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Abstract

The numerical solution of Stein (aka discrete Lyapunov) equations is the
primary step in Newton’s method for the solution of discrete-time algebraic
Riccati equations (DARE). Here we present a low-rank Smith method as
well as a low-rank alternating-direction-implicit-iteration to compute low-
rank approximations to solutions of Stein equations arising in this context.
Numerical results are given to verify the efficiency and accuracy of the
proposed algorithms.

Keywords. Riccati equation, discrete-time control, sparse matrices, Newton’s
method, Smith iteration, ADI iteration, low rank factor.
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1 Introduction

After full (time and spatial) discretization, the solution of optimal control prob-
lems for parabolic partial differential equations (PDEs) leads to generalized large-
scale, sparse discrete–time algebraic Riccati equation (DARE)

0 = R(X) = CQCT + AXAT − EXET (1)

−(AXBT + CST )(R +BXBT )−1(BXAT + SCT ),

where A and E ∈ Rn×n are large and sparse, B ∈ Rm×n, C ∈ Rn×p, Q ∈ Rp×p, R ∈
Rm×m, S ∈ Rm×p, and Q and R are symmetric. We also assume E to be invertible
throughout.

In the last decades, much research has addressed the construction of numerically
robust algorithms for the solution of (1). However, these methods generally have
at least a memory complexity O(n2) and a computational complexity O(n3), re-
gardless whether or not the system matrix A is sparse or otherwise structured.
Therefore, the majority of numerical algorithms is restricted to systems of moder-
ate order. Of course, the upper limit for this order depends on the problem to be
solved as well as the particular computing environment and may vary between a
few hundreds and a few thousands. However, a significant number of applications
lead to systems of larger order. Large systems arise from the semi-discretization
of (possibly linearized) PDEs by means of finite differences or finite elements, see
e.g. [4, 36, 40], and many more.

Consider, e.g., the problem

Minimize J (u) =
1

2

∫ ∞

0

y(t)TQy(t) + u(t)TRu(t) + 2y(t)TSu(t)dt



subject to the PDE constraint

∂

∂t
x(ζ, t) = ∇(k(ζ)∇)x+ c(ζ)∇x+ r(ζ)x+ b(ζ)u in Ω× [0, T ],

x(ζ, t) = 0 on ∂Ω,

x(ζ, 0) = x0(ζ) on Ω,

y(t) =

∫

Ω0

c(ζ)x(ζ, t)dζ, Ω0 ⊂ Ω.

Discretizing the PDE constraint using a finite-difference scheme or a finite element
approach leads to a constraint in form of an ordinary differential equation

Mẋ(t) = Kx(t) + Fu,

y(t) = Cx(t),

where M and K are large, sparse square matrices, M is positive definite and K is
negative definite. Employing further a time discretization a difference equation
of the form

Exk+1 = Axk +Buk

is obtained. In case the semi-implicit Euler method with stepsize ∆t is used, one
obtains

(M −∆tK)xk+1 = Mxk + ∆tFuk, (2)

that is A = M, E = M −∆tK and B = ∆tF . Alternatively, a Crank-Nicholson-
type discretization can be used. Here, we will use the average of a forward Euler
and a semi-implicit Euler step in time. That is, we average the equations

Mxk+1 = (M + ∆tK)xk + ∆tFuk,

Mxk+1 = Mxk + ∆tKxk+1 + ∆tFuk,

and obtain

(M − ∆t

2
K)xk+1 = (M +

∆t

2
K)xk + ∆tFuk,

yk = Cxk.

The discretized optimal control problem now reads

Minimize J (u) =
1

2

∞∑

k=0

yTkQyk + uTkRuk + 2yTk Suk

subject to

Exk+1 = Axk +Buk,

yk = Cxk,

2
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where E = M − ∆t
2
K,A = M + ∆t

2
K, B = ∆tF.

Under generic control-theoretic conditions, the optimal solution of this minimiza-
tion problem is given by the feedback control

uk = −(R +BTXdB)−1(BTXdA+ STC)xk, k = 0, 1, . . . ,

where Xd is the stabilizing solution of the DARE (1); see, e.g., [21, 39, 44, 52] and
many other textbooks on control theory. DAREs also arise in other applications
such asH∞-control, factorization problems for rational matrix functions, Kalman
filtering. An overview of some of these applications is given in [39, Chapter 5]. A
detailed discussion of the solution theory for the case E = I (which is equivalent
to the case E nonsingular) is given in [39], whereas the case of singular E is treated
in [44]. Solutions of the optimal control problem without solving the correspond-
ing Riccati equation are given in [7, 16, 35, 43, 44], including the singular E case.
It should be noted, though, that DARE-free solutions of the linear-quadratic
discrete-time optimal control problem require the full n-dimensional deflating
subspace of the corresponding (generalized) symplectic pencil. For large-scale
problems, this is prohibitive as even if the sparsity structure of the problem-
defining matrices could be employed, the subspace itself would require memory
of size 2n2.

Mostly, systems originating from the application mentioned above possess two
interesting properties. First, their order n is large (say, n > 1000), but the
dimensions of the input and output spaces are relatively small (m, q � n, often
m, q � 10). For example, the order of a system arising from a parabolic PDE is
about the number of grid points or mesh nodes used for the semi-discretization
w.r.t. the spatial coordinates, which is relatively large. In contrast, m and q are
often quite small and independent of the fineness of the discretization. Second,
the system matrix A is structured. Often, A is a sparse matrix or it is implicitly
represented as a product of sparse matrices and inverses of sparse matrices. In
general, this structure allows the numerically inexpensive realization of matrix-
vector products and the efficient solution of systems of linear equations with A.

In the sequel we will use the abbreviation

K(X) := (AXBT + CST )(R +BXBT )−1, (3)

to simplify the notation and we will make the following assumptions:

3



1. E is nonsingular.
2. R = RT > 0.
3.
[
Q
S

ST

R

]
≥ 0.

4. A stabilizing solution Xd of (1) exists, that is,
a solution Xd exists such that the eigenvalues of
(A − K(Xd)B) − λE lie in the open unit circle:
(σ(A − K(Xd)B,E) ⊂ D1(0)). It is unique, and
furthermore, R +BXdB

T > 0.

(4)

For sufficient conditions for 4. to hold, see, e.g., [39, Theorem 13.1.3].

In principle, by inverting E, (1) can be reduced to the case E = I. However, this
introduces unnecessary rounding errors and, if E is ill-conditioned, even numerical
instability. Therefore, inverting E is avoided here. Considering E is important,
as in the PDE control problems E 6= I, and as E is large and sparse, its inverse
in general would be large and dense, so that the large, sparse generalized DARE
would be transformed into a large, dense one for which there do not exist any
suitable numerical methods yet.

The solution of DAREs has been an extremely active area of research, see, e.g.,
[21, 44, 52] for an overview. The usual solution methods for DAREs such as
the Schur vector method [46], symplectic SR methods [12, 23], the matrix sign
function [7, 15, 26, 51], the matrix disk function [7, 15, 39, 55] or the doubling
method [52, 42] do not make (full) use of the sparse structure of A,E and require
in general O(n3) flops and workspace of size O(n2) even for sparse problems, and
are therefore not suitable here.

