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Abstract
The Mindlin–Reissner plate model is widely used for the elastic deform-
ation simulation of moderately thick plates. Shear locking occurs in the
case of thin plates, which means slow convergence with respect to the
mesh size. The Kirchhoff plate model does not show locking effects, but
is valid only for thin plates. One would like to have a method suitable
for both thick and thin plates.
Several approaches are known to deal with the shear locking in the

Mindlin–Reissner plate model. In addition to the well known MITC
elements and other approaches based on a mixed formulation, hierarchic
methods have been developed in the recent years. These are based on
the Kirchhoff model and add terms to account for shear deformations.
We present some of these methods and develop a new hierarchic plate

formulation. This new model can be discretised by a combination of C0

and C1 finite elements. Numerical tests show that the new formulation
is locking free and numerically efficient.
We also give an extension of the model to a hierarchic Naghdi shell

based on a Koiter shell formulation with unknowns in Cartesian co-
ordinates.



Contents
1 Introduction 1

2 Plate theory 2
2.1 A simple benchmark problem . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Basic assumptions and formulas . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The standard Mindlin–Reissner plate formulation (MRs) . . . . . . . . . 4
2.4 The Kirchhoff plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 The Mindlin–Reissner plate in hierarchic formulation (MRh) . . . . . . . 5
2.6 The Mindlin–Reissner plate in a rotation free formulation by Oesterle,

Ramm and Bischoff (ORB) . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 The plate formulation of Endo and Kimura (EKs) . . . . . . . . . . . . . 8
2.8 The Endo–Kimura plate in hierarchic formulation (EKh) . . . . . . . . . 9
2.9 First new formulation: Endo–Kimura plate decoupled (EKd) . . . . . . . 9
2.10 Second new formulation: hierarchic Mindlin–Reissner based on Endo–

Kimura (MREK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.11 Comparison of numerical results . . . . . . . . . . . . . . . . . . . . . . . 11

3 Shell theory 16
3.1 The Naghdi shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Naghdi shell in covariant coordinates . . . . . . . . . . . . . . . . 16
3.1.2 Coordinate free Naghdi shell formulation . . . . . . . . . . . . . . 17

3.2 The Koiter shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Coordinate free Koiter shell formulation . . . . . . . . . . . . . . 18
3.2.2 Koiter shell in Cartesian coordinates . . . . . . . . . . . . . . . . 19

3.3 The principle of Endo–Kimura applied to shells . . . . . . . . . . . . . . 19
3.4 Hierarchic Naghdi shell formulation based on Endo–Kimura . . . . . . . 20
3.5 Numerical example: Scordelis–Lo roof . . . . . . . . . . . . . . . . . . . . 21

4 Conclusion 23

Author’s address:

Michael Weise
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz, Germany

http://www.tu-chemnitz.de/mathematik/

Some titles in this CSC preprint series:

10-01 A. Meyer, P. Steinhorst. Modellierung und Numerik wachsender Risse bei piezoelektri-
schem Material. May 2010.

10-02 M. Balg, A. Meyer. Numerische Simulation nahezu inkompressibler Materialien unter
Verwendung von adaptiver, gemischter FEM. Juni 2010.

10-03 M. Weise, A. Meyer. Grundgleichungen für transversal isotropes Materialverhalten. Juli
2010.

10-04 M. K. Bernauer, R. Herzog. Optimal Control of the Classical Two-Phase Stefan Problem
in Level Set Formulation. October 2010.

11-01 P. Benner, M.-S. Hossain, T. Stykel. Low-rank iterative methods of periodic projec-
ted Lyapunov equations and their application in model reduction of periodic descriptor
systems. February 2011.

11-02 G. Of, G. J. Rodin, O. Steinbach, M. Taus. Coupling Methods for Interior Penalty Dis-
continuous Galerkin Finite Element Methods and Boundary Element Methods. Septem-
ber 2011.

12-01 J. Rückert, A. Meyer. Kirchhoff Plates and Large Deformation. April 2012.

12-02 A. Meyer. The Koiter shell equation in a coordinate free description. February 2012.

12-03 M. Balg, A. Meyer. Fast simulation of (nearly) incompressible nonlinear elastic material
at large strain via adaptive mixed FEM. July 2012.

13-01 A. Meyer. The Koiter shell equation in a coordinate free description – extended. Septem-
ber 2013.

13-02 R. Schneider. With a new refinement paradigm towards anisotropic adaptive FEM on
triangular meshes. September 2013.

13-01 A. Meyer. The linear Naghdi shell equation in a coordinate free description. November
2013.

14-01 A. Meyer. Programmbeschreibung SPC-PM3-AdH-XX – Teil 1. März 2014.

14-02 A. Meyer. Programmbeschreibung SPC-PM3-AdH-XX – Teil 2. April 2014.

14-03 J. Glänzel, R. Unger. High Quality FEM-Postprocessing and Visualization Using a
Gnuplot Based Toolchain. July 2014.



[8] R. Echter. Isogeometric analysis of shells. Dissertation, Bericht Nr. 59, Institut für
Baustatik und Baudynamik der Universität Stuttgart, 2013.

[9] M. Endo and N. Kimura. An alternative formulation of the boundary value problem
for the Timoshenko beam and Mindlin plate. Journal of Sound and Vibration,
301(1):355 – 373, 2007.

[10] R. H. Macneal and R. L. Harder. A proposed standard set of problems to test finite
element accuracy. Finite Elements in Analysis and Design, 1(1):3 – 20, 1985.

[11] A. Meyer. Hierarchical preconditioners for higher order elements and applications in
computational mechanics. Preprint Series of the SFB 393 SFB393/99-02, Technische
Universität Chemnitz, 1999.

[12] A. Meyer. Programmer’s manual for adaptive finite element code SPC–PM 2Ad.
Preprint Series of the SFB 393 SFB393/01-18, Technische Universität Chemnitz,
2001.

[13] A. Meyer. Hierarchical preconditioners and adaptivity for Kirchhoff–plates. Chem-
nitz Scientific Computing Preprints CSC/08-03, Technische Universität Chemnitz,
2008.

[14] A. Meyer. The Koiter shell equation in a coordinate free description - exten-
ded. Chemnitz Scientific Computing Preprints CSC/13-01, Technische Universität
Chemnitz, 2013.

