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René Schneider
Gerd Wachsmuth
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz, Germany

http://www.tu-chemnitz.de/mathematik/

A-posteriori error estimation for optimal control problems R. Schneider, G. Wachsmuth

P1 P2

101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

Energy-error est.
L2(∂Ω)-error est.

N−0.75

N−1.00

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

Energy-error est.
L2(∂Ω)-error est.

N−1.00

N−1.50

Figure 4.3: Total error (4.2) for the discretization of (4.1) with P1 (left) and P2 (right) elements for
adaptive refinement based on the error estimator from Theorem 4.2 (red squares) and the
energy-based error estimator (4.12) (blue triangles), respectively. The error is plotted versus
the degrees of freedom N (per variable yh, uh, ph). Slopes N−p are provided for comparison.

in the variational inequality and the error estimator becomes

1

α
‖ρh − S? (zd − zh)‖2U + ‖S uh − zh‖2Z .

Here, uh is the post-processed control in case of post-processing.

The extension to nonlinear optimal control problems may be the subject of further research.
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P1, new estimator P1, energy estimator

Figure 4.2: Meshes obtained by an adaptive refinement for the solution of (4.1) with P1 (top row) and P2

elements (bottom row). For the left column, we used the error estimator from Theorem 4.2
and an energy-based error estimator (4.12) for the right column.
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We derive a-posteriori error estimates for control-constrained, linear-quadratic optimal
control problems. The error is measured in a norm which is motivated by the objective. The
error estimator is separated into three contributions: the error in the variational inequality
(i.e., in the optimality condition for the control) and the errors in the state and adjoint
equation. Hence, one can use well-established estimators for the differential equations.
We show that the error estimator is reliable and efficient. We apply the error estimator
to two distributed optimal control problems with distributed and boundary observation,
respectively. Numerical examples exhibit a good error reduction if we use the local error
contributions for an adaptive mesh refinement.

1 Introduction

We consider the a-posteriori error analysis of a control-constrained, linear-quadratic optimal control
problem. To present the ideas, we use the problem

Minimize
1

2
‖y − yd‖2L2(∂Ω) +

α

2
‖u‖2L2(Ω)

such that −∆y + y = u in Ω

∂

∂n
y = 0 on ∂Ω

and ua ≤ u ≤ ub

(1.1)

as an example, where u and y denote the unknown control and state respectively, yd the given desired
state, Ω the given PDE domain and ∂Ω its boundary. Note that the state y is only observed on the
boundary ∂Ω. This example and the assumptions on the data are discussed in more detail in Section 4.
We emphasize that our technique is applicable to a general class of optimal control problems, see
Section 2.

Our goal is as follows. Let (ȳ, ū, p̄) be the unique solution of the optimality system, see (2.3), where p̄ is
the (optimal) adjoint state. Given an approximate solution (yh, uh, ph), we are interested in estimating

∗TU Chemnitz, Faculty of Mathematics, Research Group Numerical Mathematics (Numerical Analysis)
†TU Chemnitz, Faculty of Mathematics, Research Group Numerical Mathematics (Partial Differential Equations)
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the error in the control variable, that is, ‖ū−uh‖L2(Ω). It is, however, not clear how to bound this error
by a reliable and efficient a-posteriori estimator. Instead, we estimate a combination of all quantities
involved in the optimality system, that is, a (weighted) sum of ‖ȳ − yh‖L2(∂Ω), ‖ū − uh‖L2(Ω), ‖p̄ −
ph‖L2(Ω). Note that the error in the state is measured in L2(∂Ω), whereas the error in the control
and in the adjoint state is measured in L2(Ω). The former norm is the norm of the observation in the
objective, whereas the latter one is the norm of the regularization term acting on the control.
The error estimator is separated into three contributions, which are related to the residuals in the three
equations of the optimality system (2.3). That is, one term measures the defect in the variational
inequality and two terms estimate the error in the state and adjoint equation. For the above example
(1.1), these latter terms are

‖A−1 uh − yh‖L2(∂Ω) and ‖A−? (yd − yh)− ph‖L2(Ω), (1.2)

where A = (−∆+1) : H1(Ω)→ (H1(Ω))′ is the partial differential operator. Note that these two errors
are estimated in the same norms in which the errors in y and p are measured, respectively. Moreover,
these two error terms can now be replaced by standard error estimates. In our numerical examples, we
use residual-based error estimators.
A similar approach is used in Kohls et al. [2012, 2014]. In difference to our work, the error in the state
and adjoint state is measured and estimated in the energy space corresponding to the state equation.
That is, in the case of problem (1.1), the errors are measured as ‖ȳ− yh‖H1(Ω), ‖p̄− ph‖H1(Ω), and the
error estimate involves the terms

‖A−1 uh − yh‖H1(Ω) and ‖A−? (yd − yh)− ph‖H1(Ω).

Other contributions concerning a-posteriori error analysis for control-constrained optimal control prob-
lems are, e.g., Liu and Yan [2001], Hintermüller et al. [2008], Yan and Zhou [2008], see also the references
therein. In these papers, however, the error in the state and adjoint state is typically measured in the
energy space and only specific optimal control problems are studied. We also mention the contributions
Becker et al. [2007], Vexler and Wollner [2008], in which the authors estimate the error in the objective
or in a quantity of interest using the dual-weighted-residual method.
As we will demonstrate, we can get substantially better results for ‖ū − uh‖L2(Ω) using the norms in
(1.2) instead of the energy norms.
The paper is organized as follows. In Section 2, we introduce an abstract control problem and derive the
a-posteriori error estimates, see in particular Theorem 2.4 and Theorem 2.6. In Section 3 and Section 4
this theory is applied to two example problems similar to (1.1). Finally, we conclude and give some
perspectives in Section 5.

2 Abstract linear-quadratic control problem

In this section, we discuss an abstract linear-quadratic control problem with pointwise control con-
straints. First, we recall some preliminary, well-known results concerning existence and optimality
conditions. In Section 2.2, we construct the a-posteriori error estimator.

2.1 Preliminaries: existence and optimality conditions

The abstract optimal control problem which is discussed in this section is given by

Minimize
1

2
‖C y − zd‖2Z +

α

2
‖u‖2L2(Ωu)

with respect to (y, u) ∈ Y × L2(Ωu),

such that Ay −B u = 0

and ua ≤ u ≤ ub a.e. in Ωu.

(2.1)

2
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Figure 4.1: Solution of (4.1) computed on a fine mesh

As in (4.11), (3.18b) depends on the adjoint Neumann data g = yd − yh via the definition of the jump
term (3.11).

