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NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

214313 21451 857252 2.844 10 0.703 1.7E− 10

27 2.633 4.3E− 07 481 1.6E− 03

246293 24994 985172 1.875 10 0.430 1.1E− 10

22 2.867 9.3E− 08 430 1.3E− 03

275101 27982 1100404 1.633 10 0.609 7.2E− 11

25 3.617 7.6E− 08 208 1.2E− 03

Table 8: results of the computation of the example from section 6.3
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A.3. Results of A3D-TEAni in the comparison computation
In the following table the results for the computation of the example from section 6.3
are shown.

NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

325 24 1300 0.008 12 0.016 2.8E + 01

10 0.008 1.5E− 02 12 6.0E− 02

1241 108 4964 0.023 11 0.016 1.1E− 03

17 0.008 3.3E− 05 14 3.5E− 02

2313 206 9252 0.031 16 0.000 1.4E− 07

17 0.039 2.0E− 05 10 2.6E− 02

3057 276 12228 0.031 12 0.008 1.4E− 11

16 0.039 6.9E− 06 20 1.8E− 02

4581 416 18324 0.055 10 0.008 1.1E− 11

19 0.055 5.0E− 06 39 1.6E− 02

7523 689 30092 0.094 10 0.016 1.5E− 11

20 0.078 4.6E− 06 99 1.4E− 02

14571 1389 58284 0.188 10 0.023 4.5E− 11

20 0.125 6.5E− 06 76 1.0E− 02

19707 1935 78828 0.258 10 0.023 3.7E− 11

22 0.195 1.7E− 06 179 7.5E− 03

32789 3188 131156 0.438 10 0.039 4.4E− 11

23 0.328 2.4E− 06 304 5.4E− 03

54705 5344 218820 0.719 10 0.078 4.0E− 11

23 0.477 2.1E− 06 262 3.9E− 03

73357 7206 293428 0.945 10 0.109 5.9E− 11

23 0.648 6.5E− 07 952 3.2E− 03

140993 13912 563972 1.824 10 0.242 1.7E− 10

26 1.492 1.1E− 06 1067 2.1E− 03
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1. Introduction
This work was written in the framework of the “Cluster of Excellence Merge”. The
goal of this cluster is to create lightweight structures with different abilities, for exam-
ple integrated sensors. Nevertheless, these structures have to fulfill some mechanical
requirements, besides these additional abilities.
Therefore it is necessary to simulate these structures and their behaviour under me-

chanical and thermal loads. For this simulation a mathematical description of the
structure-properties is needed. This work is one first step on the way of describing
the properties of such complex structures.
For this purpose the mathematical description of the behaviour of material in the

case of linear thermoelasticity is investigated in this paper. At first, this is done, by
increasing the case of linear elasticity by adding the thermal behaviour of the material
in a very general way. Afterwards, this general setting is restricted to two special cases
and some numerical results for both cases will be represented.

1.1. Notation
In the following chapters different types of tensors will occur. For better understanding
of the following sections we use nearly strict different types of letters for those different
types of tensors.
In this work, small Greek letters are used for scalar values and small boldface Latin

letters for tensors of first order. In addition, we use bold and capitalised Latin letters
for tensors of second order, and big, fractured letters for tensors of fourth order. An
overview of these rules is given in table 1. Moreover, T1 stands for the space of first
order tensors, which are the vector functions over a given domain Ω, T2 stands for the
space of second order tensor fields and so on.

α ∈ T0 scalar function: R3 ⊃ Ω→ R

a ∈ T1 tensorfield of first order: R3 ⊃ Ω→ R3

A ∈ T2 tensorfield of second order: linear mappings: T1 → T1

A ∈ T4 tensorfield of fourth order: linear mappings: T2 → T2

Table 1: Notation in this work

This rules are only nearly strict, because there are some exceptions in this work. The
reason for this exceptions are some widely accepted names in mechanical literature.
Therefore, we will use this names for a better understanding of the following chapters,
although they are against the notation explained in table 1. This exceptions are in table
2.
Additional to this notation remarks for naming tensors, there will be some remarks

for tensor operations. The symbol “⊗” for the product of two tensors is suppressed in

1



ε linearised strain tensor (tensor of second order, see section 2.2)

σ Cauchy stress tensor (tensor of second order, see section 2.1)

κ heat conduction tensor (tensor of second order, see section 2.4)

X point of the reference configuration (see section 2.1)

Gi covariant basis (see (1))

Gi contravariant basis (see (2))

Table 2: Exceptions from table 1

this work, i.e. for two tensors a,b the tensor product will be written as “ab” instead of
“a⊗b”. Moreover, the inner product of two tensors a and b will be written as a ·b and
the double contraction of two tensors A,B of at least second order will be denoted by
“A : B”.