The numerical solution of several types of large-scale matrix equations with sparse
coefficient matrices arising in control theory has been the target of numerous
papers in the last decade. Significant progress has been made in particular for
continuous Lyapunov and algebraic Riccati equations, e.g., [8, 13, 53, 41, 49, 33].
For an overview and further references, see [9]. It is the aim of this paper to extend
some of these results to DAREs. We will follow in particular the approach taken
in [13]. That is, we will make use of the fact that R(X) = 0 defines a system of
nonlinear equations and can hence be solved by an appropriate Newton method
as proposed in [32, 3]. Newton’s method is reviewed in Section 2. The main
computational cost in the algorithm stems from the numerical solution of the
Stein equation. Section 3 proposes low rank Smith and ADI iterations for its
solution based on [13, 17, 41, 49]. Both methods compute an approximate low-
rank Cholesky factor of the desired solution. Numerical experiments are reported
in Section 4.

4

algebraic Riccati equations.

Acknowledgments

The first author’s work was supported by the DFG project Numerische Lösung
von Optimalsteuerungsproblemen für instationäre Diffusions-Konvektions- und
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original K, ρ(A,E) ≈ 0.9975
Xdare Zsmith Zadi Zadi

µ∗ = −0.99197 no shift
Newton steps 3 3 3

Smith/ADI steps 1343 85 737
R(X) 1.8 · 10−12 2.6 · 10−4 3.4 · 10−10 1.3 · 10−4

||Xdare −X||F/||X||F 1.8 · 10−6 3.7 · 10−8 9.4 · 10−7

rank(X)/rank(ZZT ) 31 25 25 26

K = 0.5K, ρ(A,E) ≈ 0.4987
Xdare Zsmith Zadi Zadi

µ∗ = −0.45332 no shift
Newton steps 3 3 3

Smith/ADI steps 12 10 7
R(X) 2.8 · 10−12 1.1 · 10−8 3.3 · 10−12 2.6 · 10−9

||Xdare −X||F/||X||F 5.5 · 10−10 2.2 · 10−10 1.3 · 10−10

rank(X)/rank(ZZT ) 16 10 10 10

Table 3: Example 2, n = 200, tol = 10−8, µ0 = 0.

Xdare Zsmith Zadi
µ∗ = −0.85361

Newton steps 10 8
Smith/ADI steps 10–128 8–12

R(X) 1.3 · 10−11 1.1 · 10−11 1.6 · 10−12

||Xdare −X||F/||X||F 4.3 · 10−12 2.2 · 10−14

rank(X)/rank(ZZT ) 6 6 6

Table 4: Example 3, tol = 10−12, n = 100, ∆t = 0.01, µ0 = −1.

5 Conclusions

This paper addresses the numerical solution of large, sparse DAREs based on
the Newton method. Its primary step involves the solution of large, sparse,
stable Stein equations. We have presented two iterative methods which deliver
low-rank approximations to the desired solution, a Smith and an ADI iteration.
The ADI iteration can be accelerated significantly by introducing suitable shift
parameters. We presented a simple heuristic algorithm for determining a set of
ADI parameters. Finally, the algorithms are used to numerically solve an optimal
control problem for parabolic PDEs.

Future work will include a detailed study of the problem of choosing the ADI
parameters as well as the adaptation of the precision to which the Stein equation
is solved to that of the Newton recursion as in [24] done for continuous-time

28

2 Newton’s method for discrete-time algebraic
Riccati equations

The function R(X) in (1) is a rational matrix function, R(X) = 0 defines a
system of nonlinear equations. Inspired by Kleinman’s formulation of a Newton
method for continuous-time algebraic Riccati equations [37], Hewer [32] proposed
a Newton method for solving DAREs. The algorithm was extended to the gen-
eralized equation as given in (1) by Arnold and Laub [3]. A discussion of its
convergence properties can be found in [39, 44].

Newton’s method for the numerical solution of DAREs can be formulated as given
in Algorithm 1.

Algorithm 1 Newton’s Method for the DARE

Input: The coefficient matrices A, B, C, E, Q, R, S of the DARE (1), and a
starting guess X0, so that σ(A−K(X0)B,E) ⊂ D1(0) and R +BX0B

T > 0.
Output: An approximate solution Xk+1 of the DARE (1) and an estimate
Nk for the error matrix X∗ − Xk+1, where X∗ is the stabilizing solution of
R(X) = 0.

for k = 0, 1, 2, . . . do
1. Kk ← K(Xk).
2. Ak ← A−KkB.
3. Rk ← R(Xk).
4. Solve for Nk in the Stein equation

AkNkA
T
k − ENkE

T = −Rk.

5. Xk+1 ← Xk +Nk.
end for

We have the following convergence result for Algorithm 1 [32, 39, 44].

Theorem 2.1 If the assumptions (4) hold, and X0 is stabilizing, then for the
iterates produced by Algorithm 1 we have:

a) All iterates Xk are stabilizing, i.e., σ(A − K(Xk)B,E) ⊂ D1(0) for all
k ∈ N0.

b) Xd ≤ . . . ≤ Xk+1 ≤ Xk ≤ . . . ≤ X1.

c) lim
k→∞

Xk = Xd.

5



d) There exists a constant γ > 0 such that

‖Xk+1 −Xd‖ ≤ γ‖Xk −Xd‖2, k ≥ 1,

i.e., the Xk converge globally quadratic to Xd.

The formulation of Algorithm 1 is analogous to the standard formulation of New-
ton’s method as given, e.g., in [22, Algorithm 5.1.1] for the solution of nonlinear
equations. Because of its robustness in the presence of rounding errors, in dense
matrix computations one prefers to calculate the Newton step explicitly as in
Algorithm 1 using the Stein equation

AkNkA
T
k − ENkE

T = −Rk (5)

rather than to use the mathematically equivalent formulation of the Newton step
[3, 32, 39, 44],

AkXk+1A
T
k − EXk+1E

T = −CQCT + CSTKT
k +KkSC

T −KkRK
T
k

=: −C(Xk) = −Ck, (6)

which determines Xk+1 directly. The coefficient matrices of the two Stein equa-
tions are the same, but the right-hand-sides are different; see Algorithm 2.

Algorithm 2 Newton-Hewer Method for the DARE

Input: The coefficient matrices A, B, C, E, Q, R, S of the DARE (1), and a
starting guess X0, so that σ(A−K(X0)B,E) ⊂ D1(0) and R +BX0B

T > 0.
Output: An approximate solution Xk+1 of the DARE (1).

for k = 0, 1, 2, . . . do
1. Kk ← K(Xk).
2. Ak ← A−KkB.
3. Ck ← C(Xk).
4. Solve for Xk+1 in the Stein equation

AkXk+1A
T
k − EXk+1E

T = −Ck.

end for

The problem for the successful application of the Newton method is to find a
stabilizing initial guess X0. There exist stabilization procedures for discrete-time
linear systems (see, e.g., [2, 38, 52]). But these may give large initial errors
‖Xd − X0‖. The procedure suggested in [38] is even unfeasable for numerical
computations as it is based on explicitly summing up AkBBT (AT )k for k up to
n, thereby often causing overflow already for small values of n. Suitable initial-
ization procedures are suggested in [10, 11] which work quite well in practice, but

6

The data provided in the benchmark collection [19] yields matrices K,F and C
with N = 200,m = p = 1.

As ρ(A,E) ≈ 0.9975, the iteration for the Stein equation converges quite slowly,
for the results see Table 3.