Some of the obtained meshes are shown in Figure 4.2. As in the case of distributed observation, all
four meshes result in approximately 10,000 degrees of freedom (per variable). Again, the tailored error
estimator from Theorem 4.2 is more focused on refining the interface, whereas using the energy-based
error estimator results in a fine mesh in the vertices of Ω. The energy-based estimator does not result
in a refinement of the interface in the case of P1 elements. A slight refinement of the interface in case
of P2 elements is observed for higher numbers of degrees of freedom (starting at roughly 50,000 degrees
of freedom).

Finally, the total error (2.12) for both strategies is shown in Figure 4.3. The error is computed w.r.t. a
solution on a fine grid with approximately 1,600,000 degrees of freedom. Again, a better rate is obtained
by employing the error estimator from Theorem 4.2 and the same behaviour is observed if we only plot
the error ‖uh − ū‖L2(Ω). For our new estimator, the three errors

‖ȳ − yh‖L2(∂Ω), ‖ū− uh‖L2(Ω), ‖p̄− ph‖L2(Ω)

converge with the same order, whereas for the energy estimator the state and adjoint converges faster
in these norms.

5 Conclusion and outlook

In this paper, we have derived a new abstract error estimator for optimal control problems. This abstract
estimator was applied to formulate residual-based estimators for the finite element discretization of two
optimal control problems. The novelty of the approach is that we measure the error in spaces which are
motivated by the objective. Numerical examples confirm that our approach is superior to an energy-
norm based approach if we use the error estimators for an adaptive refinement of the mesh.

Due to the abstract theory of Section 2, it is straightforward to extend the idea of our error estimator to
other linear-quadratic problems, e.g., to Neumann boundary control problems, provided suitable error
estimators for the PDE discretization with respect to the considered norms/spaces are available.

We mention that it is also possible to apply our error-estimate for post-processed controls, see Meyer
and Rösch [2004], or for the variational discretization, see Hinze [2005]. In these cases, no error occurs
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We note that this expression can be simplified, since the middle terms are a weighted geometric mean
of the first and last term:

d1−2m
K h2m−2

K =

((
h3
K

) 2 (m−k)
1−2m ·

(
d1−2 k
K h2 k+2

K

)1
) 1−2m

1−2 k

.

Hence, we have

min{h3
K , d

−1
K h4

K , d
−3
K h6

K , . . . , d
1−2 k
K h2 k+2

K } = min{h3
K , d

1−2 k
K h2 k+2

K }.

4.2 Error estimator for the optimal control problem

In this section, we state the a-posteriori error estimator for the control problem (4.1).

Theorem 4.2. Let (yh, uh, ph) ∈ (Pk)3 be given, such that the discretized state and adjoint equation
are satisfied. We define the local error contribution

η2
K := η2

K,state +
1

α
η2
K,adjoint + αη2

K,VI,

where ηK,VI is given in (3.16) and ηK,state is defined in (4.10). The contribution from the adjoint
equation is

η2
K,adjoint := h4

K ‖∆ph − ph‖2L2(K) +
∑

E∈E(K)

h3
K

∥∥J∇phKn
∥∥2

L2(E)
, (4.11)

where the adjoint Neumann data g = yd − yh enters in the definition of the jump term (3.11). Then,
we have the error estimate

‖yh − ȳ‖2L2(∂Ω) + α ‖uh − ū‖2L2(Ω) +
1

α
‖ph − p̄‖2L2(Ω) ≤ c

∑

K∈T
η2
K .

Proof. The contribution for the adjoint state ηK,adjoint follows from Theorem 3.2. The overall error
estimate follows from Theorem 2.4 and Theorem 4.1.

The efficiency of the error estimator is an open problem. It would follow from the efficiency of the
L2(∂Ω)-error estimator (4.10), which is, however, unknown. This should be addressed in future work.

4.3 Numerical results

We report some numerical results on the solution of (4.1). The data of the problem is as in (3.17),
except for ub = 7.5. The discrete solution is obtained as in (3.6), but the mass matrix in (3.6b) has to
be replaced by a boundary mass matrix. The solution on a fine mesh is depicted in Figure 4.1.
In the following we will compare the results obtained by the error estimator from Theorem 4.2 with
the results obtained by applying an energy-based error estimator. The energy-based error estimator is
obtained as described in Section 3.5, i.e.,

η2
K,state,energy := h2

K ‖uh + ∆yh − yh‖2L2(K) +
∑

E∈E(K)

h1
K

∥∥J∇yhKn
∥∥2

L2(E)
, (4.12a)

η2
K,adjoint,energy := h2

K ‖∆ph − ph‖2L2(K) +
∑

E∈E(K)

h1
K

∥∥J∇phKn
∥∥2

L2(E)
, (4.12b)

η2
K,energy := η2

K,state,energy +
1

α
η2
K,adjoint,energy + αη2

K,VI. (4.12c)
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Here, Y is a reflexive Banach space, Z is a Hilbert space, and Ωu is a finite measure space. In the sequel,
we abbreviate U = L2(Ωu). The linear operator A : Y → Y ′ is an isomorphism and B : L2(Ωu)→ Y ′,
C : Y → Z are bounded linear operators. The desired observation is zd ∈ Z. The control bounds ua, ub
belong to L2(Ωu) and satisfy ua ≤ ub. We set

Uad := {u ∈ L2(Ωu) : ua ≤ u ≤ ub}.
The regularization parameter α is assumed to be positive.
In the abstract problem (2.1), the operator A models the linear (partial) differential operator, B is the
control operator and C the observation operator.
As examples for the measure space Ωu, we mention (a subset of) Ω in case of distributed control or (a
subset of) the boundary ∂Ω in case of boundary control, where Ω ⊂ Rd is the domain of the partial
differential equation (PDE). Also the case of a finite-dimensional control space U = Rn is possible if we
take a finite set Ωu = {1, . . . , n} equipped with the counting measure.
Let us define the control-to-observation operator S = C A−1B ∈ L(U,Z), which is well defined since A
is an isomorphism. We obtain the reduced problem

Minimize
1

2
‖S u− zd‖2Z +

α

2
‖u‖2U ,

with respect to u ∈ U
such that ua ≤ u ≤ ub a.e. in Ωu,

(2.2)

which is equivalent to (2.1). Indeed, ū is a solution of (2.2) if and only if (A−1B ū, ū) is a solution of
(2.1).
Let us give some well-known results concerning the problems (2.1) and (2.2). The proofs are standard
and, hence, omitted. We refer to Tröltzsch [2009] for an introduction.

Lemma 2.1. There exists a unique solution (ȳ, ū) ∈ Y × U of (2.1).