1.2. Differential geometry
We are looking on a parametrised set Ω ⊂ R3, which is given by

Ω =
{
X(η1, η2, η3) | (η1, η2, η3) ∈ P ⊂ R3

}
.

Here, X : P → R3 is a function, which describes the points of Ω, P is the parameter set
and ηi (i = 1, 2, 3) are the parameters.
For this parametrisation we can define the, so called, covariant basis by

Gi = ∂

∂ηi
X, (1)

and the contravariant basis by

Gi ·Gj = δji , (2)

where δji is given by

δji =




1 if i = j

0 if i 6= j
.

With the help of these tensors of first order two operators can be defined by

Grad := Gj ∂

∂ηj
(3)

Div := Grad·,

2

steps, which means that we already have the exact solution.

NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

135 8 120 0.000 3 0.000 2.0E + 01

2 0.000 7.9E− 01 3 2.6E− 05

397 29 308 0.000 5 0.000 2.8E− 03

7 0.000 1.2E− 05 9 1.3E− 09

1095 92 768 0.008 6 0.029 3.2E− 08

9 0.002 5.4E− 10 17 7.5E− 14

2449 211 1676 0.002 6 0.002 8.2E− 13

11 0.002 3.3E− 14 23 1.4E− 15

5479 505 3572 0.006 8 0.002 1.2E− 29

9 0.004 2.7E− 14 27 4.3E− 15

10517 988 6748 0.008 9 0.021 1.6E− 29

9 0.008 3.6E− 14 87 8.3E− 15

21877 2171 13448 0.023 10 0.010 2.3E− 29

9 0.039 6.5E− 14 168 1.1E− 14

48973 4880 30008 0.039 10 0.029 3.6E− 29

9 0.070 9.1E− 14 72 2.3E− 14

61277 1219 37324 0.041 11 0.043 4.0E− 29

9 0.074 7.6E− 14 34 2.7E− 14

66313 6665 40364 0.021 11 0.045 4.4E− 29

9 0.076 6.3E− 14 293 2.9E− 14

116269 11803 70292 0.096 15 0.105 5.8E− 29

9 0.104 1.6E− 13 971 4.1E− 14

Table 7: results of the computation for testing the thermal behaviour
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NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

2923 275 1880 0.004 18 0.000 5.4E− 01

12 0.004 6.1E + 01 38 2.2E− 01

5519 541 3436 0.004 13 0.004 3.5E + 00

21 0.027 1.4E + 00 39 1.6E− 01

7821 814 4632 0.008 21 0.012 1.6E + 00

17 0.008 6.1E + 00 51 1.2E− 01

11477 1171 6916 0.016 13 0.020 6.8E− 01

16 0.031 3.9E + 00 79 9.8E− 02

16989 1738 10200 0.020 19 0.027 3.6E− 01

14 0.039 9.7E + 00 261 8.3E− 02

33261 3607 19008 0.031 14 0.035 4.8E− 01

24 0.102 5.1E− 01 369 5.6E− 02

56193 6211 31548 0.051 20 0.070 3.7E− 01

21 0.117 2.3E− 01 372 3.7E− 02

79415 8815 44500 0.066 17 0.066 2.7E− 01

22 0.156 2.4E− 01 1875 2.9E− 02

196149 22059 108540 0.176 30 0.320 1.7E− 01

23 0.371 1.3E− 01 2957 1.9E− 02

Table 6: results of the computation with the module A3D-TEAni

A.2. Test of the thermal behaviour
In this section the output for the computation of the example from Sec. 6.2 is shown.
As seen in (27) the displacement in this example is a linear function over our domain Ω.
Therefore, the exact solution is a part of the discretized FE space Vh, which is not the
case in general. But in this setting, it means that the solution can be computed exactly.
This can also be seen in the results of the error estimator in the last column of Table

7. There we see that the estimated error is nearly zero after the first one/two refinement

22

where Grad· is defined by

Divv = Grad · v = Gj · ∂
∂ηj

v =: Gj · v,j, (4)

for v ∈ (H1(Ω))3. Note that from now on, as well as in the equations (3) and (4),
the Einstein summation convention is used. This means that all indices, which are
occurring twice, imply the summation from one to three.
Furthermore, for two tensors A,B ∈ T2 the double contraction is the trace of the dot

product of A and B, i.e.

