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Abstract
We consider reduced Hsieh-Clough-Tocher basis functions with respect
to a splitting into subtriangles at an arbitrary interior point of the ori-
ginal triangular element. This article gives a proof that the second
derivatives of those functions, which in general may jump at the subtri-
angle boundaries, do not jump at the splitting point.
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µ2
+(xk+1,syk,s + xk,syk+1,s) + 2µkµk+1xk+1,kyk+1,k − µkµk−1(xk+1,kyk,k−1 + xk,k−1yk+1,k)
−µk+1µk−1(xk+1,kyk−1,k+1 + xk−1,k+1yk+1,k)

= (µkxk+1,k + µk−1xk+1,k−1)(µk+1yk,k+1 + µk−1yk,k−1)
+ (µk+1xk,k+1 + µk−1xk,k−1)(µkyk+1,k + µk−1yk+1,k−1)
+ 2µkµk+1xk+1,kyk+1,k − µkµk−1(xk+1,kyk,k−1 + xk,k−1yk+1,k)
− µk+1µk−1(xk+1,kyk−1,k+1 + xk−1,k+1yk+1,k)

= µkµk+1xk+1,kyk,k+1 + µkµk−1xk+1,kyk,k−1 + µk+1µk−1xk+1,k−1yk,k+1

+ µ2
k−1xk+1,k−1yk,k−1 + µkµk+1xk,k+1yk+1,k + µk+1µk−1xk,k+1yk+1,k−1

+ µkµk−1xk,k−1yk+1,k + µ2
k−1xk,k−1yk+1,k−1

+ 2µkµk+1xk+1,kyk+1,k − µkµk−1(xk+1,kyk,k−1 + xk,k−1yk+1,k)
− µk+1µk−1(xk+1,kyk−1,k+1 + xk−1,k+1yk+1,k)

= µ2
k−1(xk−1,k+1yk−1,k + xk−1,kyk−1,k+1),

which shows C2: = A2:.

In summary we have shown A = B = C for an arbitrary k, therefore

(D2Ψk|T1)(âs) = (D2Ψk|T2)(âs) = (D2Ψk|T3)(âs) ∀ k = 1, 2, 3.

This proves the stated hypothesis

(D2Ψ |T1)(âs) = (D2Ψ |T2)(âs) = (D2Ψ |T3)(âs).
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As above, a comparison of coefficients with (5) gives

−µ2
+xk−1,syk−1,s + µ2

kxk,k−1yk,k−1 − µkµk+1xk,k−1yk−1,k+1 − µkµk+1xk−1,k+1yk,k−1

= −(µkxk−1,k + µk+1xk−1,k+1)(µkyk−1,k + µk+1yk−1,k+1)
+ µ2

kxk,k−1yk,k−1 − µkµk+1xk,k−1yk−1,k+1 − µkµk+1xk−1,k+1yk,k−1

= −µ2
kxk−1,kyk−1,k − µkµk+1xk−1,kyk−1,k+1 − µkµk+1xk−1,k+1yk−1,k

− µ2
k+1xk−1,k+1yk−1,k+1 + µ2

kxk,k−1yk,k−1 − µkµk+1xk,k−1yk−1,k+1

− µkµk+1xk−1,k+1yk,k−1

= −µ2
k+1xk−1,k+1yk−1,k+1,

µ2
+(xk−1,syk,s + xk,syk−1,s) + 2µkµk−1xk,k−1yk,k−1 − µkµk+1(xk,k−1yk+1,k + xk+1,kyk,k−1)
−µk+1µk−1(xk,k−1yk−1,k+1 + xk−1,k+1yk,k−1)

= (µkxk−1,k + µk+1xk−1,k+1)(µk+1yk,k+1 + µk−1yk,k−1)
+ (µk+1xk,k+1 + µk−1xk,k−1)(µkyk−1,k + µk+1yk−1,k+1)
+ 2µkµk−1xk,k−1yk,k−1 − µkµk+1(xk,k−1yk+1,k + xk+1,kyk,k−1)
− µk+1µk−1(xk,k−1yk−1,k+1 + xk−1,k+1yk,k−1)