In what follows, we will identify the Hilbert spaces U and Z with their duals. Using the adjoint operators

B? : Y → U, A? : Y → Y ′, C? : Z → Y ′,

we can write down the optimality conditions of first order of (2.1).

Lemma 2.2. Let (ȳ, ū) ∈ Y × U be the unique solution of (2.1). Then, there exists a unique adjoint
state p̄ ∈ Y , such that the system

ȳ = A−1Bū (2.3a)

p̄ = A−? C? (zd − C ȳ) (2.3b)
(α ū−B? p̄, u− ū)U ≥ 0 for all u ∈ Uad (2.3c)

is satisfied.

Due to the convexity of problem (2.1) these conditions are also sufficient for optimality. It is well-known,
that the variational inequality (2.3c) is equivalent to the pointwise projection formula

ū(x) = Proj[ua(x),ub(x)]

B? p̄(x)

α
for almost all x ∈ Ωu, (2.4)

see, e.g., [Tröltzsch, 2009, Lemma 2.26]. Here, Proj[a,b] c is the projection of c ∈ R onto the interval
[a, b] ⊂ R.
By using the adjoint S? : Z → U of the control-to-observation operator, we can write down the
optimality conditions of first order of (2.2) in a slightly different form, which will be more convenient
for the error analysis later in Section 2.2.
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Lemma 2.3. Let ū ∈ U be the unique solution of (2.2). Then, there exist unique z̄ ∈ Z and ρ̄ ∈ U ,
such that the system

z̄ = S ū (2.5a)
ρ̄ = S? (z̄ − zd) (2.5b)

(α ū− ρ̄, u− ū)U ≥ 0 for all u ∈ Uad (2.5c)

is satisfied.

The quantity z̄ ∈ Z is the optimal observation and ρ̄ ∈ U is the required information on the optimal
adjoint state for the variational inequality (2.3c), ρ̄ = B? p̄. In the literature on optimal control of
ordinary differential equations, this ρ̄ is usually called switching function.

2.2 Error estimator

In this section, we want to give a (computable) error estimate which measures the distance of any triple
(zh, uh, ρh) ∈ Z × U × U to the unique solution (z̄, ū, ρ̄) of the optimality system given in (2.5). Later
in Section 3 and Section 4, this triple (zh, uh, ρh) will result from a finite element discretization.

To this end, we fix an arbitrary tuple (ũh, ρ̃h) ∈ Uad × U , such that the variational inequality

(α ũh − ρ̃h, u− ũh)U ≥ 0 for all u ∈ Uad (2.6)

is satisfied. By using u = ũh in (2.3c) and u = ū in (2.6), we obtain

α ‖ũh − ū‖2U ≤ (ρ̄, ū− ũh)U + (−ρ̃h, ū− ũh)U . (2.7)

On the other hand, using the cosine theorem in the Hilbert space Z, we get

1

2
‖S ũh − z̄‖2Z +

1

2
‖zh − z̄‖2Z =

1

2
‖S ũh − zh‖2Z + (zh − z̄, S ũh − z̄)Z

=
1

2
‖S ũh − zh‖2Z +

(
S? (zh − zd) + ρ̄, ũh − ū

)
U
.

Together with (2.7), this leads to

1

2
‖S ũh − z̄‖2Z +

1

2
‖zh − z̄‖2Z + α ‖ũh − ū‖2U ≤

(
ρ̃h − S? (zd − zh), ũh − ū

)
U

+
1

2
‖S ũh − zh‖2Z .

An application of Young’s inequality implies

1

2
‖S ũh − z̄‖2Z +

1

2
‖zh − z̄‖2Z +

α

2
‖ũh − ū‖2U ≤

1

2α
‖ρ̃h − S? (zd − zh)‖2U +

1

2
‖S ũh − zh‖2Z .

Together with the estimate

‖uh − ū‖2U ≤ 2 ‖ũh − uh‖2U + 2 ‖ũh − ū‖2U
we arrive at

1

2
‖S ũh− z̄‖2Z +

1

2
‖zh− z̄‖2Z +

α

4
‖uh− ū‖2U ≤

1

2α
‖ρ̃h−S? (zd−zh)‖2U +

1

2
‖S ũh−zh‖2Z +

α

2
‖ũh−uh‖2U .

(2.8)
In this estimate, only the known quantities zh, uh, ρh and the (still) arbitrary ũh appear on the right-
hand side. Now, we introduce the abbreviation

L :=
‖S‖2L(U,Z)

α
=
‖S?‖2L(Z,U)

α
. (2.9)

4
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For simplicity of the demonstration, we now consider the case k = 2, i.e. the case of piecewise quadratic
finite elements. Let K ∈ T be a triangle and define the distance to the boundary

dK := dist(K, ∂Ω) := min
x∈K

dist(x, ∂Ω).

In case dK = 0, the triangle lies at the boundary and we cannot make use of the additional regularity
from (4.8). From Lemma 3.1, we obtain the estimates

‖ϕ− I ϕ‖L2(K) ≤ c h3/2
K ‖ϕ‖H3/2(K) and ‖ϕ− I ϕ‖L2(E) ≤ c hK ‖ϕ‖H3/2(K),

where E is an edge of K.
If, however, dK > 0, we can use r ≥ dK on K to obtain

‖∇2ϕ‖L2(K) ≤ d−1/2
K ‖r1/2∇2ϕ‖L2(K) and ‖∇3ϕ‖L2(K) ≤ d−3/2

K ‖r3/2∇2ϕ‖L2(K).

This yields ϕ ∈ H3(K) and we can apply Lemma 3.1 with m = 3/2, m = 2 and m = 3. Hence,

‖ϕ− I ϕ‖L2(K) + h
1/2
K ‖ϕ− I ϕ‖L2(E)

≤ c min{h3/2
K ‖ϕ‖H3/2(K), d

−1/2
K h2

K ‖r1/2∇2ϕ‖L2(K), d
−3/2
K h3

K ‖r3/2∇3ϕ‖L2(K)}
≤ c min{h3/2

K , d
−1/2
K h2

K , d
−3/2
K h3

K}
·max{‖ϕ‖H3/2(K), ‖r1/2∇2ϕ‖L2(K), ‖r3/2∇3ϕ‖L2(K)}.

Using that estimate in (4.6) and utilizing (4.7), (4.8), we finally obtain the following theorem.