[15] A. Meyer. The linear Naghdi shell equation in a coordinate free description. Chem-
nitz Scientific Computing Preprints CSC/13-03, Technische Universität Chemnitz,
2013.

[16] B. Oesterle, E. Ramm, and M. Bischoff. A shear deformable, rotation-free isogeo-
metric shell formulation. Computer Methods in Applied Mechanics and Engineering,
307(Supplement C):235 – 255, 2016.

[17] M. Weise. Simplified calculation of rHCT basis functions for an arbitrary split-
ting. Chemnitz Scientific Computing Preprints CSC/15-01, Technische Universität
Chemnitz, 2015.

[18] M. Weise. Adaptive FEM for NURBS surface shells. PAMM, 16(1):773–774, 2016.

24

1 Introduction

The Mindlin–Reissner plate model is widely used for the elastic deformation simulation
of moderately thick plates. The weak formulation of the model features functions from
H1 and can thus be discretised with C0 finite elements. This simple approach works if
the considered plate is rather thick, but it leads to problems when used with thin plates.
One observes very slow convergence with respect to the mesh size. Meshes sufficiently
fine for a thick plate may yield results which are several orders of magnitude too small in
case of a thin plate. This effect is called shear locking in the engineering literature due
to the fact that the plate seems to be stiffer than it is with an insufficently fine mesh.

On the other hand, the Kirchhoff plate model does not show such locking effects, but
is valid only for thin plates. It excludes out-of-plane shear deformations, which are
negligible for thin plates but relevant for thick plates. The weak formulation features
functions from H2 and therefore requires C1 finite elements for a conforming discretisa-
tion.

One would like to have a method suitable for both thick and thin plates. Several ap-
proaches are known to deal with the shear locking in the Mindlin–Reissner model. In
addition to the well known MITC elements and other approaches based on a mixed
formulation, hierarchic methods have been developed in the recent years. We focus on
hierarchic methods in this article and present two new formulations. In fact we will not
really discuss specific elements, but different formulations of the plate theory which may
then be discretised with suitable elements.

We will present and discuss numerical examples achieved with two combinations of C0
and C1 elements: linear Lagrange ansatz functions and reduced Hsieh–Clough–Tocher
(rHCT) ansatz functions for triangular elements and bilinear Lagrange ansatz func-
tions and Bogner–Fox–Schmit (BFS) ansatz functions for rectangular elements. See
for example [7], [1], [17] for details on rHCT elements and [3], [13] for details on BFS
elements.

The article is structured as follows. Section 2 deals with plate formulations. A simple
benchmark problem is given in 2.1. Subsection 2.2 introduces some basic concepts and
formulas for the plate problem. Subsections 2.3 to 2.10 present known and new plate
formulations and give a short assessment of their performance with conforming elements
based on the benchmark problem from 2.1. A more thorough numerical comparison is
presented in subsection 2.11. Section 3 presents the basic concepts of the Naghdi and
Koiter shell theories in 3.1 and 3.2 and extends the new plate formulations to shells in
3.3 and 3.4 with numerical examples in 3.5. The article is concluded in section 4.
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Figure 1: Plate deflection under load

2 Plate theory

2.1 A simple benchmark problem

Before presenting the different plate formulations we define a benchmark problem which
will be used for a first assessment of each theory in the following sections. A deeper
analysis and comparison of the numerical performance is then given in section 2.11.

We consider a square plate of length 1 with isotropic material, i. e. same material beha-
viour in all space directions. All edges are hard clamped which means no deflection and
no bending angle. This reads w = θ = 0 in the variables defined in the following section.
A thick plate with thickness d = 10−1 and a thin plate with thickness d = 10−3 are sub-
jected to a scaled load of d3. See Figure 1 for the qualitative resulting deflection in the
thin plate case. Rough reference solutions for the maximum deflection are 1.60 × 10−2

for the thick plate and 1.38× 10−2 for the thin plate.

The first assessment is done with uniform refinements of one quadratic finite element
comprising the whole plate as initial coarse mesh. The full comparison in section 2.11
also features triangular elements. C0 linear Lagrange ansatz functions and C1 reduced
Hsieh–Clough–Tocher ansatz functions are used for triangular elements and C0 bilinear
Lagrange ansatz functions and C1 Bogner–Fox–Schmit ansatz functions are used for
quadratic elements.

The FE system is solved with the preconditioned conjugate gradient method. Hierarchic
preconditioning is used, see [11]. The relative decrease of the residual in the precondi-
tioned norm

(rT
kwk)1/2 < tol (rT

0w0)1/2

with residuals and preconditioned residuals rk, wk of iteration k and tol = 10−4 serves as
stopping criterion. The initial residual r0 is computed from a zero solution on the initial

2

4 Conclusion

We have compared several known and two new plate formulations with respect to their
locking behaviour and their numerical efficiency combined with a conforming discretisa-
tion. The two new formulations for the Endo–Kimura variant and the original Mindlin–
Reissner plate turned out to be locking free and among the most efficient methods for
both thick and thin plates.

Extensions of both formulations to shells have been presented. The example problem has
shown that the solution of shell problems is more challenging and a better preconditioner
might be needed. Nevertheless both methods are locking free and thus suitable for thick
and thin shells.
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Naghdi bilin. Naghdi biquadr. EK shell hier. Naghdi/EK
#El max |u3D

z | #it max |u3D
z | #it max |u3D

z | #it max |u3D
z | #it

4 2.02E-3 9 3.74E-2 36 0.2138 77 0.2809 29
16 7.72E-3 34 0.1472 267 0.2959 643 0.2960 653
64 1.99E-2 108 0.2829 661 0.3025 1011 0.3025 1047

256 3.76E-2 255 0.3007 545 0.3030 1065 0.3031 744
1024 7.27E-2 587 0.3026 423 0.3030 605 0.3032 978
4096 0.1485 1184 0.3038 452 0.3030 709 0.3034 1629