When using the Smith iteration on this example, the iterations converged after
3 Newton iteration, while in each iteration step the Smith iteration took 1343
steps. The rank of Xexact is 31, the rank of the computed low-rank factorization
factor Z is 39, the rank of ZZT is 25. When looking at the singular values of
Xexact and ZZT , one can see that this is a numerical accuracy problem, the first
about 25 singular values are of the order of 10−8 to 10−14, while the rest is even
smaller. Without the low-rank reduction of Zj in every step, the factor Zj would
increase to the size R200×2688, while due to the low-rank reduction, the factor Zj
is at most of size R200×39. The ADI iteration converged much quicker than the
Smith iteration, moreover the use of a shift allowed the computation of a more
accurate solution.

In order to obtain a better convergence behavior for the Stein equation, we use
the same data, but set K = 0.5 ·K. This reduces ρ(A,E) to ≈ 0.4987. As can be
seen from Table 3, the iteration for the Stein equation converges much faster for
all algorithms considered. Here, our heuristic to choose the shift does not work
very well, the computed shift is close to 0 which is almost the same as using no
shift.

Using a smaller tol does give more accurate results, but no significant chance in
the number of iterations needed.

Example 4.3 For the final example, we set up

B = C = [v, . . . , v] ∈ R100

with v = [1, 1, 0, . . . , ]T ∈ R10 and

A = I,K = tridiag(D,T,D) ∈ R100×100,

with D = diag(−121, . . . ,−121) ∈ R10×10 and

T =




484 −115.5

−126.5
. . . . . .
. . . . . . −115.5

−126.5 484


 = tridiag(−126.5, 484,−115.5) ∈ R10×10.

The K matrix is constructed using the Matlab function fdm2D matrix from
Lyapack [50]. We include this fairly small example, as it shows that the number
of Newton steps also may depend on the algorithm used for the inner iteration to
solve the Stein equations. This number is slightly larger for the Smith iteration
than for the ADI iteration with shift.
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∆t = 0.1
Xdare Zsmith Zadi Zadi

µ∗ = 0.96325 no shift
Newton steps 4 4 4

Smith/ADI steps 1175–1188 26 606–613
R(X) 2.2 · 10−12 1.1 · 10−13 1.1 · 10−13 1.1 · 10−13

||Xdare −X||F/||X||F 6.1 · 10−11 1.3 · 10−11 3.6 · 10−11

rank(ZZT ) 13 11 11 11

∆t = 0.01
Xdare Zsmith Zadi Zadi

µ∗ = 0.99306 no shift
Newton steps 4 4 4

Smith/ADI steps 10544–10658 48 5447–5506
R(X) 2.3 · 10−13 1.6 · 10−14 1.5 · 10−14 1.5 · 10−14

||Xdare −X||F/||X||F 4.7 · 10−10 3.2 · 10−11 2.2 · 10−10

rank(ZZT ) 16 16 16 16

Table 2: Example 1, tol = 10−12, n = 1000, µ0 = 0.

where the spatial domain is discretized into segments of length h = 1
N+1

. Suppose
for example that one wants to heat in a point of the rod located at 1/3 of the
length and wants to record the temperature at 2/3 of the length. We obtain the
semi-discretized system:

ẋ(t) = Kx(t) + Fu(t), x(0) = 0,

y(t) = Cx(t),

where

K = − α
h2




2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2



∈ RN×N , F = e(N+1)/3 ∈ RN , C = e2N/3 ∈ RN ,

and x(t) ∈ RN is the solution evaluated at each x value in the discretization for
t. Here, ek denotes the kth unit vector. Now if we want to completely discretize
the system, for example using Crank-Nicholson we obtain:

Exk+1 = Axk +Buk, x0 = 0

yk = Cxk

where E = IN − ∆t
2
K,A = IN + ∆t

2
K, B = ∆tF, and ∆t is the time step.
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cannot exploit sparsity of the problem and are therefore not suitable for large-
scale problems. An iterative procedure for stabilizing large-scale discrete-time
systems is suggested in [25] and can be used for our purposes.

Despite the ultimate rapid convergence indicated by Theorem 2.1 d), the iteration
may initially converge slowly. This can be due to a large initial error ‖Xd−X0‖ or
a disastrously large first Newton step resulting in a large error ‖Xd−X1‖. In both
cases, it is possible that many iterations are required to find the region of rapid
convergence. An ill-conditioned Stein equation makes it difficult to compute
an accurate Newton step. An inaccurately computed Newton step can cause
the usual convergence theory to break down in practice. Sometimes rounding
errors or a poor choice of X0 cause Newton’s method to converge to a non-
stabilizing solution. Fortunately, in PDE control as considered here, we often
have σ(E,A) ⊂ D1(0), so that X0 = 0 is an appropriate starting guess.

The computational cost for Algorithms 1 and 2 mainly depends upon the cost
for the numerical solution of the Stein equation (5), (6), resp.. This can be done
using the Bartels–Stewart algorithm [5, 6] or an extension to the case E 6= I
[27, 28, 48]. The Bartels-Stewart algorithm is the standard direct method for
the solution of Stein equations of small to moderate size. This method requires
the computation of a Schur decomposition, and thus is not appropriate for large
scale problems. The cost for the solution of the Stein equation is ≈ 73n3 flops.
See [52] for a discussion of an efficient implementation. In [52], the following idea
based on [31, 56] how to solve stable nonnegative Stein equations

AXAH −X = −C (7)

where C ∈ Cn×n is positive semidefinite and A ∈ Cn×n is stable, is also discussed:
The unique solution X is positive semidefinite and hence allows for a Cholesky
factorization X = LLH . Let U be the unitary matrix that reduces A to upper
Schur form T = UAUH , such that we have

(UHTU)(LLH)(UHTHU)− LLH = −BBH

where BBH = C and B ∈ Cn×m,m ≤ n. Or, equivalently,

T (UL)(LHUH)TH − (UL)(LHUH) = −(UB)(BHUH).

Using the RQ factorizations of UB and UL we obtain

TZZHTH − ZZH = −RRH ,

where Z and R are triangular matrices. This equation can be solved efficiently
in Z, the Cholesky factor of the solution of the original equation (7), see [52] for
details. The memory space needed for the data is 2n2, while the computational
cost is about ≈ cn3 flops, where c is of the order of unity. Although this method
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is not suitable in the context of large sparse DAREs, we will make use of the idea
of computing only a (Cholesky) factor of the desired solution.

Other iterative schemes for solving the Stein equation (5), (6), resp., have been
developed. Most of these were first formulated for the continuous-time case.
Examples are the Smith method [54], the sign-function method [51], and the
alternating direction implicit (ADI) iteration method [57]. Unfortunately, all
of these methods compute the solution in dense form and hence require O(n2)
storage. In case the solution to the Stein equation has low numerical rank (i.e.,
the eigenvalues decay rapidly) one can take advantage of this low rank structure
to obtain approximate solutions in low rank factored form [14]. If the effective
rank is r � n, then the storage is reduced from O(n2) to O(nr). This approach
will be discussed in detail in Section 3.

3 Smith’s Method and ADI Iteration

In this section, iterative methods for solving the equivalent Stein equations

AkY A
T
k − EY ET = −Rk (8)

and
AkY A

T
k − EY ET = −Ck (9)

with

Ak = A−KkB, Kk = K(Xk), Rk = R(Xk), Ck = C(Xk)

will be discussed. In particular, it will be assumed that the solution Y has nu-
merically low rank. This is usually the case if the DARE stems from a discretized
PDE control problem as illustrated in Figure 1, where the eigenvalues of the so-
lution of the DARE corresponding to the discrete heat equation example from
the SLICOT Model Reduction Benchmark Collection [19] are shown, see also
Example 4.2. Here, the numerical rank of X is 31 as compared to n = 200.

