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Abstract
We address the important field of large scale matrix based algorithms in
control and model order reduction. Many important tools from theory
and applications in systems theory have been widely ignored during the
recent decades in the context of PDE constraint optimal control prob-
lems and simulation of electric circuits. Often this is due to the fact
that large scale matrices are suspected to be unsolvable in large scale
applications. Since around 2000 efficient low rank theory for matrix
equation solvers exists for sparse and also data sparse systems. Unfor-
tunately upto now only incomplete or experimental MATLAB® imple-
mentations of most of these solvers have existed. Here we aim on the
implementation of these algorithms in a higher programming language
(in our case C) that allows for a high performance solver for many matrix
equations arising in the context of large scale standard and generalized
state space systems. We especially focus on efficient memory saving data
structures and implementation techniques as well as the shared memory
parallelization of the underlying algorithms.
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1. Introduction

One of the key ingredients of many linear-quadratic optimal control problems
for parabolic PDEs [7, 13, 26, 28], as well as the balancing based model order
reduction of large linear systems [2, 9] is the numerical treatment of large scale
sparse algebraic matrix equations

0 = R(X) := CCT +XA+ ATX −XBBTX (ARE)

and
FX +XF T = −GGT . (LYAP)

In those applications, the coefficient matrices A,F ∈ Rn×n are normally sparse
(or data sparse) such that multiplications and linear system solves with A and F
are comparably cheap. The matrices C, B and G are rectangular, i.e., C ∈ Rn×rC ,
B ∈ Rn×rB , G ∈ Rn×rG with rC , rG, rB � n (usually). As a rule of thumb recall,
the smaller rC , rG and rB are, the more efficient the algorithms we focus on can
be. In the case of generalized state space representations the above equations
become

0 = R(X) := CCT + ETXA+ ATXE − ETXBBTXE (G-ARE)

and
FXET + EXF T = −GGT , (G-LYAP)

for E ∈ Rn×n invertible. The case of rank deficient E matrices, i.e., descriptor
systems, will be treated in future versions of our codes. In any case the (nu-
merical) rank of the solution matrices is usually small compared to its actual
dimension (see [31, 3, 20]) and therefore the solutions allow for good approxi-
mation via low rank solution factors. In the literature one finds two classes of
algorithms for the computation of these low rank solution factors. The one class
follows an idea by Saad [32]. These methods project the matrix equations onto
certain subspaces and solve the much smaller projected equations using classic
dense solvers. The main concern then is to find the right subspaces to project
on. Starting with the idea to use Krylov subspaces [22] these methods have lead
to a class of extended Krylov subspace based projection methods. The Krylov
subspace generated by an Arnoldi process for the matrix F here is extended by
the basis generated with respect to F−1 [21, 23, 24, 33]. A convergence analysis
for these methods has recently been presented in [34].

The second path, that we are following here, is based on the observation by Wach-
spress (see, e.g. [35]) that vectorized Lyapunov equations, i.e., the equivalent rep-
resentation as linear system of equations of squared size, have the same structure
as finite difference discretized Poisson equations (see,e.g. [12]). Therefore he pro-
posed that they are an alternating directions implicit (ADI) [29] model problem.



Algorithm 1 Newton’s Method for Algebraic Riccati Equations – Kleinman
Iteration
Input: A,B,C as in (ARE) and an initial guess K(0) for the feedback.
Output: Xk0 solving (ARE) and the optimal state feedback Kk0 (or approxima-

tions when stopped before convergence).
1: for k = 1, 2, . . . , k0 do
2: Determine the solution X(k) of

(A−BK(k−1)T )TX(k) +X(k)(A−BK(k−1)T ) = −CCT −K(k−1)K(k−1)T .
3: K(k) = X(k)B.
4: end for

The applicability of the ADI in low rank fashion has been proven in [8, 30, 27].
We will briefly review the ideas in Section 2.

The algebraic Riccati equation can be tackled with the ADI in combination with
a Newton-Kleinman [25] approach. The key observation here is that the Frechét
derivative of R(·) is a Lyapunov operator which can be handled with low rank
ADI (see, e.g., [8]).

The remainder of this paper is structured as follows. In Section 2 we present the
basic algorithms we are interested in. Especially we point out the fundamental
features and properties of the representation we use in the codes. Thereafter
we point out how these are implemented in Section 3. We introduce the single
pattern multi value (spmv) LU-decomposition, that allows us to reduce the mem-
ory requirements drastically in sparse computations. We further present variants
of the algorithms implementing a minimum runtime, or a minimum memory re-
quirement approach. Section 4 then focuses on the shared memory parallelization
of the algorithms using OpenMP. It is followed by a section on numerical verifi-
cation of the ideas. The paper is finished with some conclusions and an outlook
on future research perspectives.