= µkµk+1xk−1,kyk,k+1 + µkµk−1xk−1,kyk,k−1 + µ2
k+1xk−1,k+1yk,k+1

+ µk+1µk−1xk−1,k+1yk,k−1 + µkµk+1xk,k+1yk−1,k + µ2
k+1xk,k+1yk−1,k+1

+ µk−1µkxk,k−1yk−1,k + µk+1µk−1xk,k−1yk−1,k+1

+ 2µkµk−1xk,k−1yk,k−1 − µkµk+1(xk,k−1yk+1,k + xk+1,kyk,k−1)
− µk+1µk−1(xk,k−1yk−1,k+1 + xk−1,k+1yk,k−1)

= µ2
k+1(xk−1,k+1yk,k+1 + xk,k+1yk−1,k+1),

which shows B2: = A2:. Similarly, one gets

−µ2
+xk+1,syk+1,s + µ2

kxk+1,kyk+1,k − µkµk−1xk+1,kyk−1,k+1 − µkµk−1xk−1,k+1yk+1,k

= −(µkxk+1,k + µk−1xk+1,k−1)(µkyk+1,k + µk−1yk+1,k−1)
+ µ2

kxk+1,kyk+1,k − µkµk−1xk+1,kyk−1,k+1 − µkµk−1xk−1,k+1yk+1,k

= −µ2
kxk+1,kyk+1,k − µkµk−1xk+1,kyk+1,k−1 − µkµk−1xk+1,k−1yk+1,k

− µ2
k−1xk+1,k−1yk+1,k−1 + µ2

kxk+1,kyk+1,k − µkµk−1xk+1,kyk−1,k+1

− µkµk−1xk−1,k+1yk+1,k

= −µ2
k−1xk−1,k+1yk−1,k+1,

12

1 Introduction

Some relevant problems such as the biharmonic problem or the plate problem
can be described by a partial differential equation of fourth order. The weak
formulation of any such problem features functions from the Sobolev space H2.
Thus, the functions themselves as well as their first and second generalised de-
rivatives have to be square-integrable over the considered domain. The natural
approach to solving such problems numerically by the finite element method is to
use conforming finite elements. This means that the FE basis functions belong
to a finite-dimensional subspace of the appropriate space H2. This is fulfilled for
FE basis functions which are globally C1-continuous.

One example of C1-continuous elements is the reduced Hsieh–Clough–Tocher
(rHCT) element, which goes back to [1]. It is a triangular element with piecewise
cubic shape functions defined on three subtriangles. The shape functions are con-
structed in such a way that the resulting global basis functions are C1-continuous.
The element uses the values of the function and both first derivatives at all three
vertices as degrees of freedom, which sums up to 9 in total. Global C1-continuity
is achieved by inner C1-continuity and the condition that the restriction of the
normal derivative of any shape function to any element edge has to be linear with
respect to the local line coordinate. The splitting into three subtriangles may be
based on an arbitrary interior point, which is called splitting point.

The goal of this article is to show the following remarkable property. While
the second derivatives of rHCT shape functions may jump across internal edges,
they do not jump at the splitting point of the element. The current article is
an extension of [4], where this property was shown for a splitting based on the
barycenter.

Our practical motivation for this article comes from remarks 7.10 and 7.11 in [3].
The above property was used there to get rid of nodal jump terms in the construc-
tion of an a posteriori error estimator for rHCT elements for plate and laminate
problems, but no proof was given.

2 Shape functions

There exist several approaches to the definition of rHCT shape functions. They all
lead to the same functions eventually; only the formulations differ. We consider
the method given in [5], which is a generalisation of [2] to an arbitrary interior point
as splitting point. The construction of shape functions is shortly recapitulated in
this section.

1



Consider a split of the original triangle T with the vertices

aj = [xj, yj]T, j = 1, 2, 3

based on an arbitrary interior point

as = [xs, ys]T ∈ intT.

Shape functions that belong to node aj of the triangle T are written as a row
vector

Ψj(a) = [ψ(0)
j (a), ψ(1)

j (a), ψ(2)
j (a)]

and the full vector of all shape functions takes the form

Ψ(a) = [Ψ1(a), Ψ2(a), Ψ3(a)]

at an arbitrary point a = [x, y]T. Shape functions with superscript (0) are related
to the function value at the respective node and those with superscripts (1) and
(2) are related to the function derivative with respect to x and y at the respective
node.