A : B = tr (A ·B) = tr (B ·A).

2. Theoretical Background
In this chapter we will give a short introduction in the theory of linear thermoelasticity.
Therefore, in the next section the general problem setting is introduced. In section 2.2
the theory of linear elasticity is shortly explained, in section 2.3 this theory is expanded
to the case of thermoelasticity, and section 2.4 concerns the heat equation.

2.1. Problem setting
The parametrised set Ω ⊂ R3 from section 1.2, described by

Ω =
{
X(η1, η2, η3) | (η1, η2, η3) ∈ P ⊂ R3

}
,

is, from now on, called reference configuration. In the rest of the work the dependence
of X(η1, η2, η3) is suppressed. We simply write X for a point of Ω.
The set Ω can, for example, describe a component of a mechanical device. The

first part of the problem is how this component is deformed under mechanical forces.
For a mathematical approach we first need a description of the component after the
deformation. Therefore, the set Ωt is introduced, which is described by

Ωt =
{
x(η1, η2, η3) | (η1, η2, η3) ∈ P ⊂ R3

}
. (5)

This configuration describes the mechanical component after the deformation. For a
description of the deformation a function Φ : Ω→ Ωt is introduced, which is given by

Φ(X) = x.

To understand this formula we have to remember that X as well as x depend on the
parameters (η1, η2, η3) ∈ P . Although the deformation is described by Φ it is not the
function we are interested in. We rather are interested in the information how a point
X has changed in relation to its position in the reference configuration. Therefore the
displacement vector field u is introduced

u = Φ(X)− X = x− X. (6)

It is a function of X as well as of (η1, η2, η3).

3



2.2. Linear elasticity
In the theory of linear elasticity a linear relation between the displacement and the
resulting strains is assumed. This relation is given by the linearised strain tensor
ε(u), which is described through

ε(u) = 1
2
(
Gradu + (Gradu)>

)
. (7)

So, ε(u) is a symmetric tensor of second order. Besides the strains in the component we
are also interested in the stresses, which occurs.These stresses are in general described
by the Cauchy stress tensor σ, which is a symmetric second order tensor, too.
In the case of linear elasticity the relation between ε(u) and σ is also assumed to be

linear, given by a tensor of fourth order C, with

σ = C : ε(u). (8)

The tensor C is called material law or stiffness tensor.
Ongoing information about this topic can be found in [Bow10, chapter 2.1].

2.3. Linear thermoelasticity
For a thermodynamical approach it is assumed that the linearised strain tensor (7) can
be splitted into two parts, i.e.

ε = εM + εT . (9)
Here, εM represents the strain caused by mechanical loads, whereas the second term εT
stands for the strain caused by thermal expansion. This thermal expansion part εT can
be written as

εT = ϑT,
where T is a symmetric tensor of second order, the so called thermal expansion
tensor, and ϑ = θ − θ0 is the difference between a reference temperaturefield θ0
and the recent temperaturefield θ. The thermal expansion tensor T describes the
expansion behaviour of the material in R3.
Furthermore, the formula for the stress tensor has changed too. Additional to equation

(8), a second part, describing thermal effects, is added:

σ = C : ε+ ϑM. (10)

In this equation, the symmetric second order tensor M is the stress-temperature
tensor.
Now, we want to get a relation between T and M. Therefore, it is assumed that the

stresses are still only caused by the mechanical strains, i.e. the equation

σ = C : εM (11)

holds.

4

NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

7821 814 4632 0.004 22 0.008 1.5E + 00

20 0.031 2.4E + 00 50 1.2E− 01

11395 1164 6860 0.012 13 0.023 6.8E− 01

19 0.035 1.5E + 00 64 9.8E− 02

15941 1619 9628 0.016 15 0.023 2.5E− 01

15 0.039 4.2E + 00 241 8.6E− 02

31035 3341 17844 0.023 15 0.027 5.5E− 01

21 0.082 1.7E + 00 345 5.9E− 02

52483 5791 29528 0.039 19 0.059 3.7E− 01

26 0.129 1.2E− 01 523 4.0E− 02

85467 9452 48028 0.063 16 0.078 3.3E− 01

26 0.203 1.3E− 01 293 2.8E− 02

167197 18685 93044 0.125 32 0.270 1.4E− 01

26 0.371 6.3E− 02 2614 2.1E− 01

Table 5: results of the computation with the module A3D-ThEl

NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

225 16 180 0.008 8 0.008 4.9E + 01

2 0.012 1.2E + 02 8 1.0E + 00

979 86 668 0.000 13 0.004 1.0E + 01

3 0.002 4.0E + 05 6 3.4E− 01

1433 128 964 0.008 12 0.027 5.5E + 00

13 0.004 4.2E + 01 19 2.9E− 01
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Figure 16: 11 steps,
A3D-ThEl

Figure 17: 12 steps,
A3D-ThEl

Figure 18: 11 steps,
A3D-TEAni

NetFine: Assem : PCGM #Elems est.Err.

