are obtained with X = V(@) from these local ones. We call a cycle of G containing
all vertices of X an X —cycle of G.

Results on cycles through specified vertices of a graph can be found in [2, 3, 4, 6, 7,
8,9, 10, 11, 13, 14, 15]. Theorem 1 and Theorem 3 are consequences of results in [3]
and in [8, 15|, respectively. Theorem 2 is proved in [8].

Theorem 1. ([3]) Let G be a graph, X C V(G) with |X| < k(X) > 2. Then
there is an X —cycle.

Theorem 2. ([8]) Let G be a graph, X C V(G) with |X| < k(X)+1 > 3, and
e € E(G[X]). Then there is an X-cycle of G containing e.

Theorem 3. ([8, 15]) Let G be a graph, X C V(G) with | X| = (X)) +1 > 4
such that X is 1—tough. Then there is an X —-cycle.

In [10] and later in [11] the notion of A—separators was introduced as follows: Let A

be a set of independent vertices of a graph G. A pair (Y, Z) is called an A—separator
of Gif Y CV(G—A), Z C E(G-A-Y),and [A] > (Y, 2) = [V |+ 5 |Pe=axCl],
cec(z)
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Here C(Z) denotes the set of components of the minimum subgraph of G containing
Z as its edge set. Furthermore, doC' denotes the set of vertices of C' incident with
edges contained in E(G) \ E(C). It is easy to see that there is no A—cycle if there
is an A—separator.

Theorem 4. ([10, 11]) For an integer k > 2 let G be a k-connected graph and
X be a set of at most k + 2 vertices of G. Then G contains an X -cycle if and only
if G has no A—separator for each A C X.

The outlined proof of Theorem 4 in [11] only used the local connectivity of X in
G instead of the global one. Therefore, even the following theorem is proved:

Theorem 5. Let G be a graph and X be a set of at least four vertices with
| X| < R(X)+2. Then G contains an X —cycle if and only if G has no A—separator
for each A C X.

Our results are Theorem 6, Theorem 7, and Theorem 8.

Theorem 6. Let G be a graph, X C V(G) with |X| = k(X) +2 > 5 such that
X is 1—tough. Then X s independent or there is an X —cycle.

Theorem 7. Lett > 1, G be a graph, X C V(G) with |X| = k(X)+2 > 6
such that X is t—tough, and e € E(G[X]). Then there is an X —cycle containing e.

Theorem 8. Lett > 1, G be a graph, X C V(G) with |X| = k(X)+2 > 6
such that X is t—tough. Then there is an X —cycle.

2 Remarks

Using the properties that

(m1) A is t—tough if B is t—tough for AC B C V(G) and

(me) k(A) > Kk(B) if AC BCV(Q),

global versions of the previous theorems are obtained if x(X), X is 1—tough, and
X is t—tough are replaced by x(V(G)), V(G) is 1—tough, and V(G) is t—tough,
respectively.

Given two disjoint sets A and B of vertices. Let K4 p be the complete bipartite
graph with V(Ka5) = AUB and E(K4 ) = {ab| a € A, b € B}. For |B|] > 2 and
b,b € B (b#1b)let K4p(bb) be the graph obtained from K4 p by adding the edge
bb .

The graph K4 g with |A| =k + 1 and |B| = k is an example showing that Theorem
1 (X = A) is best possible and that Theorem 3 (X = A) and Theorem 6 (X =
AU{b}, b € B) do not hold without the assumption that X is 1—tough, respectively.



The graph K, p(b,b) with |A| = |B| = k shows that Theorem 7 does not hold
without the assumption that X is t—tough with t > 1 (X = AU {b,b'}).

Let j, k, and [ be three positive integers with j > k and j > [. Given three disjoint
sets X, B, and C of vertices such that X = {z1,2s,...,2;}, B = {b1,b2,...,b;}, and
C = {c1,¢9,...,¢}, respectively. We define the graph G(j, k,l) by V(G(j,k,1)) =
X UBUC and E(G(],k,l)) = {Cilci2| 1 S il < ig S l} U {xb| xr € X, b €
B} U{xic;| 1 <i <1} U{bc| b e B; ceC}. Clearly, G(j,k,1) is k—connected. The
graph G(k+2, k, 3) is an example showing that Theorem 8 does not hold without the
assumption that X is t— tough with ¢ > 1. The graph G(k + 3, k,5) is an example
showing that Theorem 8 does not hold for | X| = x(X) + 3.