In order to shorten the following expressions, we introduce some abbreviations to
be used throughout the article. We use xi,j and yi,j to denote xi − xj and yi − yj,
respectively. This implies xi,j = −xj,i and yi,j = −yj,i. Furthermore, all indices
k, k − 1, k + 1 run from 1 to 3 and k ± 1 is always understood implicitly as

k ± 1 7→
(
(k ± 1− 1) mod 3

)
+ 1

to stay in the admissible index set {1, 2, 3}. Formulas that use k as an index are
valid for k = 1, 2, 3.

The outer edges of the element are denoted by Ek and the inner edges by fk.
Their orientation is as given in Figure 1, which leads to the formulas

Ek =
[
xk−1,k+1
yk−1,k+1

]
and fk =

[
xk,s
yk,s

]
.

We define normals of the outer edges with the same length by

Nk =
[
−yk−1,k+1
xk−1,k+1

]
.

The subtriangle containing Ek is denoted Tk. The Jacobians of the mappings
from the reference triangle to the three subtriangles, confer also section 3, are

Jk =
[
xk+1,s xk−1,s
yk+1,s yk−1,s

]
.

2

B2: =
(
Fk+1 (D̂2Φ̂2)(âs)Hk+1 + Fk+1 (D̂2β̂)(âs)(bkk+1)T

+ Fk+1 (D̂2Φ̂0)(âs)Hk+1Mk

)
2:

= − 1
µ2

k+1
xk−1,syk−1,s(ck)T + 1

µ2
k+1

(xk−1,syk,s + xk,syk−1,s)(bkk+1)T

+ 1
6µ2

+µ
2
k+1

(
6xk,k−1yk,k−1(µ2

kc
k + 2µkµk−1b

k
k+1 + 2µkµk+1b

k
k−1)

+ 6µk+1xk,k−1(−µkyk−1,k+1c
k − (µkyk+1,k + µk−1yk−1,k+1)bkk+1

− (µkyk,k−1 + µk+1yk−1,k+1)bkk−1)
− 6µk+1yk,k−1(µkxk−1,k+1c

k + (µkxk+1,k + µk−1xk−1,k+1)bkk+1

+ (µkxk,k−1 + µk+1xk−1,k+1)bkk−1)
)T

= 1
µ2

+µ
2
k+1

(−µ2
+xk−1,syk−1,s + µ2

kxk,k−1yk,k−1 − µkµk+1xk,k−1yk−1,k+1

− µkµk+1xk−1,k+1yk,k−1)(ck)T

+ 1
µ2

+µ
2
k+1

(µ2
+(xk−1,syk,s + xk,syk−1,s) + 2µkµk−1xk,k−1yk,k−1

− µkµk+1(xk,k−1yk+1,k + xk+1,kyk,k−1)
− µk+1µk−1(xk,k−1yk−1,k+1 + xk−1,k+1yk,k−1))(bkk+1)T

− 1
µ2

+
(xk,k−1yk−1,k+1 + xk−1,k+1yk,k−1)(bkk−1)T,

C2: =
(
Fk−1 (D̂2Φ̂1)(âs)Hk−1 + Fk−1 (D̂2β̂)(âs)(bkk−1)T

+ Fk−1 (D̂2Φ̂0)(âs)Hk−1Mk

)
2:

= − 1
µ2

k−1
xk+1,syk+1,s(ck)T + 1

µ2
k−1

(xk+1,syk,s + xk,syk+1,s)(bkk−1)T

+ 1
6µ2

+µ
2
k−1

(
6xk+1,kyk+1,k(µ2

kc
k + 2µkµk−1b

k
k+1 + 2µkµk+1b

k
k−1)

+ 6µk−1xk+1,k(−µkyk−1,k+1c
k − (µkyk+1,k + µk−1yk−1,k+1)bkk+1

− (µkyk,k−1 + µk+1yk−1,k+1)bkk−1)
− 6µk−1yk+1,k(µkxk−1,k+1c

k + (µkxk+1,k + µk−1xk−1,k+1)bkk+1

+ (µkxk,k−1 + µk+1xk−1,k+1)bkk−1)
)T

= 1
µ2

+µ
2
k−1

(−µ2
+xk+1,syk+1,s + µ2

kxk+1,kyk+1,k − µkµk−1xk+1,kyk−1,k+1

− µkµk−1xk−1,k+1yk+1,k)(ck)T

− 1
µ2

+
(xk+1,kyk−1,k+1 + xk−1,k+1yk+1,k)(bkk+1)T

+ 1
µ2

+µ
2
k−1

(µ2
+(xk+1,syk,s + xk,syk+1,s) + 2µkµk+1xk+1,kyk+1,k

− µkµk−1(xk+1,kyk,k−1 + xk,k−1yk+1,k)
− µk+1µk−1(xk+1,kyk−1,k+1 + xk−1,k+1yk+1,k))(bkk−1)T.