#Nodes #Elems #UnKns time[s] It time[s] <r,w> to ref.

225 16 180 0.002 8 0.000 4.9E + 01

2 0.000 1.2E + 02 10 1.0E + 00

979 86 668 0.004 13 0.000 1.0E + 00

3 0.002 4.0E + 05 6 3.4E− 01

1433 128 964 0.002 12 0.000 5.5E + 00

13 0.004 4.2E− 01 19 2.9E− 03

2923 275 1880 0.004 18 0.000 5.4E− 01

13 0.008 3.5E + 01 41 2.2E− 01

5719 562 3548 0.004 13 0.002 3.7E + 00

19 0.020 3.1E + 00 36 1.5E− 01

20

The substitution of ε from equation (9) in equation (10) leads to

σ = C : εM + ϑC : T + ϑM.

With respect to equation (11) we get the general relation between T and M by

0 = ϑC : T + ϑM⇒M = −C : T.

Therefore, the formula for the stress tensor is finally:

σ = C : (ε− ϑT). (12)

2.4. Heat equation
If we assume that the evolution of temperature within the is independent of the defor-
mation of the domain, we can simply look onto heat equation, which is given by:

cρρ
∂
∂t
θ(X, t)−Div(κ(X) ·Grad θ(X, t)) = γ(X, t) X ∈ Ω

θ(X, 0) = θ0(X) X ∈ Ω
∂
∂nθ(X, t) = θb X ∈ Γn, t > 0

θ(X, t) = 0 X ∈ Γd, t > 0,





(13)

where cρ is the heat capacity, ρ is the density, κ is the heat conduction tensor, γ repre-
sents a heat source and θb is the heat flow over the boundary. As initial condition the
initial temperature field θ0 from section 2.3 is used.
From the above equations follows that the temperature difference ϑ from (12)i has a time
dependency, if we look at the problem (13). This means the subscript t of the deformed
domain Ωt can be interpreted as time dependency, so Ωt represents the deformed domain
over time.
But for our purposes we restrict ourselves to the stationary heat equation, i.e. we look
onto

−Div(κ(X) ·Grad θ(X)) = γ(X) X ∈ Ω
∂
∂nθ(X) = θb X ∈ Γn
θ(X) = 0 X ∈ Γd.





(14)

Note, that we do not longer need cρ and ρ of the material we want to simulate.

3. Special Cases of Linear Thermoelasticity
3.1. Isotropic material
In case of isotropic material the mechanical behaviour is fully described by two param-
eters λ and µ, the so called Lamé parameters. The material law in this case is well

5



known to be
C = λII + 2µI, (15)

where I is the identity tensor of second order and I is given through I : V = V for all
symmetric V ∈ T2. Because of the isotropy of the material the expansion behaviour, as
well as the heat conduction, is the same in all directions. Therefore, T and κ can be
described as

T = αbI and κ = κcI (16)

where αb is the thermal expansion coefficient, and κc is the heat conduction.
In the special case of isotropic material it is easy to compute the other quantities given in
sections 2.2 and 2.3. Therefore, we use the descriptions for C and T from the equations
(15) and (16). It follows for the stress-temperature tensor

−M = C : T
= (λII + 2µI) : T
= tr (T)λI + 2µT (17)
= 3αbλI + 2µαbI
= αb(3λ+ 2µ)I. (18)

So, with (12) and (15) we get the equation

σ = λtr (ε)I + 2µε− ϑαb(3λ+ 2µ)I,

for the stresses in the linear thermoelastic case.

3.2. Transversely isotropic material
In the case of transversely isotropic material it exists a direction at every point X ∈ Ω ,
where the material behaves in a different way than perpendicular to this direction. This
special direction can be described by a vector field a : Ω → S2 where S2 is the unit
sphere in R3, i.e.

S2 =
{
x ∈ R3 | ‖x‖2 = 1

}
.