Considering three edges of K, incident with a common vertex and subdividing each
of them by a vertex shows that Theorem 6 is also not true if x(X) = 2.

Consider the graph K4 p(b,b') with |A| = |B| = 3. Let a,a’ € A (a # a') and
V" € B\ {b,b'}. The graph obtained by subdividing the edge ab” by an vertex u,
subdividing the edge a'b” by an vertex v, and adding the edge uv shows that Theorem
7 does not hold if x(X) =3 (X = AU{b,b'}).

Given k > 2, let G(k) be the graph consisting of a disjoint union of a clique H on
2k — 1 vertices and a Kx p with |X| = 2k — 1, |B| = k — 1, and, additionally, a
matching between X and the vertices of H. G(2) and G(3) show that Theorem 3
and Theorem 8 do not hold with x(X) = 2 and x(X) = 3, respectively.

3 Proofs

For A, B C V(G) an A— B—pathis a path P between A and B such that |V (P)NA| =
|[V(P)NB| = 1. A common vertex of A and B is also an A— B—path. A set S C V(G)
separates A and B if any A — B—path contains a vertex in S. Let N(v) be the neigh-
bourhood of v € V(G). Without mentioning in each case, we shall use the following
properties.

(m3) Let A,B,B" C V(G) such that B C B. If S C V(G) separates A and B
then S also separates A and B'.

(my) Let a € A CV(G) and k(A) < co. Then |N(a)| > k(A) or A C {a} UN(a).
(m5) Let AC V(G) and b e V(G)\ A. If |A| > k(AU {b}) then A and N(b) cannot
be separated by a set of at most k(AU {b}) — 1 vertices .

For a set P of paths put V(P) = Upep V(P). A more detailed version of Menger’s
Theorem ([12]) is the following lemma ([1]).

Lemma 1. ([1]) Let s be a non-negative integer, G be a graph, A,B C V(QG)
such that A and B cannot be separated by a set of at most s vertices. Furthermore,
let Q be a set of s disjoint A — B—paths. Then there is a set R of s + 1 disjoint
A — B—paths, such that ANV (Q) C ANV(R) and BNV(Q) C BNV (R).



Lemma 2. Let G be a graph, X C V(G) with |X| = x(X) +2 > 4. Moreover,
let a € X, C be a cycle with X \ {a} C V(C) C V(G) \ {a} such that there is an
{a} =V (C)—path W containing a vertex b € X \ {a}. Then there is an X —cycle or
there is a set Y C V(G)\ X with |Y| = k(X) — 1 such that G contains a subdivision

of Kx\ (s}, yuis}-

Proof of Lemma 2. Assume that G has no X —cycle and put Z = X \ {a}. Let ¢
be an arbitrary but fixed orientation of C'. For u,v € V(C) let [u,v] be the subpath
of C from u to v following ¢. Denote by (u, v) the path obtained from [u, v] by delet-
ing {u,v}. If |V(Ju,v])| = 2 then (u,v) is considered to be empty. Put A = N(a),
B=V(C), B =Z,s =1 and let Q contain the N(a) — {b}—subpath of W. Using
(m3), (m5), and Lemma 1 repeatedly, consider a set P of k(X) {a} — V(C)—paths
having only a in common. Note that P contains an {a} — {b}—path. For P € P let
T(P) e V(P)NV(C). Put T(P) = Upep{T(P)}. If K(X) = 2, then we are done with
Y = T(P)\{b}. In the sequel let x(X) > 3. Givenv € V(C), S CV(C), S—{v} # 0,
let v§ € S\ {v} and vg € S\{v} such that V((v,vd))NS =0 and V((vg,v))NS = 0,
respectively. Because there is no X —cycle we have |V ([z,25])NT(P)| < 1 for z € Z,
hence,

(a) [V((2,25)) NT(P)| =1 for 2 € Z\ {by,b} and V((by,b})) NT(P) = {b}.