Theorem 4.1. We assume k = 2. Let ỹh ∈ H1(Ω) and yh ∈ P2 satisfy (4.3) and (4.4), respectively.
Then,

‖ỹh − yh‖2L2(∂Ω) ≤ c
∑

K∈T
η2
K,state, (4.9)

where the local error contribution ηK,state is given by

η2
K,state = min{h3

K , d
−1
K h4

K , d
−3
K h6

K}
·
{∥∥uh + ∆yh − yh

∥∥2

L2(K)
+
∑

E∈E(K)

h−1
K

∥∥J∇yhKn
∥∥2

L2(E)

}
. (4.10)

Here, we used the convention that

min{h3
K , d

−1
K h4

K , d
−3
K h6

K} = h3
K

in case dK = 0.

As in Theorem 3.2, the constant c in (4.9) does not depend on the triangulation T , but only on its
chunkiness γT , compare Lemma 3.1.
We briefly mention, how this a-posteriori estimate can be generalized to other values of the polynomial
degree k. In case k = 1, we cannot use m = 3 in Lemma 3.1. Hence, the expression involving min in
the local error contribution (4.10) has to be replaced by

min{h3
K , d

−1
K h4

K}.

If we use a higher value of k, one has, similar to (4.8), also estimates for higher derivatives of ϕ.
Thus, one can apply Lemma 3.1 with m = 3/2 and m = 2, . . . , k + 1. Finally, one can replace the
min-expression in (4.10) by

min{h3
K , d

−1
K h4

K , d
−3
K h6

K , . . . , d
1−2 k
K h2 k+2

K }.
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The main difference to Section 3 is, that the error in the state is measured in the L2-norm on the
boundary ∂Ω and not in the L2-norm in the domain Ω. Thus, we have to construct an a-posteriori error
estimator for estimating the difference between yh and the (continuous) solution of the state equation
with right-hand side uh in the L2(∂Ω)-norm. To our knowledge, such an estimator is not available in
the literature. This will be addressed in the next section. The error estimator for the control problem
(4.1) is described in Section 4.2 and numerical results are presented in Section 4.3.

4.1 A-posteriori error estimator on the boundary

As already mentioned, we have to construct an a-posteriori error estimator for the error

‖A−1 uh − yh‖L2(∂Ω).

This is due to the fact that the observation operator C : H1
0 (Ω) → L2(∂Ω) is the trace operator and,

hence, the error estimate (2.11) contains

‖S uh − zh‖L2(∂Ω) = ‖A−1 uh − yh‖L2(∂Ω).

The function A−1 uh is the solution ỹh ∈ H1(Ω) of the PDE

〈A ỹh, v〉 =

∫

Ω

uh v dx for all v ∈ H1(Ω). (4.3)

Moreover, we require that yh ∈ Pk satisfies the discretized state equation, that is

〈Ayh, vh〉 =

∫

Ω

uh vh dx for all vh ∈ Pk. (4.4)

Similar as in Section 3.2, we introduce the dual solution ϕ ∈ H1(Ω) solving

〈Aϕ, v〉 =

∫

∂Ω

(ỹh − yh) v dx for all v ∈ H1(Ω). (4.5)

and obtain
‖ỹh − yh‖2L2(∂Ω) ≤

∑

K∈T
‖uh + ∆yh − yh‖L2(K) ‖ϕ− ϕh‖L2(K)

+
∑

E∈E(T )

∥∥J∇yhKn
∥∥
L2(E)

‖ϕ− ϕh‖L2(E)

(4.6)

for arbitrary ϕh ∈ Pk.
In difference to the situation of Section 3.2, we cannot bound the H2(Ω)-norm of the dual solution ϕ
by the error ‖ỹh − yh‖L2(∂Ω), since this error is the Neumann datum of ϕ, see (4.5).

However, from Jerison and Kenig [1981] we now that

‖ϕ‖H3/2(Ω) ≤ c ‖ỹh − yh‖L2(∂Ω). (4.7)

The same result can be obtained by using an interpolation between s > 1/2 and s < 1/2 in [Dauge,
1988, Corollary 23.5]. Moreover, using [Khoromskij and Melenk, 2003, Theorem A.1], we find

‖r1/2∇2ϕ‖L2(Ω) ≤ c ‖ỹh − yh‖L2(∂Ω) and ‖r3/2∇3ϕ‖L2(Ω) ≤ c ‖ỹh − yh‖L2(∂Ω) (4.8)

where r(x) = dist(x, ∂Ω) is the distance to the boundary. Estimate (4.8) enables us to control higher
derivatives of ϕ in the interior of our domain. Similar estimates are available for arbitrary high deriva-
tives.
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The estimates
1

2α
‖ρ̃h − S? (zd − zh)‖2U ≤

1

α
‖ρ̃h − ρh‖2U +

1

α
‖ρh − S? (zd − zh)‖2U ,

1

2
‖S ũh − zh‖2Z ≤ ‖S ũh − S uh‖2Z + ‖S uh − zh‖2Z ≤ αL ‖ũh − uh‖2U + ‖S uh − zh‖2Z ,

together with (2.8) imply

1

2
‖zh − z̄‖2Z +

α

4
‖uh − ū‖2U

≤ 1

α
‖ρ̃h − ρh‖2U +

1

α
‖ρh − S? (zd − zh)‖2U + α (2−1 + L) ‖ũh − uh‖2U + ‖S uh − zh‖2Z .

Using additionally

1

4
‖ρh − ρ̄‖2U ≤

1

2
‖ρh − S? (zh − zd)‖2U +

1

2
‖S? (zh − z̄)‖2U

≤ 1

2
‖ρh − S? (zh − zd)‖2U +

Lα

2
‖zh − z̄‖2Z ,

we arrive at
1

2
‖zh − z̄‖2Z +

α

4
‖uh − ū‖2U +

1

4α
‖ρh − ρ̄‖2U

≤ 1 + L

α
‖ρ̃h − ρh‖2U +

1 1
2 + L

α
‖ρh − S? (zd − zh)‖2U

+ α
(1

2
+ L

)
(1 + L) ‖ũh − uh‖2U + (1 + L) ‖S uh − zh‖2Z .

(2.10)

This motivates the definition of our error estimator

est(zh, uh, ρh, ũh, ρ̃h)2 :=
1

α
‖ρ̃h−ρh‖2U +

1

α
‖ρh−S? (zd−zh)‖2U +α ‖ũh−uh‖2U +‖S uh−zh‖2Z (2.11)

for the error
err(zh, uh, ρh)2 := ‖zh − z̄‖2Z + α ‖uh − ū‖2U +

1

α
‖ρh − ρ̄‖2U . (2.12)

In the computations leading to (2.10), we have proven the following theorem.

Theorem 2.4. Let (zh, uh, ρh) ∈ Z × U × U be arbitrary and let (ũh, ρ̃h) ∈ Uad × U satisfy the
variational inequality (2.6). Then, the error estimate

err(zh, uh, ρh)2 ≤ (6 + 6L+ 4L2) est(zh, uh, ρh, ũh, ρ̃h)2

holds. The constant L was defined in (2.9).