For the case of transverse isotropy the material law is given through

C = λII + 2µI + α(aaI + Iaa) + 2(µa − µ)Ĉ + βaaaa, (19)

which can be found for example in [WM10, chapter 2]. In this formula, the tensor Ĉ is
defined by

Ĉ : V = aa ·V + V · aa, for V ∈ T2.

The transversely isotropic material behaviour is often described by the mechanical con-
stants E, Ea G, Ga, ν, νab, and νba. These quantities are explained in table 3. The

6
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Figure 15: stresses within the component, rescaled

A. Results of the Computation
A.1. Comparison of the results in the isotropic case
In this section the results of the re-computation of the problem from [Glä09, Sec. 2.1.6]
can be found. In Table 5 we see the results of the computation with the module A3D-
ThEl, which already existed, and in Table 6 we see the results of the module A3D-TEAni,
where the new aspects were implemented. As we can see, the results at the beginning
of the computation (the first 3 steps) are exactly the same inclusive the estimated error.
This means the error estimator, which is mainly the one from [Ver97, Sec. 6] was right
adopted. After the first three steps the result are slightly different, which is caused in
the difference of the computation of the different parts, like for example the element
matrices. Additional, the resulting meshes after 11 refinement steps are also slightly
different, as we see in Fig. 3 and Fig. 4. These differences are substantiated by the
different computation of the error estimator and thereby a different number of marked
elements, as we can see in Table 5 and Table 6. Therefore, the resulting mesh contains
of a different number of elements. Despite these differences the computation during the
two modules is doing the same, as we can see in the Fig. 16 to 18 But despite these
differences nearly the same mesh is generated. We also see that the mesh from Fig. 18
lies somewhere between the meshes from Fig. 16 and Fig. 17.

19



areas with the biggest stresses as we see in Fig. 14 or Fig. 15.

Figure 13: refined net after 14 steps
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Figure 14: stresses within the component
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E Elastic modulus

Ea Elastic modulus in direction a

G shear modulus

Ga shear modulus in direction a

ν Poisson’s ratio in the isotropy plane

νab Poisson’s ratio for pulling in a direction, contraction in the isotropy plane

νba Poisson’s ratio for pulling perpendicular to a, contraction in a direction

Table 3: constants for describing the mechanical behaviour of transversely isotropic ma-
terial

relation between these constants and the parameters λ, µ, α, µa, and β from equation
(19) can be found in [WM10, chapter 3] and is given by:

λ = E(ν + νabνba)/D

µ = G

µa = Ga

α = E(νab(1 + ν − νba)− ν)/D

β = (Ea(1− ν2)− E(ν + νabνba)− 2E(νab(1 + ν − νba)− ν)) /D − 4Ga + 2G





(20)

where the divisor D is described by the equation

D = 1− ν2 − 2νabνba − 2νabνbaν.

Independent of this relation, we note that the first part of C from equation (19) is
identical with the isotropic part (15). If the material behaviour in direction a is the
same as perpendicular to it we are again in the isotropic case from section 3.1. In this
case the anisotropic part of C vanishes and only the isotropic part from equation (15) is
left over. This can easily be seen by using the equalities

E = Ea G = Ga ν = νab = νba,

which characterise the same behaviour in direction a and the isotropy plane. This leads
to α = β = µa − µ = 0 (see [WM10, chapter 3]). Thus, equation (15) is only a special
case of equation (19).
Of course, besides the changes in the mechanical behaviour, the thermal behaviour is

different too. In the direction a the thermal expansion, as well as the heat conduction,
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is normally different from them in the isotropy plane. Therefore, the thermal expansion
tensor T and the heat conduction tensor κ can be written as

T = αaaa + αb(I− aa) = αbI + (αa − αb)aa, (21)
κ = κaaa + κb(I− aa) = κabI + (κa − αb)aa. (22)

Here αa is the thermal expansion coefficient in the a direction and αb is this coefficient
in the isotropy plane, as κa and κb for κ. Analogously to C, T and κ consist of an
isotropic part and an anisotropic part, dependent on a. This part vanishes if the thermal
behaviour is the same in direction a as perpendicular to it. Again, equation (16) is only
a special cases of the equations (21) and (22).
Furthermore, the given representations of T and κ can be described intuitively. If we
apply the part aa to a first order tensor v, then aa · v is the orthogonal projection onto
the direction a. This means, that (I−aa) ·v is the part of v in the isotropy plane. This
simply means that, when we apply T (or κ respectively) to v

T · v = αa aa · v︸ ︷︷ ︸
a−part

+αb (I− aa) · v︸ ︷︷ ︸
isotropic part

,

that the a-part of v is multiplied with αa (or κa) and the part in the isotropy plane is
multiplied with αb (or κb). This is exactly the desired behaviour.