(b) Given z,z" € Z \ {b}, there is no {z} — {2'}-path Q such that V(Q) N (V(C) U
V(P)) = {27},

otherwise, it is easy to see that there is an X —cycle. Consider z € Z \ {b} and,
using (a), let p = 25 pp € T(P), v = 25,p0p) € T(P), ¢ = 2y € N(2), and
qJ = 33(0) € N(z). Note that the cases p=¢, p=q=0b,p =¢ orp =¢ = b are
included. Put A= N(z),B = (V(C)UV(P)\V((p,p)), t =2,2={[p,d],[d, P}
B' = X \ {z}, note (mg), (m3), and (m), and apply Lemma 1. R contains a
{y} — {p}—path P, a {y/} — {p'}—path P’, and a {y"} — {p”}—path P” where
{4} € {y,v,v"} € N(z2) and p” € B. The cycle obtained from C by re-
placing [p,p’] by the union of P, P’, {z}, and the two edges zy, 2y is again de-
noted by C' i.e. in the sequel the cycle C' may vary permanently without chang-
ing the notation C'. The path obtained by adding z and the edge zy” to P” is a
{z} = (V(C)UV(P))\ {z}—path with this new cycle C. Again using the assumption
that there is no X —cycle it is easy to see that p” € T'(P). Hence, using Lemma 1
and possibly varying C' repeatedly, we obtain (c).

(c) Given z € Z\ {b}, there is a set R(z) of k(X)—2 {z} — (V(C)UV(P))—paths
having only = in common and ending all in T(P)\ {27 0y Zzurm) -

By (b), a path from R(z) and a path from R(z’) can intersect only in T'(P) if
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z,2' € Z\{b} and z # 2/. With Y = T(P) \ {b}, the union of C' and of all paths in
P and in R(z) for z € Z \ {b} is the desired subdivision of Kx\(s},yus}- O

Proof of Theorem 6. Assume that there is an edge connecting a,b € X and
that there is no X —cycle of G. Using (m), (ma), k(X \ {a}) > w(X) = |X| -2 =
| X'\ {a}| — 1, and Theorem 2, there is a cycle containing X \ {a}. With Lemma 2,
thereisaset Y C V(G)\ X with |Y| = k(X) — 1 such that G contains a subdivision
of Kx\(s},yugsy- The graph obtained from Kx\(3,yusy by deleting the x(X) vertices
of Y U {b} has (X )+ 1 components, each containing exactly one vertex of X \ {b}.
Since there is no X —cycle of G and k(X) > 3 an easy case study shows that there
is no path in G — (Y U {b}) connecting two of these components - contradicting that
X is 1—tough. O

Lemma 3. Let G be a graph, X C V(G) with |X| = k(X)+2 > 4, and e an
edge connecting two vertices a,b € X. Then there is an X —cycle containing the
edge e or there are a set Y C V(G)\ (X \ {a,b}) with |Y| = x(X) and two vertices
y,y €Y such that G contains a subdivision of Kx\(apyy (y,y ) and the {y} — {y'}—
path of the subdivision contains the edge e.

Proof of Lemma 3. We use the notation as in the proof of Lemma 2. Assume
that G has no X—cycle containing e. Let ¢ € X \ {a,b} and put Z = X \ {c}.
Since |Z] = k(X) + 1, by 7, m, and Theorem 2 there exists a cycle C' contain-
ing Z and the edge e. Let ¢ be choosen such that [a,b] = e. Using (m) and
Lemma 1 repeatedly, there must be a set P of {¢} — V(C)—paths having only ¢ in
common, with [P| = x(X). If x(X) = 2, then we are done with Y = T(P). In
the sequel let k(X) > 3. Because there is no X-cycle of G containing e we have
\V([z,24])NT(P)| < 1for z € Z\{a}. Proceeding in a similar manner as in Lemma
2 to prove the properties (a)-(c), we obtain

(@) |V((2,25))NT(P)| =1 for z € Z\{ay,a,b} and |V ((a,,b})) NT(P)| = 2.