The symmetric Stein equation

S − ASAT = V, (10)

where A and V are given n×n matrices and V is symmetric, has a unique solution
S (necessarily symmetric) provided zw 6= 1 for every pair of eigenvalues z, w of
A, see [39, pp. 104–105]. In particular, this is the case when all eigenvalues of A
lie in the open unit disk. Then the unique solution is given by

S =
∞∑

j=0

AjV ATj (11)

8

that is, A = M , E = M −∆tK, and B = ∆tF in (30).

In the computational experiments reported in Tables 1 – 2, we set α = 0.05
(default in [1]). fminsearch was started with different starting guesses µ0. The
resulting shift is given as µ∗. Different n, tol and h have been considered. Here
only the results for n = 1000, h = 0.1 and h = 0.01 as well as tol = 10−8 and
tol = 10−12 are presented. Here and in the following, ρ(A,E) denotes the spectral
radius of A− λE, i.e., ρ(A,E) = maxλ∈σ(A,E){|λ|}.
No matter how the parameters were chosen, all methods needed 4 Newton steps.
The number of Smith iteration steps was usually quite high, about twice as many
as needed for the unshifted ADI iteration. Obviously, neither the Smith iteration
nor the unshifted ADI iteration yield feasible methods for solving the DARE with
Newton’s method in this example. On the other hand, using our fairly simple
heuristic for choosing a single shift, the ADI iteration with shift converges up to
100 times faster than the ADI iteration without a shift. The number of iterations
needed varied from Newton step to Newton step, being larger at first.

Changing n while keeping the rest of the parameters fixed, does not change the
number of iterations needed for convergence or the accuracy achieved.

∆t = 0.1, ρ(A,E) ≈ 0.9902
Xdare Zsmith Zadi Zadi

µ∗ = 0.96328 no shift
Newton steps 4 4 4

Smith/ADI steps 711–719 17–18 374–378
R(X) 2.2 · 10−12 7.1 · 10−12 2.1 · 10−13 3.5 · 10−12

||Xdare −X||F/||X||F 4.9 · 10−7 4.6 · 10−9 2.4 · 10−7

rank(ZZT ) 13 11 11 11

∆t = 0.01, ρ(A,E) ≈ 0.999
Xdare Zsmith Zadi Zadi

µ∗ = 0.99306 no shift
Newton steps 4 4 4

Smith/ADI steps 5926–5990 31–35 3138–3172
R(X) 2.3 · 10−13 7.2 · 10−11 1.3 · 10−12 3.6 · 10−11

||Xdare −X||F/||X||F 5.0 · 10−6 1.1 · 10−8 2.5 · 10−6

rank(ZZT ) 16 16 16 16

Table 1: Example 1, tol = 10−8, n = 1000, µ0 = −1.

Example 4.2 Here, we use again a discretized control problem for the heat
equation, this time taken from the SLICOT Model Reduction Benchmark Col-
lection [19]. (The eigenvalues of the DARE solution are shown in Figure 1.)
In contrast to Example 4.1, this time a finite differences discretization is used,
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the convergence of the overall algorithms, i.e., the computed ` + j Ritz values
were sufficient to obtain a suitable shift. Thus, we only report results based on
S being composed of the computed ` + j Ritz values. When further developing
the algorithms proposed in this paper, a multi-shift selection strategy needs to
be developed. A first candidate for this would be Penzl’s heuristic [49] that often
yields good results in the ADI iteration for continuous Lyapunov equations.

Example 4.1 The data of this example come from the autonomous linear-qua-
dratic optimal control problem of one dimensional heat flow and is taken from
[1, Example 4.2]. The model equations are

∂

∂t
x(t, η) = α

∂2

∂η2
x(t, η) + b(η)u(t) η ∈ (0, 1); t > 0

x(t, 0) = 0 = x(t, 1) t > 0

x(0, η) = x0(η) η ∈ (0, 1)

y(x) =

∫ 1

0

c(η)x(t, η)dη, x > 0,

where α > 0 and x0, b, c ∈ L2(0, 1). Using a standard linear finite element (FE)
discretization in space, one obtains an ordinary differential equation

MN ẋ(t) = KNx(t) + Fu(t), y(t) = Cx(t),

where

MN =
1

6N




4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4


, KN = −αN




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


,

F = bN and C = cTN , MN , KN ∈ RN×N . The vectors bN and cN are obtained
from the L2 inner products of indicator functions for subsets of (0, 1) with the
FE basis functions {φNi }N−1

i=1 :

(bN)j =

∫ 1

0

β(s)φNi (s)ds, and (cN)j =

∫ 1

0

γ(s)φNi (s)ds, j = 1, . . . , N − 1,

where the functions β, γ ∈ L2(0, 1) are given by

β(s) = γ(s) =

{
1, s ∈ [0.1, 0.5],
0, otherwise.

(Note: β, γ are parameter-dependent in [1] and may differ — here we chose them
equal for simplicity.) Employing the semi-implicit Euler method with stepsize ∆t
yields the difference equation

(M −∆tK)xk+1 = Mxk + ∆tFuk,
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Figure 1: Decay of the eigenvalues of the DARE solution corresponding to the
discrete heat equation example from [19] with n = 200, m = p = 1.

(the series converges because |z0| < 1 for every z0 ∈ σ(A)). Moreover, if all
eigenvalues of A are in the open unit disk, then we have for the unique solution
S of (10) S ≥ 0 if V ≥ 0.

From this we have, that for given matrices Ak, E ∈ Rn×n the Stein equations (8)
and (9) have a unique solution if and only if λrλs 6= 1 for any λr, λs ∈ σ(Ak, E).
Hence, as the Stein equation (8) (or (9), respectively) arises in the Newton itera-
tion, Theorem 2.1a) guarantees here the existence of a unique symmetric solution
of the Stein equation.

3.1 Smith’s method

The Smith iteration [54] is derived from the symmetric Stein equation (10) and
its representation (11)

S0 = 0, Sj+1 = V + ASjA
T .

If all eigenvalues of A lie in the open unit disk, this iteration converges and the
iterates can be written as

Sj =

j−1∑

i=0

AiV AT i, j = 1, 2, . . . .

9



Its rate of convergence is quite slow, in general. The accelerated version [54] —
the so-called squared Smith method — is based on the recursion

S0 = V, Sj+1 = Sj + A2jSjA
T2j . (12)

Its iterates can be written as

Sj =
2j∑

i=1

Ai−1V AT (i−1).

Despite the quadratic convergence rate, one should be reluctant to apply the
squared method to large, sparse equations. The matrices A2j , which have to be
squared explicitly in each step of the iteration, are dense even if A is sparse.

We will discuss how to use the standard Smith iteration efficiently for solving the
Stein equations (8) and (9) in the context of large, sparse equations. The idea
behind this is based on a low-rank version of (12) as proposed, e.g., in [14].

The Smith iteration for (8) is given by

EYj+1E
T = AkYjA

T
k +Rk, (13)

while for (9) it is given by

EYj+1E
T = AkYjA

T
k + Ck. (14)

The last term on the right hand side of (14) can be expressed as

Ck = CQCT − CSTKT
k −KkSC

T +KkRK
T
k

= [C −Kk]

[
Q ST

S R

] [
CT

−KT
k

]
.