11



which are the same coefficients as in A1: with 1/(µ2
+µ

2
k+1) factored out. The

coefficients of (bkk−1)T in A1: and B1: are evidently also equal. Therefore, it holds
B1: = A1:. Similarly, one gets C1: = A1:. The coefficients of (bkk+1)T in A1: and
C1: are evidently equal and it holds

µ2
+y

2
k+1,s − µ2

ky
2
k+1,k + 2µk−1µkyk+1,kyk−1,k+1

= (µkyk+1,k + µk−1yk+1,k−1)2 − µ2
ky

2
k+1,k + 2µk−1µkyk+1,kyk−1,k+1

= µ2
ky

2
k+1,k + 2µkµk−1yk+1,kyk+1,k−1 + µ2

k−1y
2
k+1,k−1

− µ2
ky

2
k+1,k + 2µk−1µkyk+1,kyk−1,k+1

= µ2
k−1y

2
k−1,k+1,

−µ2
+yk,syk+1,s − µkµk+1y

2
k+1,k + µk−1µkyk+1,kyk,k−1 + µk−1µk+1yk+1,kyk−1,k+1

= −(µk+1yk,k+1 + µk−1yk,k−1)(µkyk+1,k + µk−1yk+1,k−1)
− µkµk+1y

2
k+1,k + µk−1µkyk+1,kyk,k−1 + µk−1µk+1yk+1,kyk−1,k+1

= µk+1µky
2
k,k+1 − µk−1µk+1yk−1,k+1yk+1,k − µk−1µkyk,k−1yk+1,k

+ µ2
k−1yk,k−1yk+1,k−1

− µkµk+1y
2
k+1,k + µk−1µkyk+1,kyk,k−1 + µk−1µk+1yk+1,kyk−1,k+1

= µ2
k−1yk+1,k−1yk,k−1,

which are the coefficients of (ck)T and 2(bkk−1)T with 1/(µ2
+µ

2
k−1) factored out.

A3: = B3: = C3: follows analogously with all y∗ replaced by the corresponding x∗;
a double ‘−’ cancels out.
Finally, we consider A2:, B2:, and C2: and get

A2: =
(
Fk (D̂2Φ̂0)(âs)HkMk

)
2:

= 1
6µ2

+µ
2
k

(
6xk−1,k+1yk−1,k+1(µ2

kc
k + 2µkµk−1b

k
k+1 + 2µkµk+1b

k
k−1)

+ 6µkxk−1,k+1(−yk−1,k+1µkc
k − (µkyk+1,k + µk−1yk−1,k+1)bkk+1

− (µkyk,k−1 + µk+1yk−1,k+1)bkk−1)
− 6µkyk−1,k+1(xk−1,k+1µkc

k + (µkxk+1,k + µk−1xk−1,k+1)bkk+1

+ (µkxk,k−1 + µk+1xk−1,k+1)bkk−1)
)T

= 1
µ2

+

(
−xk−1,k+1yk−1,k+1c

k + (xk−1,k+1yk,k+1 + xk,k+1yk−1,k+1)bkk+1

+ (xk−1,k+1yk−1,k + xk−1,kyk−1,k+1)bkk−1

)T
,

10

a1

a2

a3

as

E3

E1

E2

f1
f2

f3

T3

T2
T1

Figure 1: Triangle T with splitting

Their determinants are abbreviated as

µk = det Jk = xk+1,syk−1,s − xk−1,syk+1,s.

The final shape functions are constructed to fulfil three propositions.

1. The functions Ψ are cubic polynomials in each subtriangle, are continuous
within T , and fulfil

Ψj(ai) = [1, 0, 0] δij

∇Ψj(ai) =
[
0 1 0
0 0 1

]
δij ∀ i, j = 1, 2, 3

with the Kronecker delta

δij =




1 i = j,

0 i 6= j.

2. The normal derivatives of all functions are linear along outer element edges
with respect to the local line coordinate.