This shows the reliability of our error estimator.
In what follows, we will also show that the error estimator given in (2.11) is efficient. It is evident, that
the efficiency of the error estimator heavily relies on the choice of (ũh, ρ̃h). Up to now, this choice was
arbitrary up to (2.6). We will now fix (ũh, ρ̃h) in the following assumption.

Assumption 2.5. Let ε ≥ 0 be given. The pair (ũh, ρ̃h) ∈ Uad × U satisfies the variational inequality
(2.6) and

1

α
‖ρ̃h − ρh‖2U + α ‖ũh − uh‖2U ≤

1 + ε

α
‖ρ̂h − ρh‖2U + α (1 + ε) ‖ûh − uh‖2U

for all solutions (ûh, ρ̂h) ∈ Uad × U of the variational inequality

(α ûh − ρ̂h, u− ûh) ≥ 0 for all u ∈ Uad. (2.13)

5
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The existence and computability of a pair (ũh, ρ̃h) which satisfies this assumption will be shown later,
see Lemma 2.7.
By using Assumption 2.5 we infer

1

α
‖ρ̃h − ρh‖2U + α ‖ũh − uh‖2U ≤

1 + ε

α
‖ρ̄− ρh‖2U + α (1 + ε) ‖ū− uh‖2U ,

since (ū, ρ̄) solves the variational inequality. Moreover, we find

‖S uh − zh‖2Z ≤ 2 ‖S uh − S ū‖2Z + 2 ‖z̄ − zh‖2Z ≤ 2Lα ‖uh − ū‖2U + 2 ‖z̄ − zh‖2Z ,
‖ρh − S? (zd − zh)‖2U ≤ 2 ‖ρh − ρ̄‖2U + 2 ‖S?(z̄ − zh)‖2U ≤ 2 ‖ρh − ρ̄‖2U + 2Lα ‖z̄ − zh‖2Z ,

see (2.9). Together with the previous estimate, this leads to

est(zh, uh, ρh, ũh, ρ̃h)2 ≤ α (1 + ε) ‖uh − ū‖2U +
1 + ε

α
‖ρh − ρ̄‖2U

+ 2 ‖zh − z̄‖2Z + 2Lα ‖uh − ū‖2U
+ 2L ‖zh − z̄‖2Z + 2 ‖ρh − ρ̄‖2U

= (2 + 2L) ‖zh − z̄‖2Z + (1 + ε+ 2L)α ‖uh − ū‖2U +
3 + ε

α
‖ρh − ρ̄‖2U

≤ (3 + ε+ 2L) err(zh, uh, ρh)2.

(2.14)

Hence, we have shown the efficiency of our error estimate.

Theorem 2.6. Let (zh, uh, ρh) ∈ Z × U × U be arbitrary and let (ũh, ρ̃h) ∈ Uad × U satisfy Assump-
tion 2.5 for some ε ≥ 0. Then, the efficiency estimate

est(zh, uh, ρh, ũh, ρ̃h)2 ≤ (3 + ε+ 2L) err(zh, uh, ρh)2

holds.

Let us comment on the ingredients of our error estimator. First of all, one needs to compute

‖S uh − zh‖Z and ‖ρh − S? (zd − zh)‖U .
This is, of course, highly dependent on the underlying control-to-observation map. If (zh, uh, ρh) arise
from a discretization of (2.2), one may utilize reliable and efficient error estimators for the corresponding
discretization, see Section 3. Hence, our error estimator can build upon existing results.
The other ingredient of our error estimator is the pair (ũh, ρ̃h) satisfying Assumption 2.5. First, we
remark that it is always possible to satisfy Assumption 2.5 with any ε > 0.

Lemma 2.7. Let ε > 0 and (uh, ρh) ∈ U × U be arbitrary. Then, there exist (ũh, ρ̃h) satisfying
Assumption 2.5.

Proof. We define

j = inf
{ 1

α
‖ρ̂h − ρh‖2U + α ‖ûh − uh‖2U : (ûh, ρ̂h) satisfy (2.13)

}
.

Note that this is just the distance of (uh, ρh) to the set of all (ûh, ρ̂h) satisfying the variational inequality
(2.13). In case j = 0, the pair (uh, ρh) already satisfies the variational inequality (since the set of its
solutions is closed) and we can choose (ũh, ρ̃h) = (uh, ρh). Otherwise, we have j < j (1 + ε) and, hence,
the existence of (ũh, ρ̃h) is clear.

Further, note that the choice ε = 0 may not be possible, since the sequence of (ûh, ρ̂h) defining j might
not converge in U × U .
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Figure 3.3: Total error (3.2) for the discretization of (3.1) with P1 (left) and P2 (right) elements for
adaptive refinement based on the error estimator from Theorem 3.3 (red squares) and the
energy-based error estimator (3.18) (blue triangles), respectively. The error is plotted versus
the degrees of freedom N (per variable yh, uh, ph). Slopes N−p are provided for comparison.

Let Ω ⊂ R2 be a convex polygon. We consider the problem

Minimize
1

2
‖y − yd‖2L2(∂Ω) +

α

2
‖u‖2L2(Ω)

such that −∆y + y = u in Ω

∂

∂n
y = 0 on ∂Ω

and ua ≤ u ≤ ub.

(4.1)

Again, this problem is a special case of (2.1). The difference to (3.1) is that
• the observation space is Z = L2(∂Ω) and
• the observation operator C : H1(Ω)→ L2(∂Ω) is the trace operator, i.e.

(C y, v)L2(∂Ω) = 〈C?v, y〉H1(Ω)′,H1(Ω) =

∫

Γ

y v dx ∀y ∈ H1(Ω), v ∈ L2(∂Ω).

It is clear that all the assumptions of Section 2 are satisfied.
The (strong formulation of the) adjoint equation (2.3b) for (4.1) reads

−∆p+ p = 0 in Ω, and
∂

∂n
p = yd − y on ∂Ω.