As
[
Q
S

ST

R

]
≥ 0, we can obtain a (Cholesky) factorization

[C −Kk]

[
Q ST

S R

] [
CT

−KT
k

]

= [C −Kk]

[
L 0

SL−T W

] [
LT L−1ST

0 W T

] [
CT

−KT
k

]
(15)

=

[
CL 0

−KkSL
−T −KkW

] [
LTCT −L−1STKT

k

0 −W TKT
k

]
= UUT

with Q = LLT , and WW T = R− SL−1L−TST . The latter expression is positive
semidefinite due to Assumption 3. on page 4. Therefore, UUT ≥ 0. When the
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is one possible representation of the (Cholesky) factor of the solution Xi. The
dimension of Zj would increase by 2(p+m) in each iteration step. But if Zj is of
low rank rj, then we can approximate it using a rank-revealing LQ factorization
as before. The derivation of the algorithm is straightforward, hence we omit its
statement.

4 Numerical Examples

All numerical tests were done in Matlab R2009a on a Pentium M notebook with
512 MB main memory. The iterations were stopped in all algorithms as soon as
||Zj+1Z

T
j+1−ZjZT

j ||F/||Zj+1Z
T
j+1||F and ||Tk+1T

T
k+1−TkT Tk ||F/||Tk+1T

T
k+1||F were

less than a given tolerance.

The examples considered are optimal control problems of the following form:

minJ (u), J (u) =
1

2

∞∑

k=0

yTkQyk + uTkRuk + 2yTk Suk

subject to a fully discretized parabolic PDE constraint

Exk+1 = Axk +Buk, (30)

yk = Cxk. (31)

In all examples we have m = p = 1 and choose R = 1, Q = 1, S = 0.

In order to compare the computed solutions to an ’exact’ one, the Matlab
routine dare was used to produce the ”exact” solution Xexact.

In our examples we used only one shift for the ADI iteration. The minmax
problem (28) is replaced by

min
µ

max
λ∈S

|λ− µ|
| 1
λ
− µ| , (32)

where S is either the set of all eigenvalues computed by eig or eigenvalue ap-
proximations computed by eigs. Assume that the largest ` and the smallest

 eigenvalues have been approximated so that S = {λ̃1, . . . , λ̃`, λ̃n−+1, . . . , λ̃n}.
Next, fminsearch is employed as a heuristic optimization method in order to
compute a suitable shift which we simply call µ∗ in the following. The standard
setting for all examples presented is ` = 8, j = 2. Moreover, eigs was called with
OPTS.tol = 10−2 as more accuracy in this computation does not increase the
accuracy of the computed solution or convergence rate of the algorithm. Note
that an optimization with respect to the full spectral set did in no case improve
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situation, the proposed choice of the shifts can not be carried over directly, as the
shifts µM and ηN in (23) and (24) are not related to each other, while we require
µj = ηj in order to obtain a symmetric solution from a symmetric starting guess.

The choice of the shift parameters µi is related to a rational approximation prob-
lem. The conventional approach to the computation of these parameters in other
ADI settings is to cover the spectrum by a domain Ω ∈ C and to solve the min-
max problem with respect to Ω instead of the spectrum. This approximation
theory based approach generally requires the knowledge of certain bounds of the
spectrum. Heuristic approaches have also been proposed. See, e.g., [18, 49] and
the references therein.

In Section 4 we propose to use a quite simple, numerically inexpensive, heuristic
algorithm which replaces the spectrum by some approximations to the largest and
the smallest eigenvalues in the spectrum σ(E−1Ak). Assume that the largest ` and

the smallest  eigenvalues have been approximated, S = {λ̃1, . . . , λ̃`, λ̃n−+1, . . . , λ̃n}.
Then the minmax problem is replaced by

min
µ1,...,µ`

max
λ∈S

|(λ− µ1) · · · (λ− µ`)|
|( 1
λ
− µ1) · · · ( 1

λ
− µ`)|

. (29)

Next a heuristic optimization method is employed in order to compute suitable
shifts. For an efficient solution of large-scale DAREs, the solution of (28) will
require further studies in the future.

Using (15) we can write

Ĉ =
(
E−1U

) (
UTE−T

)
= MMT , M ∈ Rn×(p+m).

Finally, with |µi| ≤ 1, Xi = ZiZ
T
i , Zi ∈ Rn×rj and

√
1− |µi|2(I − µiE−1Ak)

−1E−1AkM = M̂,

(I − µiE−1Ak)
−1E−1Ak(E

−1Ak − µiI)Zi−1 = M̃,

we have
√

1− |µi|2(E − µiAk)−1AkM = M̂ ∈ Rn×(p+m),

(E − µiAk)−1AkE
−1(Ak − µiE)Zi−1 = M̃ ∈ Rn×rj−1 .

With this we can write (27) in terms of a factorization

Xi = ZiZ
T
i = MMT + M̂M̂T + M̃M̃T =

[
M M̂ M̃

]


MT

M̂T

M̃T


 .

Hence,

Zi =
[
M M̂ M̃

]
∈ Rn×(2(p+m)+rj)
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iteration (14) is started with Y0 = 0, then Y1 = E−1UUTE−T and all subsequent
iterates

Yj =

j−1∑

i=0

(E−1Ak)
iE−1UUTE−T (ATkE

−T )i, j = 1, 2, . . .

are symmetric positive semidefinite and converge to a positive semidefinite matrix
Y∗. Based on the assumption that the spectrum of the positive semidefinite matrix
Y∗ decays to zero very rapidly, we can expect that Y∗ can be written using a
factorization ZZT for some Z ∈ Rn×r, r � n. Now, if we assume that Yj = ZjZ

T
j

for rank(Zj) = rj � n, Zj ∈ Rn×rj and observe that rank(UUT + AkYjA
T
k ) ≤

m + p + rj � n, we see that we can solve (14) for a low-rank representation of
the (Cholesky) factor of Yj. In particular, we have

(EZj+1)(ZT
j+1E

T ) = (AkZj)(Z
T
j A

T
k ) + UUT [AkZj U ]

[
(ZT

j A
T
k )

UT

]

= MMT . (16)

Hence,
EZj+1 = [AkZj U ]

yields one possible representation of the solution Yj+1. Thus, the Smith algorithm
can be reformulated in terms of the (Cholesky) factor Zj of Yj. There is no need
to compute Yj at each iteration; only Zj is needed.

Incorporating this Smith iteration into Algorithm 2 we obtain Algorithm 3.

Remark 3.1 For Z0 = 0 it is straightforward to see that

Zj = E−1
[
(AkE

−1)j−1U (AkE
−1)j−2U . . . (AkE

−1)U U
]
.

If Zj ∈ Rn×rj , then M in (16) is in Rn×(rj+p+m) and, as E ∈ Rn×n, Zj+1 ∈
Rn×(rj+p+m). The dimension of Zj+1 will increase by p+m in each iteration step.
Hence, if p+m is large and/or the convergence is slow, the number of columns of
Zj+1 will easily reach unmanageable levels of memory requirements. But if Zj+1

is of low rank rj+1, then we can approximate it as follows. The rank-revealing
LQ decomposition [20, 29] of M yields

ΠM =

[
L11 0
L21 Ω

]
V, L11 ∈ Rrj+1×rj+1 , L21 ∈ R(n−rj+1)×rj+1 ,

where L11 is lower triangular, V ∈ Rn×(n+rj) is orthogonal, Π is a permutation,
and Ω ≈ 0 can be regarded as negligible. If we partition V in the form

V =

[
V1

V2

]
, V1 ∈ Rrj+1×n,

11



Algorithm 3 Newton-Hewer-Smith Method for the DARE

Input: The coefficient matrices A, B, C, E, Q, R, S of the DARE (1),
and a starting guess X0 in terms of its (Cholesky) factor T0, so that σ(A −
K(X0)B,E) ⊂ D1(0) and R +BX0B

T > 0.
Output: An approximate solution Xk+1 of the DARE (1) in terms of its
(Cholesky) factor Tk+1.