16384 0.2362 1764 0.3043 534 0.3030 670 0.3036 2788

Table 10: Results and iteration numbers for Scordelis–Lo roof

Naghdi biquadr. EK shell hier. Naghdi/EK
#El max |u3D

z | #it max |u3D
z | #it max |u3D

z | #it
4 3.77E-3 36 0.1707 59 0.2983 30

16 2.16E-2 271 0.2181 1317 0.2184 1347
64 0.1107 1310 0.3067 5382 0.3067 6071

256 0.2404 2949 0.8183 9494 0.3183 9655
1024 0.3020 2712 0.3204 5615 0.3205 5636
4096 0.3022 501 0.3206 3019 0.3206 3050

16384 0.3197 3426 0.3206 4545 0.3206 5272

Table 11: Results and iteration numbers for thinner Scordelis–Lo roof

Results obtained with uniform refinement of bilinear as well as biquadratic Lagrangian
elements for the standard Naghdi formulation and a combination of bilinear Lagrangian
and Bogner–Fox–Schmit elements for the C0 and C1 parts of the Endo–Kimura shell
formulation as well as the hierarchic Naghdi shell formulation based on Endo–Kimura
are collected in Table 10. Iteration numbers of all methods are much higher than for
their counterparts in the plate example. The iteration numbers of the Koiter shell in
cartesian coordinates with BFS elements which are not shown in the table are about the
same as those of the Endo–Kimura shell. The bilinear elements show slow h-convergence
but the h-convergence of the other methods appears satisfying.

In order to conduct a locking study we also considered a thinner Scordelis–Lo roof with
thickness 0.025 and load −0.9. Results are collected in Table 11. We observe that both
Endo–Kimura shell formulations have the best h-convergence but at extreme iteration
numbers. A better preconditioner tailored for these formulations which might reduce
these iteration numbers would be desirable. The Koiter shell in cartesian unknowns with
BFS elements shows iteration numbers in the same order of magnitude.
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θγ
∇w

Figure 2: Deformed plate from one side; thickness exaggerated

coarse mesh and from an interpolated solution of the next coarser mesh on all refined
meshes.

2.2 Basic assumptions and formulas

Figure 2 depicts a deformed plate with extremely exaggerated thickness viewed from the
side. The Mindlin–Reissner hypothesis states that a straight line vertical to the plate
midsurfaces remains a straight line after deformation, possibly with a different angle
than before. The angle between the original line and the same line after deformation is
called the bending angle θ. We abbreviate the spatial derivative ∂•/∂xi of any object •
with an index •,i throughout this section. The 2D gradient of the vertical deflection w,
∇w = [w,1, w,2]T = [∂w/∂x1, ∂w/∂x2]T, can also be viewed as an angle. This allows for
the definition of the shear angle γ by γ = ∇w − θ or, equivalently,

∇w = θ + γ. (1)

The 3D deformation of a point in the plate domain (η1, η2, τ) ∈ ω× [−d/2, d/2], ω ⊂ R2

under the Mindlin–Reissner hypothesis may then be described by

u3D(x1, x2, x3) =



−x3θ1(x1, x2)
−x3θ2(x1, x2)
w(x1, x2)


 . (2)

We collect the unknowns for any of the following plate formulations in a vector called u.
Plugging the deformation ansatz (2) into the 3D elasticity bilinear form and integrating
over the thickness direction variable x3 results in the problem

find u ∈ V with a(u, ũ) = l(ũ) ∀ ũ ∈ Vtest (3)

with the bilinear form

a(u, ũ) =
∫

ω
ε(θ) : Cb : ε(θ̃) dω +

∫

ω
γ ·Cs ·γ̃ dω, (4)

3



bilin., thick plate bilin., thin plate biquadr., thick plate biquadr., thin plate
#El wmax #it wmax #it wmax #it wmax #it

4 2.44E-3 2 2.44E-7 2 8.82E-3 4 1.39E-6 4
16 6.67E-3 9 9.26E-7 9 1.49E-2 24 4.95E-6 42
64 1.17E-2 24 3.43E-6 38 1.59E-2 42 4.88E-3 441

256 1.46E-2 40 1.34E-5 114 1.60E-2 42 1.08E-2 1444
1024 1.56E-2 48 5.31E-5 286 1.60E-2 35 1.23E-2 227
4096 1.59E-2 49 2.10E-4 662 1.60E-2 33 1.29E-2 891

16384 1.60E-2 47 8.01E-4 1489 1.60E-2 32 1.32E-2 1426

Table 1: Results for the standard Mindlin–Reissner plate formulation with C0 elements

the linear form
l(ũ) =

∫

ω
p w̃ dω, (5)

and appropriate FE ansatz and test spaces V and Vtest. The linearised 2D strain tensor
ε(•) = 1

2

(
∇• +(∇•)T

)
is given as the symmetrised 2D gradient. The fourth order

material bending tensor Cb and the second order shear tensor Cs are proportional to d3

and d, respectively, due to the thickness integration.

The given formulation of the problem and the bilinear and linear forms features the
three variables w, θ, γ. The relation ∇w = θ+γ from (1) allows the elimination of either
θ or γ from the problem. This leads to differing formulations with different numerical
behaviour which are explored in the following sections.

2.3 The standard Mindlin–Reissner plate formulation (MRs)

The standard formulation of the Mindlin–Reissner plate problem follows from eliminat-
ing γ = ∇w − θ from the three variable formulation (2)–(5). This leads to the bilinear
form

a(u, ũ) =
∫

ω
ε(θ) : Cb : ε(θ̃) dω +

∫

ω
(∇w − θ)·Cs ·(∇w̃ − θ̃) dω

with the unknowns u = [w, θ1, θ2]T. All unknowns are featured with derivatives up to
first order and are thus assumed to be in H1(ω). This allows for a simple discretisation
with C0 finite elements.

Results for the example problem from section 2.1 with bilinear and biquadratic rect-
angular elements are shown in Table 1. One observes reasonable h-convergence for the
thick plate case but very slow convergence for the thin plate case. This effect is called
thickness locking or shear locking. Standard finite elements are not capable of resolving
the first (bending) term and the second (shear) term of the bilinear form appropriately
for small thickness d. As d tends to zero, the shear term dominates due to the scaling
of the bending term with d3 and the shear term with d. The shear term is imbalanced
in the sense that it consists of a function value and derivative value.