(B) Given z,2" € Z \ {a,b}, there is no {z} — {2'}-path Q such that
V(@) N(V(C)uV(P)) = {22},

(7) Given z € Z\{a,b}, there is a set R(z) of k(X)—2 {z}—(V(C)UV(P))—paths
having only z in common and ending all in T(P)\ {27,0(pys Zzurp) }-

Let v,y € V((ay,b})) N T(P) such that V([y,y']) N Z = {a,b}. By (B), a path
from R(z) and a path from R(2') can intersect only in T(P) if 2,2’ € Z \ {a,b}
and z # Z. With Y = T(P), the union of C' and of all paths in P and in R(z) for
z € Z\ {a,b} is the desired subdivision of Kx\(ap.y(¥,9)- O

Proof of Theorem 7. Assume that there is an e edge connecting a,b € X and



that there is no X —cycle of G containing e. Let ¢ € X \ {a,b}. Using (m), (m2),
k(X \{c}) > k(X) = |X|-2=|X\{c}|—1, and Theorem 2, there is a cycle contain-
ing X \ {c} and the edge e. With Lemma 4, there are a set Y C V(G) \ (X \ {a,b})
with |Y| = x(X) and two vertices y,5 € Y such that G contains a subdivision
of Kx\(ap),v(y,y ) and the {y} — {y'}— path of the subdivision contains the edge
e = ab. The graph obtained from Kx\(a},v (¥, y') by deleting the x(X) vertices of Y
has k(X) components, each containing exactly one vertex of X \ {a,b}. Since there
is no X—cycle of G containing the edge e and k(x) > 4 an easy case study shows
that there is no path in G — Y connecting two of these components - contradicting
that X is t—tough with ¢ > 1. O

Lemma 4. Let G be a graph and X CV(G). If2 < k(X) < |X]| <2(k(X)—1) and
G contains an A—separator for an A C X then the toughness of X in G is at most
2 _ H(X)+2.

BY

Proof of Lemma 4. Let (Y,Z) be an A—separator for an A C X such that
Y| is maximum. Furthermore, let x(X) = k, |A] = a, |X| = z,|Y]| = y,|C(Z)] = =z,

and Z( | |0G—a—yC| = r. Because of the maximality of |Y|, [0g_a—yC] is an odd
cec(z

number at least three for each C' € C(Z). Furthermore, ¢(Y,Z) = y+5* <a—1. If
we delete the set T'(Y, Z) consisting of Y and all but one vertex of dg_4-yC' of each
C € C(Z) then we get at least a components. Let t = |T'(Y, Z)|. Because (Y, Z) is an
A—separator we get t < y+2(a—y—1) = 2a—y—2. Starting with (y+2)z < (y+2)a,
subtracting this inequality from 2za = 2xa, and dividing the resulting inequality by
the positive integer = we get t < y+2(a—y —1) < (2 — yxﬁ) a which proves the
Lemma in the case that y > k.

Therefore it suffices to disprove the assumption y < k: We get r > (k — y)a by
Menger’s theorem ([6]) used for each vertex of A in G — Y. Notice that (Y, Z) is an
A—separator and thus no vertex of G —Y —Z can be connected in G—Y — Z with two
vertices of A. Thisleadstoa—12>c(Y,Z) > y+3 > y+5(k—y), hence, k —y < 2.
Ifk—y=2thena—1>y+2aand 2(k—1) >z >a >3(y+1) =3k—1)
- contradicting £ > 2. Consequently, the remaining case is y = k — 1. In this
case r > a+ z — 1 holds, since G — Y has a component containing A. This leads to
a—1>cY,Z) =y+5% > y+“—gl and finally we are done with k = y+1 < “—;“1 < %

- contradicting 2k — 2 > x. O

If we combine Theorem 5 and Lemma 4 with |X| = k(X) 4+ 2 we obtain Theo-
rem 8. ]
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