Compute the Cholesky factorization
[
Q
S

ST

R

]
= LLT .

for k = 0, 1, 2, . . . do
1. Kk ← K(Xk) (making use of the fact that Xk = TkT

T
k ).

2. Ak ← A−KkB.
3. U ← [C −Kk]L.
4. Z0 ← 0.
for j = 0, 1, 2, . . . do

5. Solve for Zj+1 in EZj+1 = [AkZj U ].
end for
6. Tk+1 ← Zj+1

end for

and set Ω = 0, we obtain the full-rank approximation

M̃ = ΠT

[
L11

L21

]
V1 = ΠL̃V1, L̃ ∈ Rn×rj+1 .

In any unitary invariant norm, we have

||M − M̃ || = ||Ω||.
Now we approximate

(EZj+1)(ZT
j+1E

T ) ≈ M̃M̃T = ΠT L̃L̃TΠ.

Hence
EZj+1 ≈ ΠT L̃

yields one possible approximate low-rank representation of the solution Yj+1 of
(14) such that Zj+1 ∈ Rn×rj+1 .

Alternatively, as suggested for the Smith iteration in [30], a thin singular value
decomposition [29] of M can be employed,

M = UΣV T ,

where, with ` = rj + p + m, V ∈ R`×`, V TV = I, U ∈ Rn×` has orthonormal
columns and Σ = diag(σ1, . . . , σ`) ∈ R`×`, σ1 ≥ σ2 ≥ . . . ≥ σ`. Partition this
decomposition as

M = [U1 U2]

[
Σ1

Σ2

] [
V T

1 V T
2

]
,
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Algorithm 5 ADI-Newton’s Method for the DARE

Input: The coefficient matrices A, B, C, E, Q, R, S of the DARE (1), and a
starting guess X0, so that σ(A−K(X0)B,E) ⊂ D1(0) and R +BX0B

T > 0.
Output: An approximate solution Xk+1 of the DARE (1).

for k = 0, 1, 2, . . . do
1. Kk ← K(Xk).
2. Ak ← A−KkB.
3. Ck ← C(Xk).
4. Y0 ← 0.
for j = 1, 2, . . . do

5. Choose shift µj
6. Yj ← E−1CkE−T .
7. H ← (1− |µj|2)E−1AkYjA

T
kE
−T .

8. H ← H + E−1Ak(E
−1Ak − µjI)Yj−1(ATkE

−T − µjI)ATkE
−T .

9. Yj ← Yj + (I − µjE−1Ak)
−1H(I − µjE−1Ak)

−T .
end for
10. Xk ← Yj.

end for

Hence, we obtain the single equation

Xi = Ĉ + (I − µiE−1Ak)
−1
(

(1− |µi|2)E−1AkĈA
T
kE
−T+ (27)

E−1Ak(E
−1Ak − µiI)Xi−1(ATkE

−T − µiI)ATkE
−T ) (I − µiE−1Ak)

−T .

If Xi−1 is positive semidefinite, then so is Xi.

As

(ATkE
−T − µiI)ATkE

−T (I − µiE−1Ak)
−T = (ATkE

−T − µiI)(ETA−Tk − µiI)−1,

the spectral radius

ρADI = ρ

(∏̀

j=1

(A−1
k E − µiI)−1(E−1Ak − µiI)

)

determines the rate of convergence, where ` is the number of iteration steps and
shifts used. The minimization of ρADI with respect to the shift parameters µi is
given by

min
µ1,...,µ`

max
λ∈σ(E−1Ak)

|(λ− µ1) · · · (λ− µ`)|
|( 1
λ
− µ1) · · · ( 1

λ
− µ`)|

. (28)

In [17] the choice of shifts for the more general ADI iteration (23), (24) applied
to (22) is discussed. Although here we are considering a special case of that
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In order to derive a formulation in terms of (Cholesky) factors, let us rewrite the
iteration (26) in a single equation. In particular, we have

Xi− 1
2
(I − µiATkE−T ) = (E−1Ak − µiI)Xi−1A

T
kE
−T + Ĉ,

(I − ηiE−1Ak)Xi = E−1AkXi− 1
2
(ATkE

−T − ηiI) + Ĉ.

Hence, with

Xi− 1
2

= (E−1Ak − µiI)Xi−1A
T
kE
−T (I − µiATkE−T )−1 + Ĉ(I − µiATkE−T )−1,

we have

Xi = (I − ηiE−1Ak)
−1
(
E−1AkXi− 1

2
(ATkE

−T − ηiI) + Ĉ
)

= (I − ηiE−1Ak)
−1 ·(

E−1Ak(E
−1Ak − µiI)Xi−1A

T
kE
−T (I − µiATkE−T )−1(ATkE

−T − ηiI)

+ E−1AkĈ(I − µiATkE−T )−1(ATkE
−T − ηiI) + Ĉ

)
.

As

(I − µiATkE−T )−1(ATkE
−T − ηiI) = (ATkE

−T − ηiI)(I − µiATkE−T )−1

we have

Xi = (I − ηiE−1Ak)
−1
(
E−1Ak(E

−1Ak − µiI)Xi−1A
T
kE
−T (ATkE

−T − ηiI)

+ E−1AkĈ(ATkE
−T − ηiI) + Ĉ(I − µiATkE−T )

)
(I − µiATkE−T )−1.

Obviously, in order to obtain a symmetric Xi we have to restrict the choice of µi
and ηi such that ηi = µi,

Xi = (I − µiE−1Ak)
−1
(
E−1Ak(E

−1Ak − µiI)Xi−1(ATkE
−T − µiI)ATkE

−T

+ E−1AkĈ(ATkE
−T − µiI) + Ĉ(I − µiATkE−T )

)
(I − µiE−1Ak)

−T .

Observe that

E−1AkĈ(ATkE
−T − µiI) + Ĉ(I − µiATkE−T )

= E−1AkĈA
T
kE
−T − µiE−1AkĈ + Ĉ − µiĈATkE−T

= E−1AkĈA
T
kE
−T + (I − µiE−1Ak)Ĉ(I − µiATkE−T )

−|µi|2E−1AkĈA
T
kE
−T

= (1− |µi|2)E−1AkĈA
T
kE
−T + (I − µiE−1Ak)Ĉ(I − µiATkE−T ).
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where Σ1 ∈ Rrj+1×rj+1 , V1 ∈ R`×rj+1 , U1 ∈ Rn×rj+1 . In case Σ2 is negligible, we can
approximate M by

M̂ = U1Σ1V
T

1 .

By the Schmidt-Eckart-Young-Mirsky-theorem we have

‖M − M̂‖ = σrj+1+1.

Now we approximate

(EZj+1)(ZT
j+1E

T ) ≈ M̂M̂T = U1Σ1V
T

1 V1Σ1U
T
1 = U1Σ2

1U
T
1 .