4

Figure 5: Scordelis-Lo roof with vertical deflection u3D
z

in 2.10. Adding the relaxation angle ρ = ρ1a
1 + ρ2a

2 with θ = ∇Sub · a3 − ρ and
γ = ∇Sus · a3 + ρ results in the shear and bending strains

2es = ∇Sus · a3 + ρ,
2εb = −(∇S∇Sub · a3) ·A−A · (∇S∇Sub · a3)T − ∇Sus ·B −B · (∇Sus)T

+ ∇Sρ ·A + A · (∇Sρ)T

with the covariant coordinates

2es
i = ws,i + ρi,

2εb
ij = −2ub,ij · a3 + 2Σk Γkijub,k · a3 + 2wscij + ρi,j + ρj,i − 2Σk Γkijρk.

The membrane strains are the same as above. A conforming discretisation may be
achieved with C1 elements for the three Cartesian coordinates of ub and C0 elements
for the normal coordinate ws of us and the two covariant coordinates of ρ.

3.5 Numerical example: Scordelis–Lo roof

The Scordelis–Lo roof was used to validate the exactness of the models and the imple-
mentation. The problem with the vertical deflection u3D

z for is illustrated in Figure 5.
A roof section cut out from a right circular cylinder with an opening angle of 80◦ rests
on a rigid diaphragm with its curved edges. The normal and tangential deformation
with respect to the spanning circle are zero at the curved edges (together with their first
derivatives in tangential direction); the straight edges are free. The shell thickness is
0.25, the cylinder radius 25 and the length 50. Isotropic material with E = 4.32 · 108

and ν = 0 is used and a vertical load per unit surface of −90 is applied. The absolute
value of the maximum vertical deflection of max |u3D

z | = 0.3024, which occurs at the
middle of the free edges, is suggested to be used as a benchmark in [10]. Our own
overkill solution with 137 962 adaptively refined biquadratic Lagrangian elements ob-
tained max |u3D

z | = 0.3043. We did not make use of symmetries and simulated the whole
domain.
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as the shell equivalent to the standard Endo–Kimura plate formulation. Hierarchic
and decoupled versions can again be obtained by using the unknowns u and us with
elimination of ub for the hierarchic version or by using ub and us with elimination of u
for the decoupled version. Just like in the special case of a plate the additional gradient
condition leads to a slightly stiffer solution than that of the Naghdi shell.

The decoupled version reads

2εm = ∇S(ub + us) ·A + A · (∇S(ub + us))T,

2es = ∇Sus · a3,

2εb = −∇S(∇Sub · a3) ·A−A · (∇S(∇Sub · a3))T

−∇S(ub + us)) ·B −B · (∇S(ub + us)))T

and the product rule ∇S(∇Sub ·a3) = ∇S∇Sub + ∇SubB together with B ·A = B yields
the simplified bending strain

2εb = −(∇S∇Sub · a3) ·A−A · (∇S∇Sub · a3)T − ∇Sus ·B −B · (∇Sus)T.

The bending strain features both ub and us. Therefore, this formulation is actually not
totally decoupled like in the special case of a plate. We still keep the name “decoupled”
to link it with the corresponding plate formulation.

We have not yet specified if us is from R3 or a smaller subspace. From now on we use
us ∈ span{a3} because it is the equivalent of the plate deflection ws. In contrast, ub is
from the whole R3 because it emulates not only the deflection but also the membrane
deformations. It is sensible to use the normal coordinate us = wsa3 as an unknown with
this assumption. The coordinates of ub on the other hand are best expressed in Cartesian
coordinates via ub = ubxex + ubyey + ubzez. This yields the covariant coordinates

2εm
ij = ub,i · aj + ub,j · ai − 2wsbij,

2es
i = ws,i,

2εb
ij = −2ub,ij · a3 + 2Σk Γkijub,k · a3 + 2wscij

which can be used for implementing the decoupled Endo–Kimura shell with C1 elements
for the three Cartesian coordinates of ub and C0 elements for the normal coordinate ws
of us.

3.4 Hierarchic Naghdi shell formulation based on Endo–Kimura

A relaxation of the decoupled Endo–Kimura shell formulation to obtain again the Naghdi
shell solution can be done analogously to the relaxation of the according plate model

20

thick plate thin plate
#El wmax #it wmax #it

4 1.45E-2 2 1.45E-2 2
16 1.38E-2 8 1.38E-2 8
64 1.38E-2 23 1.38E-2 22

256 1.38E-2 35 1.38E-2 35
1024 1.38E-2 29 1.38E-2 29
4096 1.38E-2 29 1.38E-2 28

16384 1.38E-2 31 1.38E-2 83

Table 2: Results for the Kirchhoff plate problem with C1 BFS elements

2.4 The Kirchhoff plate

The plate model of Kirchhoff can be viewed as a special case of the Mindlin–Reissner
plate without the allowance for a shear angle. The condition γ = 0 gives θ = ∇w from
(1). The geometric interpretation of this ansatz is that orthogonal line elements prior
to deformation are still orthogonal to the new plate midsurface after deformation. The
problem formulation changes to

u3D =



−x3w,1
−x3w,2
w


 , a(u, ũ) =

∫

ω
ε(∇w) : Cb : ε(∇w̃) dω, l(ũ) =

∫

ω
p w̃ dω

with the single unknown u = w. The bilinear form features second derivatives which calls
for w ∈ H2(ω). Thus, C1 finite elements are needed for a conforming discretisation.

Results for the example problem from section 2.1 with BFS elements are shown in
Table 2. Even very coarse meshes yield a quite accurate solution for the thin plate. No
shear locking is observed because no shear term is present. The thick plate example
converges equally fast, but to the same value of 1.38× 10−2 while the reference solution
for the thick plate is about 1.60× 10−2. This is due to the fact that the Kirchhoff model
neglects the shear term and is thus only suitable for thin plates.