Note that, in difference to Section 3, the difference yd− y now appears as boundary data in the adjoint
equation.
Similar to Section 3, we apply the results of Section 2 in order to obtain a-posteriori estimates for a
finite element discretization of (4.1). That is, we want to estimate the distance between the solution
(ȳ, ū, p̄) of (4.1) to a triple (yh, uh, ph) of finite element functions. By the theory of Section 2, we obtain
an estimate for error

‖ȳ − yh‖L2(∂Ω) + α ‖ū− uh‖L2(Ω) +
1

α
‖p̄− ph‖L2(Ω). (4.2)
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P1, new estimator P1, energy estimator

P2, new estimator P2, energy estimator

Figure 3.2: Meshes obtained by an adaptive refinement for the solution of (3.1) with P1 (top row) and P2

elements (bottom row). For the left column, we used the error estimator from Theorem 3.3
and an energy-based error estimator (3.18) for the right column.
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We emphasize that this proof does not rely on the special structure of the control space U and on our
admissible set Uad. In fact, Lemma 2.7 remains valid for any Hilbert space U and any convex, closed
Uad ⊂ U .
In what follows, we briefly briefly outline that for the admissible set Uad under consideration one can
even choose ε = 0. Indeed, we can utilize that solutions of the variational inequality (2.13) can be
characterized by a pointwise projection similar to (2.4). The desired pair (ũh, ρ̃h) has to minimize the
functional

(ûh, ρ̂h) 7→ 1

α
‖ρ̂h − ρh‖2U + α ‖ûh − uh‖2U

among all (ûh, ρ̂h) ∈ Uad × U satisfying

ûh(x) = Proj[ua(x),ub(x)]

ρ̂h(x)

α
for almost all x ∈ Ω.

This is an infinite-dimensional, non-convex optimization problem. However, we can argue point-wise
in order to show the existence of a global minimizer. For convenience, we rescale the ρh-component by
α−1 and obtain the following problem.

Minimize |ûh(x)− uh(x)|2 + |α−1 ρ̂h(x)− α−1 ρh(x)|2

with respect to ûh(x), α−1 ρ̂h(x)

such that ûh(x) = Proj[ua(x),ub(x)] α
−1 ρ̂h(x).

(2.15)

That is, we have to project the point (uh(x), α−1 ρh(x)) onto the set

{(ûh(x), α−1 ρ̂h(x)) ∈ R2 : ûh(x) = Proj[ua(x),ub(x)] α
−1 ρ̂h(x)}.

It consists of two rays and a line segment, as depicted in Figure 2.1.

ρ̂h(x)/α

ûh(x)

ûh(x) = Proj[ua(x),ub(x)] ρ̂h(x)/αub(x)

ua(x)

Figure 2.1: The feasible set of the problem (2.15).

Note that the problem (2.15) may have multiple global solutions. If we always select the solution
ũh(x), ρ̃h(x)) with the smallest value of α−1 ρ̃h(x), the functions ũh and ρ̃h are measurable. Since
(Proj[ua(x),ub(x)](0), 0) is feasible for (2.15), we obtain the estimate

|ũh(x)− uh(x)|2 + |α−1 ρ̃h(x)− α−1 ρh(x)|2 ≤ |Proj[ua(x),ub(x)](0)− uh(x)|2 + |0− α−1 ρh(x)|2,

which ensures (ũh, ρ̃h) ∈ L2(Ωu)2 = U2. By construction, this pair (ũh, ρ̃h) satisfies Assumption 2.5
with ε = 0.
The numerical evaluation of

‖ũh − uh‖2L2(Ωu) +
1

α2
‖ρ̃h − ρh‖2L2(Ωu) =

∫

Ωu

|ũh(x)− uh(x)|2 + |α−1 ρ̃h(x)− α−1 ρh(x)|2 dx

7
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is briefly discussed in Section 3.3.

Remark 2.8. If one is interested in a better stability of the error estimator w.r.t. α ↘ 0, one should
use a slightly different error estimator. Indeed, Theorem 2.4 and Theorem 2.6 yield

err(zh, uh, ρh)2 ≤ C1 (1 + L2) est(zh, uh, ρh, ũh, ρ̃h)2 ≤ C2 (1 + L3) err(zh, uh, ρh)2.

Here, C1 and C2 are constants, independent of all the data of our problem. Since L = ‖S‖2/α, one
obtains the order α−3/2 as bound for the quotient between reliability and efficiency of our estimate.

By using the estimator

ẽst(zh, uh, ρh, ũh, ρ̃h)2 =
1

α
‖ρ̃h − ρh‖2U +

1

α
‖ρh − S? (zd − zh)‖2U + (α+ 1) ‖ũh − uh‖2U + ‖S uh − zh‖2Z

one can achieve

err(zh, uh, ρh)2 ≤ C1 (1 + α) ẽst(zh, uh, ρh, ũh, ρ̃h)2 ≤ C2 (1 + α2) err(zh, uh, ρh)2.

Here, the constants C1, C2 depend only on ‖S‖. Hence, the ratio of reliability and efficiency has
improved to α−1.

3 Distributed control of an elliptic equation

In this section, we apply the theory from Section 2 to a specific optimal control problem.
Let Ω ⊂ R2 be a convex polygon. We consider the problem

Minimize
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

such that −∆y + y = u in Ω

∂

∂n
y = 0 on ∂Ω

and ua ≤ u ≤ ub.

(3.1)

This problem is a special case of (2.1). In fact, we have
• the state space Y = H1(Ω), and the observation space Z = L2(Ω)

• the observation operator C : H1(Ω)→ L2(Ω) is the canonical embedding, i.e.

(C y, v)L2(Ω) = 〈C?v, y〉H1(Ω)′,H1(Ω) =

∫

Ω

y v dx ∀y ∈ H1(Ω), v ∈ L2(Ω)

• A : H1(Ω)→ H1(Ω)′ is given by 〈Ay, z〉 =
∫

Ω
∇y · ∇z + y z dx

• the control operator B = C? is the canonical embedding L2(Ω) ↪→ H1(Ω)′, see above.
It is clear that all the assumptions of Section 2 are satisfied. Since the operators B and C are just the
canonical embeddings, we will not distinguish between z = C y and y and between ρ = B? p and p,
respectively.
The (strong formulation of the) adjoint equation (2.3b) for (3.1) reads

−∆p+ p = yd − y in Ω, and
∂

∂n
p = 0 on ∂Ω.

In what follows, we apply the results of Section 2 in order to obtain a-posteriori estimates for a finite
element discretization of (3.1). That is, we want to estimate the distance between the solution (ȳ, ū, p̄)

8
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Figure 3.1: Solution of (3.1) with setting (3.17) computed on a fine mesh

for x ∈ Ω in (3.16).

For the marking of the cells, we use the maximum strategy, i.e., we mark all cells K satisfying

η2
K ≥ κ max

K′∈T
η2
K′

for some κ ∈ [0, 1]. In the numerical experiments, we used κ = 1/2.