Hence
EZj+1 ≈ U1Σ1

yields another possible approximate low-rank representation of the solution Yj+1

of (14) such that Zj+1 ∈ Rn×rj+1 .

Therefore, instead of computing the solution Y of (9) directly, we only compute
an approximation to its low rank factor Z with Y = ZZT . In order to make use
of this representation of the solution we have to modify Algorithm 3 by replacing
Step 7. appropriately, see Algorithm 4. That is, we simply ignore the trailing
part of L which is less than or equal to some given tolerance. While going from
the jth to the (j + 1)st step, the number of columns of Zj+1 generally does not
increase. Indeed an increase will only occur if the rank of Zj+1 is larger than that
of Zj. In any case, there can be at most n additional columns added at any step
which is the same as in the unmodified version.

Let us assume that Xk = TkT
T
k with Tk ∈ Rn×sk . In order to obtain Zj+1 one has

to

• compute the (Cholesky) factorization of
[
Q
S

ST

R

]
∈ R(p+m)×(p+m), this re-

quires O((p+m)3/3) flops [29] but only needs to be computed once before
the iteration is started;

• evaluate Kk, this involves five matrix-matrix products of matrices of size
m × n and n × sk, m × sk and sk × m (for R + (BTk)(T

T
k B

T ), re-using
BTk and exploiting symmetry), sk × n and n × n, m × sk and sk × n (for
(BTk)(T

T
k A), re-using BTk from the previous computation), and m×p and

p × n (for SCT , which should be precomputed), and a linear solve with a
system matrix of size m × m and a right hand side of size m × n which
requires O(2m3/3) flops [29] plus forward and backward substitution;

• compute U , this involves one matrix-matrix product of matrices of size
n× (p+m) and (p+m)× (p+m);

• compute AkZj = AZj−Kk(BZj) for j = 0, 1, . . . , this involves three matrix-
matrix products of matrices of size n×n and n× rj, m×n and n× rj, and
n×m and m× rj in each iteration step;

13



Algorithm 4 Low Rank Newton-Hewer-Smith Method for the DARE

Input: The coefficient matrices A, B, C, E, Q, R, S of the DARE (1),
and a starting guess X0 in terms of its (Cholesky) factor T0, so that σ(A −
K(X0)B,E) ⊂ D1(0) and R +BX0B

T > 0.
Output: An approximate solution Xk+1 of the DARE (1) in terms of its low
rank (Cholesky) factor Tk+1.

Compute the Cholesky factorization
[
Q
S

ST

R

]
= LLT .

for k = 0, 1, 2, . . . do
1. Kk ← K(Xk) (making use of the fact that Xk = TkT

T
k ).

2. Ak ← A−KkB.
3. Ck ← C(Xk).
4. U ← [C −Kk]L.
5. Z0 ← 0.
for j = 0, 1, 2, . . . do

6. Compute the RRLQ factorization Π[AkZj U ] =

[
L11 0
L21 Ω

]
V,

L11 ∈ Rrj+1×rj+1 , V =

[
V1

V2

]
, V1 ∈ Rrj+1×n

7. L̃←
[
L11

L12

]
.

8. Solve for Zj+1 in EZj+1 = ΠL̃.
end for
9. Tk+1 ← Zj+1

end for
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where one starts with M = N = 0. Either (23) or (24) can be used to deter-
mine XM+N from XM+N−1. When (23) and (24) are used in a strictly alternating
fashion, the ADI method obtained is analogous to the ”classical” ADI iteration
for Sylvester’s equation discussed by Wachspress [57]. In [17], strict alternation
between the formulas (23) and (24) is not required as, e.g., the structures and

sizes of the matrices Â and B̂ may make the computation of XM+N in one of the
equations, say (23) faster than by the other one. In this case the computational
effort to solve (22) may be reduced by applying (23) more often than (24), even
if such an approach would result in slightly lower convergence than strict alter-
nation. The convergence of the iteration (23)–(24) for different ratios M/N is
analyzed in [17] as well as the choice of the iteration parameters. There is still
the problem of storing the usually dense n × n matrix XM+N . This storage can
be avoided by observing that, for the problems under consideration, the spec-
trum of the positive semidefinite matrix XM+N = ZM+NZ

T
M+N often decays to

zero rapidly. Here ZM+N can be considered as a Cholesky factor of XM+N . We
expect that XM+N can be approximated accurately by a factorization Z̃Z̃T for
some Z̃ ∈ Rn×r with r � n.

Here, we will restrict our discussion to a strict alternation between the two equa-
tions. With Â = E−1Ak, B̂ = ATkE

−T , and Ĉ = E−1RkE
−T , (22) is equivalent

to (8) and we obtain from (23)

Xi− 1
2
(I − µiATkE−T ) = (E−1Ak − µiI)Xi−1A

T
kE
−T + E−1RkE

−T ,

while (24) yields

(I − ηiE−1Ak)Xi = E−1AkXi− 1
2
(ATkE

−T − ηiI) + E−1RkE
−T .

In order to get rid of the inverses of E, one can manipulate both equations in an
obvious way to reach

EXi− 1
2
(ET − µiATk ) = (Ak − µiE)Xi−1A

T
k +Rk, (25)

(E − ηiAk)XiE
T = AkXi− 1

2
(ATk − ηiET ) +Rk.

Similarly, with Â = E−1Ak, B̂ = ATkE
−T , and Ĉ = E−1CkE−T , (22) is equivalent

to (9) and we obtain

EXi− 1
2
(ET − µiATk ) = (Ak − µiE)Xi−1A

T
k + EĈET , (26)

(E − ηiAk)XiE
T = AkXi− 1

2
(ATk − ηiET ) + EĈET .

While Rk in (25) may be indefinite, ET ĈE in (26) is positive semidefinite, see
(15).
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Smith iteration (17)–(18) by Y ∗. Fix the right hand side of (19) by evaluating
K(Y ∗) = K∗,

EY ET − ĂY ĂT = Q̆+ (CST −K∗R)R−1(CST −K∗R)T . (20)

We will use this as a defect correction and update our approximate solution Y ∗

by Y̆ which is the solution of

EY̆ ET = ĂY̆ ĂT + Q̆+ (CST −K∗R)R−1(CST −K∗R)T . (21)

This may be done by the Smith iteration (14) where we substitute Ak by Ă and
Ck by C∗k = Q̆+ (CST −K∗R)R−1(CST −K∗R)T .

A disadvantage of the Smith iteration is that its convergence is linear and the
rate is bounded by ρk = max{|λ|, λ ∈ σ(Ak, E)}. As ρk can be close to 1, this
may be very slow. The ADI iteration discussed next offers an alternative.

3.2 ADI Iteration

The alternating direction implicit (ADI) iteration was first introduced [47] to
solve linear systems arising from the discretization of elliptic boundary value
problems. In general, the ADI iteration is used to solve linear systems of the
form

My = b,

where M is symmetric positive definite and can be split into the sum of two
positive definite matrices M = M1 + M2 for which the following iteration is
efficient:

y0 = 0,

(M1 + µjI)yj−1/2 = b− (M2 − µjI)yj−1,

(M2 + ηjI)yj = b− (M1 − ηjI)yj−1/2,

for j = 1, 2, 3, . . . . The ADI shift parameters µj and ηj are determined from
spectral bounds on M1 and M2 to improve the convergence rate.