2.5 The Mindlin–Reissner plate in hierarchic formulation (MRh)

The desire for a suitable plate formulation for thick and thin plates has lead to numerous
reformulations of the Mindlin–Reissner plate problem with the goal of the exclusion of
locking. A hierarchic approach can be found in [8] based on earlier works, see the
references therein. The cited work uses isogeometric analysis (finite elements with non-
uniform rational B-splines used for geometry definition and as basis functions) but the
formulation given there can also be discretised with standard finite elements.
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thick plate thin plate
#El wmax #it wmax #it

4 1.45E-2 2 1.45E-2 2
16 1.53E-2 10 1.38E-2 9
64 1.56E-2 32 1.38E-2 24

256 1.58E-2 73 1.38E-2 45
1024 1.59E-2 130 1.38E-2 68
4096 1.60E-2 214 1.38E-2 92

16384 1.60E-2 423 1.38E-2 108

Table 3: Results for the hierarchic Mindlin–Reissner formulation with C1 BFS elements
for w and C0 bilinear elements for γ

The idea is to eliminate θ = ∇w− γ from the three variable formulation (2)–(5) instead
of γ. This leads to

u3D =



−x3(w,1 − γ1)
−x3(w,2 − γ2)

w


 ,

a(u, ũ) =
∫

ω
ε(∇w − γ) : Cb : ε(∇w̃ − γ̃) dω +

∫

ω
γ · Cs · γ̃ dω,

l(ũ) =
∫

ω
p w̃ dω

with the variables u = [w, γ1, γ2]T. First derivatives of γ and second derivatives of w
call for γ ∈ H1(ω) and w ∈ H2(ω). Thus, a discretisation with C0 elements for γ
and C1 elements for w is needed. The name “hierarchic” comes from the fact that the
bilinear form includes the Kirchhoff bending term and can thus be viewed as a hierarchic
extension of the Kirchhoff model.

Results for the example problem from section 2.1 are shown in Table 3. One observes
good h-convergence to the right solutions for the thick and the thin plate. The hierarchic
reformulation has rendered the problem locking free and the method performs well for
thick and thin plates. There is, however, one major drawback: The iteration numbers
needed to reduce the initial residual below the defined threshold are significantly higher
for the thick plate than for the thin plate and also much higher than with the standard
Mindlin–Reissner formulation. A fair and thorough comparison between the pure C0

elements used there and the partially C1 combined elements here also needs to involve
some error and computation time measurement and is carried out in section 2.11. But
the reduced comparison given here still serves to show that it might be useful to search
for further formulations even though the hierarchic formulation is locking free.

6

3.2.2 Koiter shell in Cartesian coordinates

Writing the Koiter shell in covariant coordinates like the Naghdi shell leads to formulas
which are not so easy to implement for general geometries, see [5, section 4.2.3]. A
conforming discretisation of this formulation requires C0 elements for both tangential
coordinates and C1 elements for the normal coordinate.

Alternatively, one can use Cartesian coordinates for the unknowns, see [2]. The coordin-
ate free formulation from above can be reformulated to

2εm = ∇Su ·A + A · (∇Su)T

= u,j · ai + u,i · aj,
2εb = −∇S∇Su · a3 ·A−A · (∇S∇Su · a3)T

= 2(u,ij · a3 − Γkiju,k · a3)aiaj.

There is no need for further derivative evaluation if the unknowns are given in Cartesian
coordinates u = uxex + uyey + uzez. The Cartesian basis vectors ex, ey, ez are fixed
in space and thus the derivatives carry over directly to the unknown coordinates them-
selves;

u,i = ( ∂
∂ηiux)ex+( ∂

∂ηiuy)ey+( ∂
∂ηiuz)ez, u,ij = ( ∂2

∂ηi∂ηj ux)ex+( ∂2

∂ηi∂ηj uy)ey+( ∂2

∂ηi∂ηj uz)ez.

This formulation can then easily be implemented. A conforming discretisation requires
C1 finite elements for all three coordinates ux, uy, uz.

3.3 The principle of Endo–Kimura applied to shells

The basic idea of Endo and Kimura can also be applied to the Naghdi shell formulation.
The total deformation u is split into a bending and a shear part with u = ub +us. We
start from the coordinate free Naghdi formulation of (9) and (10)

2εm = ∇Su ·A + A · (∇Su)T,

2es = ∇Su · a3 − θ,
2εb = −∇Sθ ·A−A · (∇Sθ)T − ∇Su ·B −B · (∇Su)T

and insert the assumption θ = ∇Sub · a3 to obtain

2εm = ∇Su ·A + A · (∇Su)T,

2es = ∇Su · a3 − ∇Sub · a3,

2εb = −∇S(∇Sub · a3) ·A−A · (∇S(∇Sub · a3))T − ∇Su ·B −B · (∇Su)T
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free formulation which is independent of a coordinate system for the unknowns. With
the surface gradient ∇S defined by

∇S• = Σia
i•,i

the equivalent of the angle decomposition (1) from plate theory reads ∇Su ·a3 = θ+ γ.
With the first and second fundamental tensors A = aija

iaj and B = bija
iaj the shell

strains may then be expressed by

2εm = ∇Su ·A + A · (∇Su)T,

2εs = γa3 + a3γ, 2es = γ,

2εb = −∇Sθ ·A−A · (∇Sθ)T − ∇Su ·B −B · (∇Su)T.

(9)

The elimination of γ = ∇Su · a3 − θ changes the shear strain tensor to

2εs = (∇Su · a3 − θ)a3 + a3(∇Su · a3 − θ), 2es = ∇Su · a3 − θ. (10)

See also [15] for a full derivation (with θ oriented differently, θhere = −θthere). The
bilinear form stays as in (6) and (8).

3.2 The Koiter shell

While the Naghdi shell is the shell equivalent to the Mindlin–Reissner plate, the Koiter
shell is the equivalent to the Kirchhoff plate. The additional hypothesis reads

θ = ∇Su · a3, γ = ∇Su · a3 − θ = 0

for shells. It is a valid assumption only for thin shells.

3.2.1 Coordinate free Koiter shell formulation

Direct insertion of the hypothesis into the coordinate free Naghdi shell formulation yields
es = 0 and

2εm = ∇Su ·A + A · (∇Su)T,

2εb = −∇S(∇Su · a3) ·A−A · (∇S(∇Su · a3))T − ∇Su ·B −B · (∇Su)T

= −∇S∇Su · a3 ·A−A · (∇S∇Su · a3)T

with the chain rule ∇S(∇Su · a3) = ∇S∇Su · a3 + ∇Su · ∇Sa3 = ∇S∇Su · a3 − ∇Su · B.
See also [14] and [15, section 5.2] for a full derivation.