3. The functions are C1-continuous inside T .

The final shape functions are defined with the help of basic functions and some
transformations in order to assure the above propositions. We shortly repeat the
results here, the whole derivation can be found in [5] together with [2].

The formulas for all shape functions on subtriangle Tk read

Ψk|Tk
= Φ̂0 HkMk,

Ψk+1|Tk
= Φ̂1 Hk + β̂ (bk+1

k )T + Φ̂0 HkMk+1,

Ψk−1|Tk
= Φ̂2 Hk + β̂ (bk−1

k )T + Φ̂0 HkMk−1

(1)

3



with the basic functions

Φ̂0(â) = (1− x̂− ŷ)2 [1 + 2x̂+ 2ŷ, x̂, ŷ],
Φ̂1(â) = x̂2 [3− 2x̂, x̂− 1, ŷ],
Φ̂2(â) = ŷ2 [3− 2ŷ, x̂, ŷ − 1],
β̂(â) = x̂ŷ(1− x̂− ŷ)

(2)

given on the reference triangle

T̂ = {[x̂, ŷ]T ∈ R2 : x̂ ≥ 0, ŷ ≥ 0, x̂+ ŷ ≤ 1} (3)

and the auxiliary terms

Hk =




1 0 0
0
0 JT

k


 =



1 0 0
0 xk+1,s yk+1,s
0 xk−1,s yk−1,s


 =



1 0 0
0 fT

k+1
0 fT

k−1


 ,

bk+1
k = 1

|Ek|2


 6ET

k fk−1

3µkNk + 2|Ek|2fk−1


 ,

bk−1
k = 1

|Ek|2


 −6ET

k fk+1

3µkNk + 2|Ek|2fk+1


 ,

ck =
[

6
−2fk

]
,

S = −2µ+




3 fT
1

3 fT
2

3 fT
3


 = −2µ+



3 x1,s y1,s
3 x2,s y2,s
3 x3,s y3,s


 ,

S−1 = − 1
6µ2

+

[
µ1 µ2 µ3

3N1 3N2 3N3

]
,

Tk = ek−1(µkbkk+1)T + ek+1(µkbkk−1)T + ek(µk−1b
k
k+1 + µk+1b

k
k−1 + µkc

k)T,

Mk = −S−1Tk.

The ej in the formula for Tk denote the j-th unit vectors with (ej)i = δij.

3 Transformation of second derivatives

The shape functions (1) are formulated with the help of the basic functions (2),
which are given on the reference triangle (3). Each of the three subtriangles is
mapped to the reference triangle by an affine linear mapping like illustrated in

4

C1: =
(
Fk−1 (D̂2Φ̂1)(âs)Hk−1 + Fk−1 (D̂2β̂)(âs)(bkk−1)T

+ Fk−1 (D̂2Φ̂0)(âs)Hk−1Mk

)
1:

= 1
µ2

k−1
y2
k+1,s(ck)T − 2

µ2
k−1
yk,syk+1,s(bkk−1)T

+ 1
6µ2

+µ
2
k−1

(
−6y2

k+1,k(µ2
kc
k + 2µkµk−1b

k
k+1 + 2µkµk+1b

k
k−1)

− 12µk−1yk+1,k(−µkyk−1,k+1c
k − (µkyk+1,k + µk−1yk−1,k+1)bkk+1

− (µkyk,k−1 + µk+1yk−1,k+1)bkk−1)
)T

= 1
µ2

+µ
2
k−1

(µ2
+y

2
k+1,s − µ2

ky
2
k+1,k + 2µk−1µkyk+1,kyk−1,k+1)(ck)T

+ 2
µ2

+
yk+1,kyk−1,k+1(bkk+1)T

+ 2
µ2

+µ
2
k−1

(−µ2
+yk,syk+1,s − µkµk+1y

2
k+1,k + µk−1µkyk+1,kyk,k−1

+ µk−1µk+1yk+1,kyk−1,k+1)(bkk−1)T.

We recall
µkyk,s + µk+1yk+1,s + µk−1yk−1,s = 0

from [5] to show the auxiliary formula
µ+yk,s = µkyk,s + µk+1yk,s + µk−1yk,s

= −µk+1yk+1,s − µk−1yk−1,s + µk+1yk,s + µk−1yk,s

= µk+1yk,k+1 + µk−1yk,k−1.