In [17], the ADI iteration is applied to the equation

X − ÂXB̂ = Ĉ, Â ∈ Rs×s, B̂ ∈ Rt×t, Ĉ ∈ Rs×t. (22)

LetX0 be an initial approximate solution of this equation. Then the ADI iteration
generates new iterates XM+N as follows

M := M + 1; XM+N(I − µM B̂) = (Â− µMI)XM+N−1B̂ + Ĉ, (23)

N := N + 1; (I − ηN Â)XM+N = ÂXM+N−1(B̂ − ηNI) + Ĉ, (24)

18

• compute the rank-revealing LQ decomposition of M = [AkZj U ], this
requires 4n(m+ p+ rj)rj+1− 2(n+m+ p+ rj)r

2
j+1 + 4

3
r3
j+1 flops (see, e.g.,

[29, Section 5.4.1]) noting that Q need not be accumulated;

• solve EZj+1 = ΠL̃ for Zj+1 for j = 0, 1, . . ., this involves a (sparse) linear
solve with a system matrix of size n × n and a right hand side of size
n × rj+1. Please note, that the (sparse) LU decomposition of E needs to
be computed only once, the rest of the computations are solely forward
and backward solves. In the case of a DARE coming from a discretized
PDE control problem, E will often be positive definite so that a (sparse)
Cholesky decomposition can be employed and the factorization cost can be
halved.

Hence, the overall flop count for the computation of Zj+1 depends mainly on the
choice of the solver for the linear systems in the outer loop as well as on the cost
of the rank-revealing LQ decomposition in the inner loop and the pre-computable
(Cholesky) factorizations.

The iteration (13) does not allow a factored representation of the solution Yj+1 as
Rk might be indefinite. But (in contrast to the continuous-time case) Rk can be
split explicitly into its positive and negative semidefinite part Pk and Nk, resp.,

Rk = Pk −Nk

with

Pk = CQCT + AXkA
T ,

Nk = EXkE
T + (AXkB

T + CST )(R +BXkB
T )−1(BXkA

T + SCT ).

Splitting the iterates into their positive and negative semidefinite parts Y P
j and

Y N
j , resp.,

Yj = Y P
j − Y N

j

we have

E(Y P
j+1 − Y N

j+1)ET = Ak(Y
P
j − Y N

j )ATk + (Pk −Nk),
that is, we can iterate on the positive and negative semidefinite parts separately

EY P
j+1E

T = AkY
P
j A

T
k + Pk, (17)

EY N
j+1E

T = AkY
N
j A

T
k +Nk. (18)

Now, with Q = LLT and Xk = TkT
T
k , Tk ∈ Rn×sk , we have

Pk = CQCT + AXkA
T = CLLTCT + ATkT

T
k A

T = [CL ATk]

[
LTCT

T Tk A
T

]
.
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Writing Y P
j = ZP

j (ZP
j )T we obtain

EZP
j+1(ZP

j+1)TET =
[
AkZ

P
j CL ATk

]



(ZP
j )TATk
LTCT

T Tk A
T


 .

Hence,
EZP

j+1 =
[
AkZ

P
j CL ATk

]

is one possible representation of the (Cholesky) factor ZP
j+1 of the positive semidef-

inite part Y P
j+1 of Yj+1. If ZP

j ∈ Rn×rPj , then EZP
j+1 ∈ Rn×(rPj +p+sk) and, as

E ∈ Rn×n, ZP
j+1 ∈ Rn×(rPj +p+sk). The dimension of ZP

j+1 would increase in each
iteration step. But if ZP

j+1 is of low rank rPj+1, then we can approximate it using
a rank-revealing LQ factorization as before.

Moreover, with Xk = TkT
T
k and R +BXkB

T = SkS
T
k we have

Nk = EXkE
T + (AXkB

T + CST )(R +BXkB
T )−1(BXkA

T + SCT )

= EXkE
T + (AXkB

T + CST )S−Tk S−1
k (BXkA

T + SCT )

=
[
ETk (AXkB

T + CST )S−Tk
] [ T Tk E

T

S−1
k (BXkA

T + SCT )

]
.

From this, we obtain

EY N
j+1E

T =
[
AkZ

N
j ETk (AXkB

T + CST )S−Tk
]



(ZN
j )TATk
T Tk E

T

S−1
k (BXkA

T + SCT )


 .

Hence, with Y N
j = ZN

j (ZN
j )T

EZN
j+1 =

[
AkZ

N
j ETk (AXkB

T + CST )S−Tk
]

is one possible representation of a factor ZN
j+1 of the negative semidefinite part

Y N
j+1 of Yj+1. If ZN

j ∈ Rn×rNj , then EZN
j+1 ∈ Rn×(rNj +m+sk) and, as E ∈ Rn×n,

ZN
j+1 ∈ Rn×(rNj +m+sk). The dimension of ZN

j+1 would increase in each iteration
step. But if ZN

j+1 is of low rank rNj+1, then we can approximate it using a rank-
revealing LQ factorization as before.

From ZP
j+1 and ZN

j+1, one can determine Yj+1 = ZP
j+1(ZP

j+1)T − ZN
j+1(ZN

j+1)T .
The overall flop count for this computation of Yj+1 is higher than the one for
the iteration (14). As for (14), Kk and Ak have to be set up. In case this is
done in a reasonable way, S−1

k (BXkA
T + SCT ) is computed as by-product when

setting up Kk. Instead of the (Cholesky) factorization of
[
Q
S

ST

R

]
∈ R(p+m)×(p+m),

here only the factorization of Q = LLT ∈ Rp×p is needed. While before, AkZj
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was computed, we now need AkZ
P
j , AkZ

N
j , ATk and ETk. Moreover, two instead

of one rank-revealing QL factorizations have to be computed and two linear
systems with the system matrix E have to be solved (this can be done using one
factorization of E).

As the solution Yj+1 is constructed from two different iterations, one should use
some kind of defect correction in order to increase the accuracy of the solution
and to generate the (Cholesky) factor of Yj+1.

The first idea that might come to mind is to use the following result from [45].

Theorem 3.2 Let X be an Hermitian solution of

0 = R(X),

and let X̃ be an Hermitian approximation to X. Let V = X − X̃. If R̃ =
R +BX̃BT and I + V BT R̃−1B are nonsingular, then V satisfies the equation

0 = R(X̃)− EV ET + ÃV ÃT − (ÃV BT )T (R̃ +BV BT )−1(ÃV BT )

where

ÃT = −BT R̃−1CST + (I −BT R̃−1BX̃)AT .

Unfortunately, the resulting algorithm can not be used here, as in each iteration
step, one has to solve (1). Using the approach discussed above, this would lead
to a solution in terms of (Cholesky) factors of the positive and the negative
semidefinite part of the solution and not to a (Cholesky) factor of the solution
itself.

A different option might be to make use of the following observation which allows
us to solve the DARE in each iteration step so that the desired (Cholesky) factor
of the solution itself is computed. A ”formidable computation” [39, p.312] shows
that the DARE (1) can be rewritten as

EY ET − ĂY ĂT = Q̆+ (CST −K(Y )R)R−1(CST −K(Y )R)T (19)

with

Ă = A−K(Y )B

Q̆ = CQCT − CSTR−1SCT = C
(
Q− STR−1S

)
CT

and K(Y ) as in (3) as a symmetric Stein equation. As Q − STR−1S is the

Schur complement of R in the positive semidefinite matrix
[
Q
S

ST

R

]
[34], Q̆ is

symmetric positive semidefinite. Now, denote the solution of (1) obtained by the
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