18

thick plate thin plate
#El wmax #it wmax #it

4 1.63E-2 3 1.45E-2 3
16 1.56E-2 34 1.38E-2 14
64 1.58E-2 265 1.38E-2 63

256 1.59E-2 910 1.38E-2 204
1024 1.60E-2 2367 1.38E-2 559
4096 1.60E-2 5000 1.38E-2 1241

16384 1.60E-2 5000 1.38E-2 2837

Table 4: Results for the rotation free Mindlin–Reissner formulation with C1 BFS ele-
ments for w,wsb and wbs

2.6 The Mindlin–Reissner plate in a rotation free formulation by
Oesterle, Ramm and Bischoff (ORB)

The locking phenomenon is caused by the imbalance of function values and derivative
values in the standard formulation. The authors of [16] try to overcome this issue with
a so-called rotation free formulation. All variables of this formulation represent dis-
placements and not rotation angles. Two additional plate deflections whose derivatives
represent the shear angles need to be introduced for an equivalent formulation to the
Mindlin–Reissner plate. The ansatz

w = wb + wsb + wbs, γ = (wsb,1, wbs,2)T, θ = ∇w − γ = ∇wb + (wbs,1, wsb,2)T

yields the formulation

u3D =



u1 − x3(wb,1 + wbs,1)
u2 − x3(wb,2 + wsb,2)

w


 ,

a(u, ũ) =
∫

ω
ε

(
wb,1 + wbs,1
wb,2 + wsb,2

)
:Cb :ε

(
w̃b,1 + w̃bs,1
w̃b,2 + w̃sb,2

)
dω +

∫

ω

(
wsb,1
wbs,2

)
·Cs ·

(
w̃sb,1
w̃bs,2

)
dω,

l(ũ) =
∫

ω
p (w̃b + w̃sb + w̃bs) dω.

All three variables wb, wsb, wbs are present with second derivatives and need to be dis-
cretised with C1 elements. Unlike the source [16] which uses isogeometric analysis we
again employ standard C1 finite elements.

Results for the example problem from section 2.1 are shown in Table 4. The conjugate
gradient method was stopped if the stopping criterion was not met after 5000 iterations.
One observes good h-convergence to the right solutions for the thick and the thin plate.
The rotation free reformulation has rendered the problem locking free and the method
performs well for thick and thin plates. The iteration numbers, however, are extremely
high in comparison with the other methods. With shear locking gone but very low
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thick plate thin plate
#El wmax #it wmax #it

4 1.63E-2 3 1.45E-2 3
16 1.55E-2 24 1.38E-2 119
64 1.56E-2 49 1.38E-2 1320

256 1.57E-2 96 1.38E-2 3132
1024 1.57E-2 103 1.38E-2 2666
4096 1.57E-2 139 1.38E-2 834

16384 1.57E-2 142 1.38E-2 483

Table 5: Results for the Endo–Kimura plate formulation with C1 BFS elements for w
and wb

numerical efficiency this method does not look promising for practical use. Maybe there
exist better solvers for this problem formulation, but at least our preconditioned solver
is inefficient in this case.

2.7 The plate formulation of Endo and Kimura (EKs)

The authors of [9] argue that the bending and shear deformations of the Mindlin–Reissner
plate formulation can not be determined uniquely and therefore propose a different
formulation. Like in the standard formulation they eliminate γ = ∇w−θ from the three
variable formulation (2)–(5) and make the additional assumption θ = ∇wb for some wb.
In consequence it holds γ = ∇ws for ws = w − wb. Just like the formulation of the
previous section the absence of rotation angle variables leads to a rotation free and thus
also locking free formulation. One gets

u3D =



u1 − x3wb,1
u2 − x3wb,2

w


 ,

a(u, ũ) =
∫

ω
ε(∇wb) : Cb : ε(∇w̃b) dω +

∫

ω
(∇w −∇wb) · Cs · (∇w̃ −∇w̃b) dω,

l(ũ) =
∫

ω
p w̃ dω.

Both variables w and wb are present with second derivatives and need to be discretised
with C1 elements. One expects a slightly different solution than with the standard
Mindlin–Reissner plate due to the additional condition that θ needs to be a gradient.

Numerical results are shown in Table 5. One observes good h-convergence for both the
thick and the thin plate. The solution of the thick plate is different from the Mindlin–
Reissner plate. The additional gradient condition leads to a slightly stiffer behaviour. It
is unclear which solution is the “better” one compared to the behaviour of real plates.
Iteration numbers are good for the thin plate but very high for the thick plate.
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for the load of the test functions. The bilinear form can be written as a sum of membrane,
bending and shear terms with according strains in the form

a(u, ũ) = am(u, ũ) + ab(u, ũ) + as(u, ũ), (6)

am(u, ũ) =
∫
ω ε

m(u) :Cm :εm(ũ) dS,
ab(u, ũ) =

∫
ω ε

b(u) :Cb :εb(ũ) dS,
as(u, ũ) =

∫
ω ε

s(u) :Cm :εs(ũ) dS

with the surface element dS = ‖a1×a2‖dη1dη2. The membrane, bending and shear
strain tensors

εm(u) = Σij ε
m
ij(u)aiaj, εb(u) = Σij ε

b
ij(u)aiaj, εs(u) = Σi ε

s
i(u)(aia3 + a3a

i)

have the covariant coordinates

εm
ij(u) = 1

2(ui|j + uj|i)− biju3 (not dependent on θi),
εb
ij(u) = 1

2(θi|j + θj|i − Σk b
k
i uk|j − Σk b

k
juk|i) + ciju3,

εs
i(u) = 1

2(θi + u3,i + Σj b
j
iuj).

(7)

The notation above uses the first fundamental form aij = ai·aj or aij = ai·aj, the second
fundamental form bij = ai,j ·a3 = −ai ·a3,j or bji = Σk bika

kj, the third fundamental form
cij = Σl b

l
iblj = Σkl bika

klblj and the covariant derivative ui|j = ui,j − Σk Γkijuk with the
Christoffel symbols Γkij = ai,j ·ak = Σl a

kl(ail,j + ajl,i− aij,l)/2. Indices take the values 1
and 2 whenever a (multi-)sum Σ without an index range appears. The membrane and
bending material tensors Cm and Cb are obtained by integrating the material tensor C
and τ 2C, respectively, over the thickness of the shell. If the material is constant over
the thickness this leads to Cm = dC,Cb = d3

12C. For a complete derivation of the above
formulas we again refer to [5].