Some of the obtained meshes are shown in Figure 3.2. All four meshes result in approximately 10,000
degrees of freedom (per variable y, u and p). It can be seen that the error estimator from Theorem 3.3
is more focused on refining the interface, i.e., the boundary of the active set, whereas using the energy-
based error estimator results in a finer mesh in the whole domain. By using the energy-based estimator
with P1 elements, one does not observe a refinement at the interface. In the case of P2 elements, the
interface is slightly refined for higher numbers of degrees of freedom (starting at roughly 50,000 degrees
of freedom).

Finally, we show the total error as defined in (2.12) for both strategies in Figure 3.3. Since the exact
solution is not known, the error is computed w.r.t. a solution on a fine grid with approximately 1,600,000
degrees of freedom (per variable y, u, p). From that plot it is clear that a better rate is obtained by
employing the error estimator from Theorem 3.3. We emphasize that the same behaviour is observed
if we only plot the error ‖uh − ū‖L2(Ω). Moreover, in case of our new estimator, the errors in all three
components

‖ȳ − yh‖L2(Ω), ‖ū− uh‖L2(Ω), ‖p̄− ph‖L2(Ω)

converge with the same order. In case of the energy estimator (3.18), the L2(Ω)-error in the state and
adjoint converges faster.

4 Distributed control of an elliptic equation with
boundary observation

In order to demonstrate the flexibility of our error estimator, we consider a variant of (3.1), in which
we replace the distributed observation by an observation on the boundary.

13
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for each cell K ∈ T . Note that Assumption 2.5 is satisfied by this construction.
Note that in general, the functions ũh and p̃h are not piecewise polynomials due to the projection.
Thus, the evaluation of the above integral requires special attention, Since the integrand may not have
a high regularity, we use a quadrature rule of moderate degree and apply it on (red) subdivisions of K.
Thus, (2.15) has to be solved only in the quadrature points. For the numerical experiments presented
in Section 3.5 and Section 4.3, we used 2 subdivisions and a quadrature rule of degree 6.

3.4 Error estimator for the optimal control problem

Using the results from Section 3.2 and Section 3.3, we obtain an error estimator for the discretization
(3.5) of problem (3.1).

Theorem 3.3. Let (yh, uh, ph) ∈ (Pk)3 be given, such that the discretized state and adjoint equation
(3.5a), (3.5b) are satisfied. We define the local error contribution

η2
K := η2

K,state +
1

α
η2
K,adjoint + αη2

K,VI,

where ηK,· are defined in (3.14) and (3.16). Then, we have the error estimate

‖ȳ − yh‖2L2(Ω) + α ‖ū− uh‖2L2(Ω) +
1

α
‖p̄− ph‖2L2(Ω) ≤ c

∑

K∈T
η2
K .

The proof follows from Theorem 2.4 and (3.15).
Again, the constant c does not depend directly on the triangulation T , but only on its chunkiness γT .
Up to higher order terms, this error estimate is also efficient, see Theorem 2.6 and [Verfürth, 1996,
Proposition 3.8], [Verfürth, 1998, Proposition 4.1].

3.5 Numerical results

We report some numerical results on the solution of (3.1). The data of the problem is given by

Ω = (0, 1)2, yd(x, y) = exp(x) sin(y),

α = 0.05, ua = −3, ub = 1.
(3.17)

On each mesh, we use Pk elements with k ∈ {1, 2} and solve (3.6). The solution on a fine mesh is
depicted in Figure 3.1.
In the following, we will compare the results obtained by the error estimator from Theorem 3.3 with
the results obtained by applying an energy-based error estimator given by

η2
K,state,energy := h2

K ‖uh + ∆yh − yh‖2L2(K) +
∑

E∈E(K)

h1
K

∥∥J∇yhKn
∥∥2

L2(E)
, (3.18a)

η2
K,adjoint,energy := h2

K ‖yd − yh + ∆ph − ph‖2L2(K) +
∑

E∈E(K)

h1
K

∥∥J∇phKn
∥∥2

L2(E)
, (3.18b)

η2
K,energy := η2

K,state,energy +
1

α
η2
K,adjoint,energy + αη2

K,VI. (3.18c)

This is the error estimator suggested in Kohls et al. [2014] with a slight modification in the term ηK,VI.
The precise estimator of Kohls et al. [2014] would be obtained by setting

p̃h(x) = ph(x), ũh(x) = Proj[ua(x),ub(x)]

ph(x)

α
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of (3.1) to a triple (yh, uh, ph) of finite element functions. By the theory of Section 2, we obtain an
estimate for the error

‖ȳ − yh‖L2(Ω) + α ‖ū− uh‖L2(Ω) +
1

α
‖p̄− ph‖L2(Ω), (3.2)

see (2.12), and we have to provide a-posteriori estimates for the error contributions in the PDEs

‖ph −A−? (yd − yh)‖L2(Ω), ‖yh −A−1 uh‖L2(Ω), (3.3)

and in the variational inequality

‖p̃h − ph‖L2(Ω), ‖ũh − uh‖L2(Ω) (3.4)

see (2.11).
The finite element discretization is briefly introduced in Section 3.1. In Section 3.2 we recall some
standard arguments leading to an L2(Ω)-error estimator for the error in the state and adjoint equation.
The numerical evaluation of the error in the variational inequality is discussed in Section 3.3. Finally,
we present some numerical results in Section 3.5.

3.1 Finite element discretization

We briefly introduce the required assumptions on the finite element discretization. We consider a
triangulation T of Ω, see [Brenner and Scott, 2002, Definition 3.3.11]. In particular, we have Ω̄ =⋃
K∈T K and the triangulation has no hanging nodes. We define the cell size

hK := diam(K) for all K ∈ T
and the radius of the largest circle contained in K

ρK := sup{r > 0 : Br(x) ⊂ K for some x ∈ K}.
Using the triangulation T , we define the Lagrange finite elements of order k, k ≥ 1,

Pk := {v : C(Ω̄) : v|K ∈ P k(K) for all K ∈ T },

see [Brenner and Scott, 2002, Section 3.2]. Here, P k(K) is the space of polynomials of degree at most
k on the triangle K ∈ T . This space Pk is be used to compute approximations (yh, uh, ph) ⊂ (Pk)3 of
(ȳ, ū, p̄), i.e. we solve the discretized optimality system

〈Ayh, vh〉 = 〈B uh, vh〉 ∀vh ∈ Pk (3.5a)

〈A? ph, vh〉 = 〈C?(yd − yh), vh〉 ∀vh ∈ Pk (3.5b)

uh(xi) = Proj[ua,ub]

ph(xi)

α
for all Lagrange nodes xi of T , (3.5c)

compare (2.3) and (2.4).
Note that the variational inequality (2.3c) is discretized by applying the projection (2.4) at each La-
grange point only.
We denote by K and M the stiffness and mass matrix associated with (3.5). That is, 〈K vh, wh〉 =
〈Avh, wh〉 and 〈M vh, wh〉 = (vh, wh)L2(Ω) for all vh, wh ∈ Pk. The discrete solutions (yh, uh, ph) are
obtained by solving the system

K yh =Muh, (3.6a)
K ph =M (yd − yh), (3.6b)

uh(xi) = Proj[ua,ub]

ph(xi)

α
for all Lagrange nodes xi of T . (3.6c)

Here, the desired state yd is replaced by an interpolation.