4. Weak Formulation
The formulas describing a thermoelastic problem are the equilibrium of forces

Divσ(X) + f(X) = 0 X ∈ Ω

σ(X) · n = fb X ∈ ΓN
u = 0 X ∈ ΓD





(23)

on the one hand, with ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω, and in our case ( see section
2.4) the stationary heat equation

Div(κ(X) ·Gradϑ(X)) = γ(X) X ∈ Ω
∂ϑ
∂n = ϑb X ∈ Γ̃N
ϑ = 0 X ∈ Γ̃D





(24)

on the other hand. Analogously, in the problem (24) the relations Γ̃D ∩ Γ̃N = ∅ and
Γ̃D∪ Γ̃N = ∂Ω are valid. A complete derivation of the equations from (23) can be found,
for example, in [Bow10, chapter 2.3].
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u1 = 0, ϑ = 1K

u2 = 0, ϑ = 1K

u3 = 0, ϑ = 1K

Figure 11: used boundary conditions in the comparison computation

“Abaqus”.
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Figure 12: results with “Abaqus” (left) and the new module A3D-TEAni (right)

Obviously, there are some slight differences between the results in the x1- and the
x2-component of the displacement, but the results for the x3-component are the same.
The differences are likely caused by the adaptivity of our implementation.
The resulting mesh, with the new module can be seen in Fig. 13. There we can see

how the mesh was adaptively refined along the interface between the two layers and
along the line, where the Dirichlet boundary conditions vanish. These are exact the
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x1
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Figure 10: structure of the upper layer (left) and the lower layer (right)

The used boundary conditions for the computation are shown in Fig. 11 and the used
material block is

# MATERIAL: 2

##Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 16 2.5E2 .2 2E2 .3 1.2E2 1 1.0 0.0 0.0 1.2 1. 0.001 0.005 0. 0. 0. 0.

2 16 2.5E2 .2 2E2 .3 1.2E2 1 0.0 1.0 0.0 1.2 1. 0.001 0.005 0. 0. 0. 0.

With this material block the used material parameters for both materials are:

Ea = 250 MPa E = 200 MPa κa = 1.2

νab = 0.2 ν = 0.3 κb = 1

Ga = 120 MPa αa = 0.001K−1 αb = 0.005K−1

The different material behaviour is caused by the parameters six to nine, which are
describing different fibre directions.
The results for this problem with A3D-TEAni, as well as, with “Abaqus” can be

seen in Fig. 12. Thanks to Niels Goldberg, for the computation of this problem with
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For the weak formulation of problem (23) the equation is multiplied with a test func-
tion v ∈ V, with

V :=
{
v ∈ (H1(Ω))3 |v(X) = 0 ∀X ∈ ΓD

}
.

After integration by parts, we have
∫

Ω

σ : ε(v) dV =
∫

Ω

f · v dV +
∫

∂Ω

n · σ · v dS.

Inserting the Neumann boundary conditions from (23) we finally get
∫

Ω

σ : ε(v) dV =
∫

Ω

f · v dV +
∫

ΓN

fb · v dS.

This is the general form of the weak formulation of the equilibrium of forces. Now we
substitute (12), and obtain

∫

Ω

(ε(u)− ϑT) : C : ε(v) dV =
∫

Ω

f · v dV +
∫

ΓN

fb · v dS

∫

Ω

ε(u) : C : ε(v) dV −
∫

Ω

ϑT : C : ε(v) dV =
∫

Ω

f · v dV +
∫

ΓN

fb · v dS

∫

Ω

ε(u) : C : ε(v) dV =
∫

Ω

ϑT : C : ε(v) dV +
∫

Ω

f · v dV +
∫

ΓN

fb · v dS.

This can be written as
a(u,v) = b(v, ϑ)

with a bilinear form a and a linear functional b given by

a(u,v) =
∫

Ω

ε(u) : C : ε(v) dV,

and

b(v, ϑ) =
∫

Ω

ϑT : C : ε(v) dV +
∫

Ω

f · v dV +
∫

ΓN

fb · v dS.