The action of the second order tensor εs(u) = Σi ε
s
i(u)(aia3 + a3a

i) with the fourth
order material tensor Cm may be expressed by a replacement first order tensor 2es(u) =
Σi ε

s
i(u)ai with an appropriately chosen reduced second order shear tensor Cs which

reads
as(u, ũ) =

∫
ω e

s(u)·Cs ·es(ũ) dS. (8)
The shell midsurface can be given as a non-uniform rational B-spline (NURBS) surface
for practical applications like outlined in [6] and [18].

3.1.2 Coordinate free Naghdi shell formulation

The traditional Naghdi shell formulation of the previous section uses the covariant co-
ordinates as unknowns. The shell formulation itself can also be written in a coordinate
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3 Shell theory

3.1 The Naghdi shell

We consider a shell, a thin-walled, possibly curved structure in 3D. The shell domain is
defined by the midsurface y and the thickness d (significantly smaller than the midsurface
dimensions) via

{x(η1, η2, τ) = y(η1, η2) + τa3(η1, η2) : (η1, η2) ∈ ω ⊂ R2, τ ∈ [−d
2 ,

d
2 ]}

with the tangential vectors a1,a2 and the unit normal vector a3 of the midsurface given
by

ai = y,i = ∂y

∂ηi
, i = 1, 2 , a3 = a1×a2

‖a1×a2‖ .

These vectors are called covariant basis and form a biorthogonal system with the con-
travariant basis a1,a2 and a3 = a3. We abbreviate the parameter derivative ∂•/∂ηi of
any object • with an index •,i throughout this section.

The solution of a shell deformation problem with 3D-FEM is not suitable due to the
small thickness (either elements with bad aspect ratios occur or an extreme amount
of elements is required). Therefore, special shell models are needed. One popular ex-
ample is the Naghdi shell model, see for example [5, section 4.2.2] and the references
therein. It employs the Mindlin–Reissner hypotheses (normal lines remain straight after
deformation, no change of thickness, plane state of stress) with the deformation ansatz

u3D := u(η1, η2) + τθ(η1, η2) with u = u1a
1 + u2a

2 + u3a3, θ = θ1a
1 + θ2a

2

in covariant coordinates with the midsurface translation u and the rotation θ.

3.1.1 Naghdi shell in covariant coordinates

We collect the five unknown covariant coordinates in a vector

u = [u1, u2, u3, θ1, θ2]T.

The weak formulation of the shell problem reads

a(u, ũ) = f(ũ) ∀ ũ

with test functions ũ from an appropriate space, the bilinear form a(·, ·) accounting for
the inner virtual work of the elastic deformation and the linear functional f(·) accounting
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thick plate thin plate
#El wmax #it wmax #it

4 1.63E-2 3 1.45E-2 3
16 1.55E-2 17 1.38E-2 9
64 1.56E-2 103 1.38E-2 28

256 1.57E-2 374 1.38E-2 48
1024 1.57E-2 706 1.38E-2 59
4096 1.57E-2 1383 1.38E-2 100

16384 1.57E-2 2829 1.38E-2 139

Table 6: Results for the hierarchic Endo–Kimura plate formulation with C1 BFS ele-
ments for w and ws

2.8 The Endo–Kimura plate in hierarchic formulation (EKh)

Endo and Kimura also suggested that their ansatz θ = ∇wb, γ = ws can be combined
with the hierarchic ansatz of eliminating θ instead of γ from the three variable formula-
tion (2)–(5). This yields

u3D =



u1 − x3(w,1 − ws,1)
u2 − x3(w,2 − ws,2)

w


 ,

a(u, ũ) =
∫

ω
ε(∇w −∇ws) : Cb : ε(∇w̃ −∇w̃s) dω +

∫

ω
(∇ws) · Cs · (∇w̃s) dω,

l(ũ) =
∫

ω
p w̃ dω.

The numerical results in Table 6 show good h-convergence to the same solution like the
standard Endo–Kimura formulation. Iteration numbers are good for the thick plate but
very high for the thin plate. This is exactly the other way around than with standard
Endo–Kimura in the previous section. It appears that the difficulty of the problem has
shifted from the thick to the thin plate, or from the shear to the bending term.

2.9 First new formulation: Endo–Kimura plate decoupled (EKd)

Another kind of elimination which was not present in [9] is possible. With the ansatz of
Endo and Kimura one can also eliminate ∇w = ∇wb +∇ws and w = wb + ws from the

9



thick plate thin plate
#El wmax #it wmax #it

4 1.69E-2 2 1.45E-2 2
16 1.58E-2 10 1.38E-2 9
64 1.58E-2 22 1.38E-2 22

256 1.57E-2 26 1.38E-2 35
1024 1.57E-2 24 1.38E-2 29
4096 1.57E-2 21 1.38E-2 29

16384 1.57E-2 20 1.38E-2 33

Table 7: Results for the decoupled Endo–Kimura plate formulation with C1 BFS ele-
ments for wb and C0 bilinear elements for ws

equations. Only the variables wb and ws remain and one arrives at

u3D =



u1 − x3wb,1
u2 − x3wb,2

w


 ,

a(u, ũ) =
∫

ω
ε(∇wb) : Cb : ε(∇w̃b) dω +

∫

ω
(∇ws) · Cs · (∇w̃s) dω,

l(ũ) =
∫

ω
p (w̃b + w̃s) dω.

This formulation has completely decoupled bending and shear terms. The bending
deflection wb is the same as in the Kirchhoff theory and an additional shear deflection ws
may be calculated separately and added for a total deflection w = wb+ws afterwards. We
solve, however, the complete system. An analogous decoupled formulation is not directly
obtainable from the standard Mindlin–Reissner formulation. A conforming discretisation
can be achieved with C1 elements for wb and C0 elements for ws.

The numerical results in Table 7 show good h-convergence to the same solution like the
standard Endo–Kimura formulation. Iteration numbers are very good for both the thick
and the thin plate.