(5)

Analogous results hold for µ+yk+1,s and µ+yk−1,s and also for all variants with
y replaced by x. We consider the coefficients of (ck)T and 2(bkk+1)T in B1: with
1/(µ2

+µ
2
k+1) factored out to shorten the equations. With the help of the above

formula, we get
µ2

+y
2
k−1,s − µ2

ky
2
k,k−1 + 2µkµk+1yk,k−1yk−1,k+1

= (µkyk−1,k + µk+1yk−1,k+1)2 − µ2
ky

2
k,k−1 + 2µkµk+1yk,k−1yk−1,k+1

= µ2
ky

2
k−1,k + 2µkµk+1yk−1,kyk−1,k+1 + µ2

k+1y
2
k−1,k+1

− µ2
ky

2
k,k−1 + 2µkµk+1yk,k−1yk−1,k+1

= µ2
k+1y

2
k−1,k+1,

−µ2
+yk−1,syk,s − µkµk−1y

2
k,k−1 + µkµk+1yk,k−1yk+1,k + µk+1µk−1yk,k−1yk−1,k+1

= −(µkyk−1,k + µk+1yk−1,k+1)(µk−1yk,k−1 + µk+1yk,k+1)
− µkµk−1y

2
k,k−1 + µkµk+1yk,k−1yk+1,k + µk+1µk−1yk,k−1yk−1,k+1

= µkµk−1y
2
k,k−1 − µkµk+1yk,k−1yk+1,k − µk+1µk−1yk,k−1yk−1,k+1

− µ2
k+1yk−1,k+1yk,k+1

− µkµk−1y
2
k,k−1 + µkµk+1yk,k−1yk+1,k + µk+1µk−1yk,k−1yk−1,k+1

= µ2
k+1yk−1,k+1yk+1,k,
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Next we use Nk +Nk+1 +Nk−1 = 0 to reformulate Mk as

Mk = −S−1Tk

= 1
6µ2

+

[
µ1 µ2 µ3

3N1 3N2 3N3

] (
ek−1(µkbkk+1)T + ek+1(µkbkk−1)T

+ ek(µk−1b
k
k+1 + µk+1b

k
k−1 + µkc

k)T
)

= 1
6µ2

+

[ (µ2
kc

k+2µkµk−1bk
k+1+2µkµk+1bk

k−1)T

3
(
Nk(µkc

k+µk−1bk
k+1+µk+1bk

k−1)T+Nk−1(µkb
k
k+1)T+Nk+1(µkb

k
k−1)T

)
]

= 1
6µ2

+

[ (µ2
kc

k+2µkµk−1bk
k+1+2µkµk+1bk

k−1)T

3
(
µkNk(ck)T+(µkNk−1+µk−1Nk)(bk

k+1)T+(µkNk+1+µk+1Nk)(bk
k−1)T

)
]
.

With these intermediate results, we are now ready to formulate the rows of A,
B, and C as linear combinations of the row vectors (ck)T, (bkk+1)T, and (bkk−1)T.
Denote the i-th row of A by Ai:, for B and C respectively.

We first consider A1:, B1:, and C1: and get

A1: =
(
Fk (D̂2Φ̂0)(âs)HkMk

)
1:

= 1
6µ2

+µ
2
k

(
−6y2

k−1,k+1(µ2
kc
k + 2µkµk−1b

k
k+1 + 2µkµk+1b

k
k−1)

− 12µkyk−1,k+1(−µkyk−1,k+1c
k − (µkyk+1,k + µk−1yk−1,k+1)bkk+1

− (µkyk,k−1 + µk+1yk−1,k+1)bkk−1)
)T

= 1
µ2

+
(y2
k−1,k+1c

k + 2yk−1,k+1yk+1,kb
k
k+1 + 2yk−1,k+1yk,k−1b

k
k−1)T,

B1: =
(
Fk+1 (D̂2Φ̂2)(âs)Hk+1 + Fk+1 (D̂2β̂)(âs)(bkk+1)T

+ Fk+1 (D̂2Φ̂0)(âs)Hk+1Mk

)
1:

= 1
µ2

k+1
y2
k−1,s(ck)T − 2

µ2
k+1
yk−1,syk,s(bkk+1)T

+ 1
6µ2

+µ
2
k+1

(
−6y2

k,k−1(µ2
kc
k + 2µkµk−1b

k
k+1 + 2µkµk+1b

k
k−1)