With these two functions (23) is reformulated in a weak sense as:

Find u s.t. a(u,v) =b(v, ϑ) ∀v ∈ V. (25)

We can see that the temperature difference ϑ is needed for the description of b, i. e. we
first have to solve (24). It’s weak formulation is:

Find ϑ s.t. c(ϑ, ψ) = Θ(ψ) ∀ψ ∈ Q, (26)
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with a symmetric bi-linear form c and a linear functional Θ defined by

c(ϑ, ψ) =
∫

Ω

(κ · ∇ϑ) · ∇ψ dV,

Θ(ψ) =
∫

Ω

γψ dV +
∫

ΓN

ϑb · ψ dS,

and the set Q, given by

Q =
{
ψ ∈ H1(Ω) |ψ(X) = 0 ∀X ∈ Γ̃D

}
.

These two weak formulations ((25) and (26)) are the starting point for a finite element
discretisation.

5. Implementation
The material behaviour from section 3.2 was implemented as a module of the software
SPC-PM3-AdH, which was developed during the SFB 393. Further information about
the general routines can be found in [BMP01]. Additional, a non-complete list of avail-
able modules as well as a detailed description of the general handling of these modules
can be found in [Glä09, section 2]. For more information about the used data-structures
and the internal structure of the program SPC-PM3-AdH see [Mey14a] and [Mey14b].
The implementation of the module for linear thermoelasticity in case of transverse

isotropy based in big parts on merging two other modules. The first module was the
module for linear thermoelasticity in the isotropic case, explained in [Glä09, section 2.1].
The second one was the module for transverse isotropy in the linear elastic case, which
based on the results from [WM10].
The geometry of the problem is given by a .std-file, the structure of which is ex-

plained in [Loh98b]. Furthermore the format of the separate blocks in this structure is
explained in [Loh98a]. For the usage of the module for thermoelasticity with transverse
isotropy, the user has to change the general structure of the .std-file on two places. At
first, the header has to be fitted to the new module. This done by including the com-
mands #MAX_MAT_DATA : 17 and #DEG_OF_FREE : 4 in the header because the number
of parameters, which are needed for a description of a material, and the number of the
degrees of freedom per node is bigger then the default value. The second change is the
#Material-block, which consists of 17 parameters. The meaning and the order of the
parameters is explained in table 4. In this list the sixth parameter has a special function.
It is a switch for choosing isotropic or transversely isotropic material. If this parameter
is zero, the parameters 1, 2, 5, 7, 8, 9, 10 and 12 are simply ignored and the isotropic
material is defined by the parameters 3, 4, 11 and 13. Nevertheless, the material block
has to consist of 17 parameters in this case, too. The right hand sides of the equations
(23) and (24) are given elementwise, by defining different materials for elements with
different right hand sides. Examples of the material block for different constellations
and materials are given in section 6.
This resulting implementation was tested in three steps:
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Figure 6: u1 in the example from Fig. 5 with the values from (28)
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Figure 7: u2 in example from Fig. 5 with the values from (28)
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Figure 8: u3 in example from Fig. 5 with the values from (28)
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u1 = 0, ϑ = 2K
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u3 = 0, ϑ = 2K
fibres

Figure 5: schematic description

setting the corresponding parts of the displacement u to zero on these faces. Addi-
tional, the temperature of the cuboid is increased by 2K. So, we can expect that for the
displacement within the cuboid the equation

u((x1, x2, x3)>) = ϑ




αax1

αbx2

αbx3




(27)

holds. In the figures 6 to 8 the different components of the displacement for the values

l1 = 4 αa = 0.001K−1

l2 = 2 αb = 0.005K−1

l1 = 1

(28)

are shown.
Obviously, the results are exactly what we have expected. The material block for this

computation was:

# MATERIAL: 1

##Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 17 2E2 0.3 2.5E2 .2 1.2E2 1 1.0 0.0 0.0 1.2 1. 0.001 0.005 0. 0. 0. 0.

The first five values have no influence on the resulting displacement, because the bound-
ary conditions are chosen in such a way that no mechanical strains occurs. The expansion
coefficients from (28) are the 12. and 13. value in this block.
The computational output for the example of this section can be seen in table 7 in
section A.2.

6.3. Comparison with “Abaqus”
In the last step the results for a more complex example are compared to them from
a computation with “Abaqus”, which is a commercial FEM software. Therefore, the
behaviour of the component from Fig. 9 is simulated.
The component consist of two layers of transverse isotropic material and different fibre

directions a for the layers are chosen. In the upper layer the direction is au = (1, 0, 0)>
and in the lower layer the direction is al = (0, 1, 0)>. This can be seen in Fig. 10.
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nr. meaning nr. meaning

1 Ea (see Table 3) 9 a3 (x3-component of a)

2 νab (see Table 3) 10 κa (see end of Sec. 3.2)