2. Low Rank ADI for the Lyapunov Equation

Before we start the discussion of the low rank ADI for the Lyapunov equation,
we introduce the important notion of low rank updated sparse matrices.
Definition 2.1 (splr). A matrix F ∈ Rn×n is called sparse plus low rank or
simply splr if we can find matrices A ∈ Rn×n and U, V ∈ Rn×p such that

F = A+ UV T .

We will require the splr structure to be able to apply the low rank solver to the
Lyapunov equation resulting in the Newton step (step 2 in Algorithm 1) when

2

1 void mvp_csr(long n, long *rowptr, long *colptr,
2 double *x, double *y){
3 double t;
4 long i,j;
5 #pragma omp parallel for private(i,j) default(shared).
6 for (i = 0;i < n;i++){
7 y[i] = 0;
8 for (j = rowptr[i]; j < rowptr[i+1];j++){
9 y[i] += values[j]*x[colptr[j]];

10 }
11 }
12 }

Listing 2: OpenMP parallel matrix-vector-product for CSR

1 void mvp_csrt(long n, long *rowptr, long *colptr,
2 double *x, double *y){
3 double *tmp, *ev;
4 double r, t;
5 long id, pos, one =1;
6 long worldsize = omp_get_max_threads();
7 tmp = (double*) malloc(sizeof(double) * n * worldsize);
8 for ( i = 0; i < n*worldsize; i++) { tmp[i] = 0.0;}
9 ev = (double*) malloc(sizeof(double) * worldsize);

10 for ( i = 0 ; i < worldsize ; i++ ) { ev[i] = 1.0;}
11 #pragma omp parallel for private(i,j,t,pos,id)
12 for (i=0;i<n;i++){
13 id = (long) omp_get_thread_num();
14 pos = id * matrix->rows;
15 t = x->values[i];
16 for ( j = rowptr[i] ; j < rowptr[i+1] ; j++ ) {
17 tmp [ pos + colptr[j] ] += values[j] * t;
18 }
19 }
20 r = 1.0; t = 0.0;
21 // dgemv_ - BLAS r*Ax+t*y -> y
22 dgemv_("N",&n,&worldsize,&r,tmp,&n,ev,&one,&t,y,&one);
23 free(tmp);
24 free(ev);
25 }

Listing 3: OpenMP parallel transposed matrix-vector-product for CSR
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1 void lureuse(long rows, long cols,
2 double *values, long *colptr, long *rowptr,
3 long *lcolptr, long *lrowptr,
4 long *ucolptr, long *urowptr,
5 double *lvalues, double *uvalues)
6 {
7 double *w;
8 long i, j, k, col;
9 long row;

10 double alpha;
11 w = (double *) malloc (sizeof(double) * cols);
12 for ( i = rowptr[0]; i < rowptr[1]; i++) {
13 w [colptr[i]] = values[i];
14 }
15 for ( i = urowptr[0]; i < urowptr[1]; i ++ ){
16 uvalues[i] = w[ucolptr[i]];
17 }
18 for ( i = 0; i < cols; i++) { w[i] = 0.0; }
19 lvalues[0] = 1.0;
20 for ( i = 1; i < rows; i++) {
21 for (j=rowptr[i]; j < rowptr[i+1]; j++){
22 w[ colptr[j] ] = values[j];
23 }
24 for (j=lrowptr[i]; j < lrowptr[i+1]-1; j++){
25 col = lcolptr[j];
26 alpha = w[col] / uvalues[urowptr[col]];
27 for ( k = urowptr[col]; k < urowptr[col+1]; k++){
28 w[ucolptr[k]] -= alpha * uvalues[k];}
29 w[col] = 0;
30 lvalues[j] = alpha;
31 }
32 lvalues[j] = 1.0;
33 for (j=urowptr[i]; j < urowptr[i+1]; j++){
34 uvalues[j] = w[ucolptr[j]];
35 w[ucolptr[j]] = 0;
36 }
37 }
38 free (w);
39 }

Listing 1: pattern reuse algorithm in C
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Algorithm 2 (Generalized Low-rank Cholesky factor ADI iteration (G-LRCF-
ADI))
Input: E,F ,G defining (LYAP), or (G-LYAP) respectively and shift parameters
{p1, . . . , pimax}

Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X

1: Solve (F + p1E)V1 =
√
−2Re (p1)G for V1

2: Z1 = V1
3: for i = 2, 3, . . . , imax do
4: Solve (F + piE)Ṽ = EVi−1 for Ṽ
5: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)Ṽ )

6: Zi = [Zi−1 Vi]
7: end for

solving the Riccati equation (ARE).