− 12µk+1yk,k−1(−µkyk−1,k+1c
k − (µkyk+1,k + µk−1yk−1,k+1)bkk+1

− (µkyk,k−1 + µk+1yk−1,k+1)bkk−1)
)T

= 1
µ2

+µ
2
k+1

(µ2
+y

2
k−1,s − µ2

ky
2
k,k−1 + 2µkµk+1yk,k−1yk−1,k+1)(ck)T

+ 2
µ2

+µ
2
k+1

(−µ2
+yk−1,syk,s − µkµk−1y

2
k,k−1 + µkµk+1yk,k−1yk+1,k

+ µk+1µk−1yk,k−1yk−1,k+1)(bkk+1)T

+ 2
µ2

+
yk,k−1yk−1,k+1(bkk−1)T,

8

a1

a2

a3

as

E3

E1

E2

f1
f2

f3

T3

T2
T1

ŷ
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Figure 2: Mapping between the reference triangle and T1

Figure 2. Inner edges are mapped to the axes of the reference triangle. This can
be formulated as

a = χTk
(â) = Jkâ+ as, â = χ̂Tk

(a) = χ−1
Tk

(a) = J−1
k (a− as) for a ∈ Tk

with the Jacobian

Jk = [fk+1
... fk−1] =

[
xk+1,s xk−1,s
yk+1,s yk−1,s

]

associated with the subtriangle Tk.

The derivatives with respect to the coordinates x and y can be obtained from
the derivatives with respect to the master coordinates x̂ and ŷ via a simple
transformation. It can be written for the second derivatives as

(D2Ψ |Tk
)(â) = Fk (D̂2Ψ |Tk

)(â) (4)

with the matrix differential operators

D̂2 =
[
∂2

∂x̂2 ,
∂2

∂x̂∂ŷ
,
∂2

∂ŷ2

]T

, D2 =
[
∂2

∂x2 ,
∂2

∂x∂y
,
∂2

∂y2

]T

and an appropriate transformation matrix Fk. The transformation matrix takes
the form

Fk = 1
µ2
k




(Jk)2
22 −2(Jk)21(Jk)22 (Jk)2

21
−(Jk)12(Jk)22 (Jk)12(Jk)21 + (Jk)11(Jk)22 −(Jk)11(Jk)21

(Jk)2
12 −2(Jk)11(Jk)12 (Jk)2

11




= 1
µ2
k




y2
k−1,s −2yk−1,syk+1,s y2

k+1,s

−xk−1,syk−1,s xk+1,syk−1,s + xk−1,syk+1,s −xk+1,syk+1,s

x2
k−1,s −2xk−1,sxk+1,s x2

k+1,s




as shown in section 8.3 of [3].
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4 Second derivatives at the splitting point

The splitting point of the complete triangle has the master coordinates âs = [0, 0]T
for all three subtriangles. Our hypothesis that the second derivatives of the shape
functions do not jump at the splitting point therefore reads

(D2Ψ |T1)(âs) = (D2Ψ |T2)(âs) = (D2Ψ |T3)(âs).

This is a comparison of 3× 9 values evaluated on 3 subelements, which gives 81
values which are to be shown as being 3 same sets of 27 values per set. After
splitting the vector Ψ into the vertex related parts Ψ1, Ψ2, Ψ3, one can use (1)
(reformulated such that now the index of Ψ∗ is constant and the index of T∗ varies)
and (4) to write

A := (D2Ψk|Tk
)(âs) = Fk (D̂2Ψk|Tk

)(âs) = Fk (D̂2Φ̂0)(âs)HkMk,

B := (D2Ψk|Tk+1)(âs) = Fk+1 (D̂2Ψk|Tk+1)(âs)
= Fk+1 (D̂2Φ̂2)(âs)Hk+1 + Fk+1 (D̂2β̂)(âs)(bkk+1)T + Fk+1 (D̂2Φ̂0)(âs)Hk+1Mk,

C := (D2Ψk|Tk−1)(âs) = Fk−1 (D̂2Ψk|Tk−1)(âs)
= Fk−1 (D̂2Φ̂1)(âs)Hk−1 + Fk−1 (D̂2β̂)(âs)(bkk−1)T + Fk−1 (D̂2Φ̂0)(âs)Hk−1Mk

for any fixed k from 1 to 3. It remains to show A = B = C; this is done in the
following by evaluating all necessary terms.