3 E (see Table 3) 11 κb (see end of Sec. 3.2)

4 ν (see Table 3) 12 αa (thermal exp. coeff. (see Sec. 3.2))

5 Ga (see Table 3) 13 αb (thermal exp. coeff. (see Sec. 3.2))

6 switch: 14 f1 (x1-component of f) (see (23))

0 = isotropic material 15 f2 (x2-component of f) (see (23))

1 = transverse isotropic material 16 f3 (x3-component of f) (see (23))

7 a1 (x1-component of a) 17 γ heat source (see (24))

8 a2 (x2-component of a)

Table 4: meaning of the material parameters in the .std-file

i) comparison of the results in the isotropic case

ii) test of the thermal behaviour

iii) comparison with “Abaqus”

In the first step the results for a computation in the isotropic case were compared to the
results of the module for linear thermoelasticity for isotropic materials. As explained
above the isotropic case can be characterised by two different parameter settings for the
material. The first case is to switch the sixth material-parameter to zero. The second
way to get isotropic material is choosing an arbitrary direction a and set Ea = E,
ν = νab, Ga = E/(2(1 + ν)), αa = αb, and κa = κb.
In the next step a problem with f ≡ 0 and γ ≡ 0 is formulated, i.e. there are no

body forces and no heat sources. The only effect investigated, is the displacement as
consequence of the anisotropic expansion behaviour. Therefore the boundary conditions
are chosen in such a way that the only appearing effect is thermal expansion.
In the last step a more complex computation was made. The results of this compu-

tation were compared to the results of the same problem computed with “Abaqus”, a
commercial FEM software.
Some results of these three steps are given in the next section. Furthermore the output

of the new module A3D-TEAni in each of the three cases can be found in appendix A.
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6. Numerical Examples
In this section some results of testing the implementation are presented. Additional, the
parameters used in every example are given with the material blocks from the .std-file.

6.1. Comparison of the results in the isotropic case
As mentioned at the end of section 5, at first the results in the isotropic case were
investigated. For this purpose the example from [Glä09, section 2.1.6] is computed
again. Therefore, the material block from the original file bi.std was fitted to the new
requirements:

# MATERIAL: 2

##Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 17 0 0 2E2 .3 0 0 0.0 0.0 0.0 0. 1. 0.0 0.001 0. 0. 0. 0.

2 17 2E2 0.3 2E2 .3 76.923077 1 1.0 0.0 0.0 1. 1. 0.005 0.005 0. 0. 0. 10.

Each entry starts with the material-number and the number of the material parameters,
i.e. the seventeen parameters for describing the material behaviour from table 4 are
starting in the third column. For a better understanding the number of the material
parameters corresponding to table 4 is shown in the second line. Obviously, material
one is assumed as isotropic by switching the sixth parameter to zero. Therefore, the
parameters 1, 2, 5, 7, 8, 9,10 and 12 are simply set to zero, because they are ignored.
Whereas, material two is isotropic by setting the same material behaviour in the fibre
direction as described at the end of section 5.
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Figure 1: 12 steps, A3D-ThEl
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Figure 2: 12 steps, A3D-TEAni

In the Fig. 1 and 2 the computed displacement field after 11 refinement steps is
shown. In the left picture we can see the result with the old module A3D-ThEl and on
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Figure 3: 12 steps, A3D-ThEl Figure 4: 12 steps, A3D-TEAni

the right hand side the result of the new implementation is shown. There is no apparent
difference between the two results.
In the Fig. 3 and 4 are the meshes belonging to the solutions from figures 1 and 2.

On the left hand side the mesh after 11 refinement steps is shown, computed with the
already existing module A3D-ThEl. Whereas, on the right hand side the mesh with the
new implementation is shown after 11 refinement steps. There are some slight differences
between these two meshes. The reason therefore are some slight differences in the error
estimator. This can be seen in appendix A.1, tables 5 and 6. There is also an explanation
for these differences.

6.2. Test of the thermal behaviour
For the second step of testing the implementation, the test of the thermal behaviour,
a very simple example was treated. This example is a cuboid with the length l1 in
x1 direction, l2 in x2 direction, and l3 in x3 direction. Additional it is assumed that
there are perfectly aligned fibres inserted, which causes different material behaviour
in the direction they are aligned. So, we have transversely isotropic material. The
fibre direction field is given by a(X) = (1, 0, 0)>, as can be seen in the schematically
description in figure 5.

The boundary conditions are also shown in this figure. There are Dirichlet boundary
conditions on three sides of the cuboid, which fix the cuboid in the corner (0, 0, 0) by
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