The decoupling has eliminated the convergence problems of the other two Endo–Kimura
formulations. We have obtained a formulation which is suitable for both thick and thin
plates and is numerically efficient in both cases. The only drawback is that we do not
get the solution of the Mindlin–Reissner plate but of a slightly stiffer problem.

2.10 Second new formulation: hierarchic Mindlin–Reissner based on
Endo–Kimura (MREK)

We propose to extend the formulation of the previous section with an additional term
to relax the gradient condition again. In this way we arrive at a Mindlin–Reissner
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Figure 4: Development of squared relative error estimator for triangle elements
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Figure 3: Development of squared relative error estimator for square elements
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thick plate thin plate
#El wmax #it wmax #it

4 1.69E-2 2 1.45E-2 2
16 1.60E-2 9 1.38E-2 10
64 1.60E-2 26 1.38E-2 25

256 1.60E-2 46 1.38E-2 50
1024 1.60E-2 60 1.38E-2 68
4096 1.60E-2 100 1.38E-2 100

16384 1.60E-2 130 1.38E-2 132

Table 8: Results for the Endo–Kimura based Mindlin–Reissner plate formulation with
C1 BFS elements for wb and C0 bilinear elements for ws and ρ

formulation which can be viewed as hierarchically based on the decoupled Endo–Kimura
formulation. The ansatz

w = wb + ws, ∇w = θ + γ, θ = ∇wb − ρ, γ = ∇ws + ρ

and elimination of w yields

u3D =



u1 − x3(wb,1 − ρ1)
u2 − x3(wb,2 − ρ2)

w


 ,

a(u, ũ) =
∫

ω
ε(∇wb − ρ) : Cb : ε(∇w̃b − ρ̃) dω +

∫

ω
(∇ws + ρ) · Cs · (∇w̃s + ρ̃) dω,

l(ũ) =
∫

ω
p (w̃b + w̃s) dω.

A conforming discretisation can be achieved with C1 elements for wb and C0 elements
for ρ1, ρ2 and ws.

The numerical results in Table 8 show good h-convergence to the same solution like for
the Mindlin–Reissner model. Iteration numbers are not as good as for the decoupled
Endo–Kimura formulation but still good. They are comparable for the thick and thin
plate and grow slowly with the number of elements. In comparison with the hierarchic
Mindlin–Reissner formulation from 2.5, the iteration numbers for the thin plate are
slightly bigger and those of the thick plate are somewhat higher at lower element numbers
but are growing slower and thus they are lower than those of the hierarchic Mindlin–
Reissner formulation at higher element numbers.

2.11 Comparison of numerical results

The numerical example from section 2.1 is explored in more detail in this section. We
consider the error estimator of [4] for MITC elements and neglect the terms which are
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formulation C0 unkn. C1 unkn. dofs/node (rectangle) dofs/node (triangle)
MRs 3 0 3 3
MRh 2 1 6 5
ORB 0 3 12 9
EKs 0 2 8 6
EKh 0 2 8 6
EKd 1 1 5 4
MREK 3 1 7 6

Table 9: Continuous and discretised unknowns of the plate formulations

zero for our standard elements. The error contribution of an element T then reads

η2
T = h2

T

(
‖ div(Cb :ε(θh)) + Cs ·γh‖L2(T ) + (d2 + h2

T )‖p+ div(Cs ·γh)‖L2(T )
)

+ 1
2

∑

E∈E(T )
hE

(
‖[Cb :ε(θh)]E ·nE‖L2(E) + (d2 + h2

E)‖[Cs ·γh]E ·nE‖L2(E)
)

for a finite element solution θh and γh (adapted to the actual used theory for each of
the Mindlin–Reissner and Endo–Kimura plate formulations). The formula involves the
element diameter hT , the set of edges E(T ) of the element T , the edge length hE, the
jump [•]E of a quantity over the edge E and a fixed unit normal nE of edge E.

Computations were done with our TU Chemnitz adaptive FEM software SPC written
in Fortran, see [12]. The software features adaptive FEM but uniform refinement was
employed for this tests for good comparability. The plate module of SPC features rect-
angular and triangular elements. The coarse mesh for our example with rectangular
elements is one unit square; the coarse mesh for triangular elements is the unit square
divided by one of its diagonals. Square element use Bogner–Fox–Schmit (BFS) quad-
rangles for C1 parts and Lagrange elements for C0 parts of the different formulations as
detailed in the sections above. Triangular elements use reduced Hsieh–Clough–Tocher
(rHCT) elements for C1 parts and Lagrange elements for C0 parts of the different for-
mulations as detailed in the sections above. BFS elements feature 4 degrees of freedom
(dofs) per node and unknown in the ansatz, rHCT elements 3 dofs per node and un-
known. This leads to unknowns per node as given in Table 9.

Figure 3 collects the development of the error estimator for the thick and thin plates in
case of square elements. The first row shows its reduction over the number of elements.
All formulations show h-convergence with best results for MREK and EKd for the thick
plate and MREK for the thin plate.

The second row shows the error reduction over the total number of unknowns. The
unknowns are approximately linked to the element numbers by a fixed factor because of
the uniform refinement. Thus, the graphs do look quite similar for both the thick and
the thin plate compared to those of the first row.
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The third row shows the error reduction over the total time summed over all refinements.
These two are the most important graphs because only they factor in the iteration
numbers via the computation time. EKd is best closely followed by MREK and they are
clearly more efficient than the other formulations for the thick plate. For the thin plate
this changes to MREK as the most efficient formulation followed by EKd and than the
other formulations.

The results for triangular elements are collected in Figure 4. The performance differences
are less pronounced in this case than in the square elements case. EKd is the most
efficient formulation for both the thick and the thin plate. MREK, EKh and MRh are
also performing quite well in both cases. EKs is very good for thick plates but rather
inefficient for the thin plate.

In summary, MREK is the most efficient Mindlin–Reissner formulation and EKd the
most efficient Endo–Kimura formulation for thick and thin as well as square and tri-
angular elements. We conclude that both our new formulations are the formulations
of choice for flexibly usable thick and thin Mindlin–Reissner or Endo–Kimura plate ele-
ments. The MRh formulation comes close in performance to MREK in case of triangular
elements but is clearly outperformed by MREK in case of square elements.
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