9
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3.2 Error of the FE discretization

As an ingredient for our error estimate (2.11), we need an a-posteriori error estimate for the discretized
solution of a PDE in the L2(Ω) norm, see (3.3). Such an estimate is well known and can be found
in, e.g., [Verfürth, 1996, Proposition 3.8]. We will recall some standard arguments leading to such an
a-posteriori estimate since we have to use similar arguments to derive an error estimate in L2(∂Ω) in
Section 4.1.
We consider the solution w ∈ H1(Ω) of the PDE

Aw = F (3.7)

and its discrete solution wh ∈ Pk with

〈Awh, vh〉 = 〈F, vh〉 for all vh ∈ Pk. (3.8)

Here, F ∈ H1(Ω)′ is given by

F (v) =

∫

Ω

f v dx+

∫

∂Ω

g v ds,

with f ∈ L2(Ω), g ∈ L2(∂Ω). When applying the results to the state yh, we will set f = uh and, similar,
f = yd − yh for the adjoint state ph. In both cases, we set g = 0.
Following [Brenner and Scott, 2002, Section 9.2], we introduce ϕ ∈ H1(Ω) solving the dual equation

〈Aϕ, v〉 =

∫

Ω

(w − wh) v dx for all v ∈ H1(Ω). (3.9)

Using standard arguments (integration by parts on all cells K ∈ T ), we arrive at

‖w − wh‖2L2(Ω) ≤
∑

K∈T
‖f + ∆wh − wh‖L2(K) ‖ϕ− ϕh‖L2(K)

+
∑

E∈E(T )

∥∥J∇whKn
∥∥
L2(E)

‖ϕ− ϕh‖L2(E)

(3.10)

for arbitrary ϕh ∈ Pk, see [Brenner and Scott, 2002, Section 9.2] for similar arguments in the case of
homogeneous Dirichlet boundary conditions. Here, E(T ) are the edges of the triangulation T . The
expression J∇whKn on an edge E denotes the jump of the normal derivative in normal direction and is
defined as follows

J∇whKn(x) :=

{
limε↘0 n

>{∇wh(x+ ε n)−∇wh(x− ε n)
}

in case E 6⊂ ∂Ω,
∂
∂nwh(x)− g(x) = n>∇wh(x)− g(x) in case E ⊂ ∂Ω,

(3.11)

where the vector n is the (outer) unit normal vector of E at point x ∈ E. Note that for edges E on the
boundary, the jump term J∇whKn is the residuum for the Neumann data.
Since the solution ϕ of the dual problem (3.9) satisfies

‖ϕ‖H2(Ω) ≤ c ‖w − wh‖L2(Ω),

see [Grisvard, 1985, Theorem 3.2.1.2], we can set ϕh = I ϕ, where I : C(Ω̄) → Pk is the nodal
interpolation. For the nodal interpolation, we have the following error estimates.

Lemma 3.1. Let m ∈ (1, k + 1] be given. Assume that hK/ρK ≤ γ holds for all K ∈ T . Then, there
is a constant ck,m,γ , such that

‖v − I v‖L2(K) ≤ ck,m,γ hmK |v|Hm(K),

‖v − I v‖L2(E) ≤ ck,m,γ hm−1/2
K |v|Hm(K)

for all triangles K ∈ T , all edges E of K and all v ∈ Hm(K).
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Proof. The estimate on the cell is standard in case of integer m. The case of non-integer m can be found
in [Feistauer, 1989, Theorem 2.19]. The proof for the estimate on the edge is similar and straightforward.

We emphasize that the constant ck,m,γ does not depend directly on the triangulation T , but only on
its chunkiness

γT := max{hK/ρK : K ∈ T }.

Using these error estimates for the interpolation with m = 2 in (3.10), we obtain the following theorem
by standard arguments.

Theorem 3.2. Let us denote by w ∈ H1(Ω) and wh ∈ Pk the solutions of (3.7) and (3.8), respectively.
Then,

‖w − wh‖2L2(Ω) ≤ c
∑

K∈T
η2
K , (3.12)

where the local error indicator ηK is defined by

η2
K := h4

K ‖f + ∆wh − wh‖2L2(K) +
∑

E∈E(K)

h3
K

∥∥J∇whKn
∥∥2

L2(E)
. (3.13)

Here, E(K) denotes the set of all edges of the triangle K.

We emphasize that the constant c in (3.12) does not depend on the triangulation T , but only on its
chunkiness γT , compare Lemma 3.1.

For problem (3.1) this error estimate is used for the state and the adjoint equation. To this end, let
(yh, uh, ph) ∈ (Pk)3 be given. In order to apply the error estimate (3.12), we assume that yh solves the
discretized state equation (3.5a) and ph the discretized adjoint equation (3.5b). For each cell, we define
according to Theorem 3.2 the local contributions

η2
K,state := h4

K ‖uh + ∆yh − yh‖2L2(K) +
∑

E∈E(K)

h3
K

∥∥J∇yhKn
∥∥2

L2(E)
, (3.14a)

η2
K,adjoint := h4

K ‖yd − yh + ∆ph − ph‖2L2(K) +
∑

E∈E(K)

h3
K

∥∥J∇phKn
∥∥2

L2(E)
. (3.14b)

Now, Theorem 3.2 implies that

‖yh −A−1 uh‖2L2(Ω) ≤ c
∑

K∈T
η2
K,state and (3.15a)

‖ph −A−?(yd − yh)‖2L2(Ω) ≤ c
∑

K∈T
η2
K,adjoint (3.15b)

hold for some constant c > 0.

We remark that [Verfürth, 1998, Proposition 4.1] shows the (local) efficiency (up to higher order terms)
of the error estimator for a similar problem.

3.3 Error in the variational inequality

It remains to construct (ũh, p̃h) satisfying Assumption 2.5. As discussed in Section 2.2, this can be done
by solving (2.15) for each point x ∈ Ω. Finally, we have to integrate

η2
K,VI :=

∫

K

1

α2
|ph − p̃h|2 + |uh − ũh|2 dx (3.16)
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