For an splr matrix we can employ the Sherman-Morrison-Woodburry formula1

(e.g. [19])

(A+ UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1, (1)

whenever its inversion is required.

We start our discussion of the low rank ADI from the two step ADI introduced
by Wachspress:

(F + piI)Xi+ 1
2
= GGT −

(
F T − piI

)
Xi, (2)

(F + piI)Xi+1 = GGT −
(
F T − piI

)
Xi+ 1

2
. (3)

The basic ideas towards a low rank version of the iteration are now

• represent the iterates by low rank decompositions Xi = ZiZ
T
i ,

• assume Z0 = 0,

• insert the one equation into the other to end up with a single step iteration.

The main trick to result in

Z1 =
√
−2p1(F + p1I)

−1G, (4)

Zj =
[√
−2p1(F + pjI)

−1G, (F + pjI)
−1(F − pjI)Zj−1

]
(5)

is the observation, that

(F − piI) = (F + piI − 2piI)

1This formula is often referred to as matrix inversion lemma in the engineering literature, as
well.
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dimension of the system size of L+U in MB size of 16 LUs in MB
100 0.02 0.35

2 500 1.16 18.59
10 000 6.45 103.20
40 000 33.62 537.92
90 000 90.75 1 452.00
250 000 285.10 4 561.30
562 500 718.00 11 488.00

1 000 000 1 379.00 22 064.00

Table 1: memory usage of one factor and the complete set of 16 factors on a 64-bit
architecture

and thus
(F + piI)

−1(F − piI) = I − 2pi(F + piI)
−1.

Note that the assumption Z0 = 0 is not necessary but a non-zero initial matrix
increases the computational cost notably, since it has to be processed in every
iteration step in addition to the new columns. Equation (4) gives rise to Algo-
rithm 2 in the case E = I. In [11] we gave a detailed derivation for the case
E 6= I invertible, motivating the generalization for Equation (G-LYAP). The
choice of the shift parameters is crucial to get good performance of the solver.
Several methods for their computation have been discussed in [10] and references
therein.

3. Efficient Implementation of LRCF-ADI in C

We discussed the fundamental ideas of the Low Rank ADI in Section 2. In this
section the focus lies on how to factorize a set of shifted sparse matrices, like we
use them in the ADI iteration. The following example will show, why it might
not be a good idea to factorize all matrices Ai := A− piI or Ai := A− piE with
standard techniques at the beginning of the iteration.
Example 3.1 (demo_l1 from LyaPack2). Consider a simple FDM-semidiscretized
PDE problem (an instationary convection-diffusion equation on the unit square
with homogeneous first kind boundary conditions) with different discretization
levels n. To reduce the fill-in of the L and U factors, we reorder the rows and
columns using approximate minimum degree reordering [1]. Assume we use 16
shift parameters in the ADI iteration. We intend to use the shifts cyclicly, i.e.,
restart with the first shift once we have applied all of them and the iteration
has not converged. Since we do not want to compute the same LU factorizations

2http://netlib.org/lyapack

4

CSR transposed matrix vector product. After we discussed a workaround
solution for the missing vector reduce operation in OpenMP, Listing 3 presents
the resulting C code. Computing partial results and merging them together
in another step is one way to deal with the missing vector reduce operation.
The transposed matrix vector product can be implemented with synchronization
statements too, but then for every access on y we have to synchronize which slows
down the whole algorithm. In practice that means that the actual speed up can
be smaller than 1.
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1 #pragma omp parallel for private(i)
2 for (i=0;i<n;i++){
3 umfpack_dl_numeric (rowptr[i], colptr[i], values[i],
4 Symbolic, &Numeric[i],
5 data->Control[i], data->Info[i]) ;
6 }

the computed decomposition may be incorrect. Depending on the size of the
matrix the probability for this to happen increases. Another problem is the
relatively high memory usage of UMFPACK. The question arises whether it is
possible to combine the advantages of the spmv-LU and the multifrontal ideas in
UMFPACK.

Upcomming Parallelization techniques. Since NVIDIA introduced the Com-
pute Unified Device Architecture (CUDA), the usage of GPUs for scientific com-
puting has become more and more popular. It has to be proofen whether we can
use the parallel performance and computation power (up to 1 Tflops in single
precission) to fasten the ADI process or at least some parts of it, especially for
sparse matrix computations. Some results for the sparse matrix vector product
have already been presented by NVIDIA [6, 5]. Another interessting question is,
if complex algorithms like eigenvalue computations or graph reordering can be
implemented on GPUs, too.