The second master derivatives of all basic functions at the splitting point are

(D̂2Φ̂0)(âs) =



−6 −4 0
−6 −2 −2
−6 0 −4


 , (D̂2Φ̂1)(âs) =



6 −2 0
0 0 0
0 0 0


 ,

(D̂2Φ̂2)(âs) =



0 0 0
0 0 0
6 0 −2


 , (D̂2β̂)(âs) =



0
1
0


 .

This yields

Fk(D̂2Φ̂1)(âs) = 1
µ2
k




6y2
k−1,s −2y2

k−1,s 0
−6xk−1,syk−1,s 2xk−1,syk−1,s 0

6x2
k−1,s −2x2

k−1,s 0


 ,

Fk(D̂2Φ̂2)(âs) = 1
µ2
k




6y2
k+1,s 0 −2y2

k+1,s
−6xk+1,syk+1,s 0 2xk+1,syk+1,s

6x2
k+1,s 0 −2x2

k+1,s


 ,

Fk(D̂2β̂)(âs) = 1
µ2
k




−2yk−1,syk+1,s
xk+1,syk−1,s + xk−1,syk+1,s

−2xk−1,sxk+1,s


 ,

6

and

Fk(D̂2Φ̂0)(âs)

= 1
µ2

k




−6(yk−1,s−yk+1,s)2 −4y2
k−1,s+4yk+1,syk−1,s ...

6(xk−1,s−xk+1,s)(yk−1,s−yk+1,s) 4xk−1,syk−1,s−2(xk−1,syk+1,s+xk+1,syk−1,s) ...

−6(xk−1,s−xk+1,s)2 −4x2
k−1,s+4xk+1,sxk−1,s ...

4yk+1,syk−1,s−4y2
k+1,s

4xk+1,syk+1,s−2(xk−1,syk+1,s+xk+1,syk−1,s)
4xk+1,sxk−1,s−4x2

k+1,s




= 1
µ2

k

[ −6y2
k−1,k+1 −4yk−1,syk−1,k+1 4yk+1,syk−1,k+1

6xk−1,k+1yk−1,k+1 2xk−1,syk−1,k+1+2xk−1,k+1yk−1,s −2xk+1,syk−1,k+1−2xk−1,k+1yk+1,s
−6x2

k−1,k+1 −4xk−1,sxk−1,k+1 4xk+1,sxk−1,k+1

]
.

For the next steps we recall

µk = xk+1,syk−1,s − xk−1,syk+1,s and Hk =



1 0 0
0 xk+1,s yk+1,s
0 xk−1,s yk−1,s


 =



1 0 0
0 fT

k+1
0 fT

k−1


 .

This yields

Fk(D̂2Φ̂0)(âs)Hk = 1
µ2

k



−6y2

k−1,k+1 −4µkyk−1,k+1 0
6xk−1,k+1yk−1,k+1 2µkxk−1,k+1 −2µkyk−1,k+1
−6x2

k−1,k+1 0 4µkxk−1,k+1


 ,

Fk+1(D̂2Φ̂2)(âs)Hk+1 = 1
µ2

k+1




6y2
k−1,s −2y2

k−1,sf
T
k,s

−6xk−1,syk−1,s 2xk−1,syk−1,sf
T
k,s

6x2
k−1,s −2x2

k−1,sf
T
k,s




= 1
µ2

k+1




y2
k−1,s

−xk−1,syk−1,s
x2
k−1,s


 (ck)T,

Fk−1(D̂2Φ̂1)(âs)Hk−1 = 1
µ2

k−1




6y2
k+1,s −2y2

k+1,sf
T
k,s

−6xk+1,syk+1,s 2xk+1,syk+1,sf
T
k,s

6x2
k+1,s −2x2

k+1,sf
T
k,s




= 1
µ2

k−1




y2
k+1,s

−xk+1,syk+1,s
x2
k+1,s


 (ck)T,

Fk+1(D̂2β̂)(âs)(bkk+1)T = 1
µ2

k+1




−2yk,syk−1,s
xk−1,syk,s + xk,syk−1,s
−2xk,sxk−1,s


 (bkk+1)T,

Fk−1(D̂2β̂)(âs)(bkk−1)T = 1
µ2

k−1




−2yk+1,syk,s
xk,syk+1,s + xk+1,syk,s
−2xk+1,sxk,s


 (bkk−1)T.
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