A. Listings

Pattern-Reuse-LU. Listing 1 shows a C implementation of the pattern-reuse-
LU like it is used in C.M.E.S.S. for the spmv. It differs from Algorithm 5 by dealing
with the worker vector w. The implemented version performs the w = Ã(i, :)
operation in a sparse way to avoid reseting or reintializing the whole vector. The
sparse AXPY-operation is done as an inline operation in the inner for-loop.
After copying the required values from w to Ũ we reset only the used values in
w.

CSR matrix vector product. In Listing 2 we present a small but efficient im-
plementation of a sparse matrix vector product for matrices stored in Compressed
Sparse Row Storage. Because of disjoint write access to y and read-only use of
A and x each process only needs i and j as private variables. All other data is
shared between all processes.
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repeatedly, we have to store 16 decomposition in memory at a time. Due to the
property of 64-bit architectures that long and double both occupy 8 bytes,
this leads to enormous memory requirements, as shown in table 1.

Example 3.1 shows that it is nearly impossible to store all factors in memory
using standard desktop computers. In Section 3.1 we derive a variant of the
LU-decompostion, exploiting the special structure of our systems to reduce the
memory usage by almost 50%. A technique to solve Lyapunov equations with
even less main memory is presented in Section 3.2. To handle the pattern of a
sparse matrix easily, we use the following definition.
Definition 3.2. Let A ∈ Rn×m be a matrix. We call the set

P(A) = {(i, j) | Ai,j 6= 0}

pattern of A. Furthermore we define

PR(A, i) = {j | Ai,j 6= 0}

as the pattern of the i-th row of A.

3.1. A Single-Pattern-Multi-Value-LU Decomposition

The following example motivates how we can reduce the memory requirements
for the multiple shifted linear systems.
Example 3.3. Consider the small 4× 4 matrix

A :=




1 0 0 −1
0 2 1 0
3 0 3 0
0 −2 0 4


 ,

with its LU-decomposition

L =




1 0 0 0
0 1 0 0
3 0 1 0
0 −1 1

3
1


 , U =




1 0 0 −1
0 2 1 0
0 0 3 3
0 0 0 3


 ,

and the pattern of L and U :

L =




∗
∗

∗ ∗
∗ ∗ ∗


 U =




∗ ∗
∗ ∗
∗ ∗
∗


 .

5



Examining the shifted matrix A + I4 and its LU decomposition (with the same
pivoting strategy)

A+ I4 =




2 0 0 −1
0 3 1 0
3 0 4 0
0 −2 0 5


 =

L̃︷ ︸︸ ︷


1 0 0 0
0 1 0 0
3
2

0 1 0
0 −2

3
1
6

1


 ·

Ũ︷ ︸︸ ︷


2 0 0 −1
0 3 1 0
0 0 4 3

2

0 0 0 19
4


,

we find that the patterns for L̃ and Ũ coincide with those of L and U .

We observe in Example 3.3, that the position and the number of non zero elements
is exactly the same (except from eventually computed exact zero entries resulting
from certain value distributions in the original matrix) when we factorize a matrix
shifted by multiples of the identity matrix. The systems in the ADI iteration all
are of the same structure. The question arises, whether it is possible to exploit
this property of LU := A and L̃Ũ := A + pI to preserve the pattern in order to
save memory. The answer is, yes.

Another question is, whether we can use information from an LU decomposition
of A to factorize systems A + pI with certain shifts p. Again the answer to this
question is yes. To develop an algorithm which solves both problems we use
Definition 3.2 to access the pattern structure independent from the values.

Reuse of information from LU = A In the process of shift parameter com-
putation for the ADI we have to solve systems with A, so we can assume, that
LU = A has been computed before the iteration begins. With the knowledge of
L and U the sets P(L), P(U) and the sizes of these sets are given. The fact that
we know the sizes of the sets is not interessting in a mathematical point of view,
but for the efficient implementation it is important, because the memory can be
allocated in one step and no reallocations are necessary. Note that reallocations
can be super-linear complexity algorithms and always require context changes to
the operating system when called.

Another important property is that from P(A) = P(Ã) it follows P(L) = P(L̃)
and P(U) = P(Ũ) with L̃Ũ = Ã, e.g. [17]. The main idea is, that the pattern sets
depend only on the position of the entries not on their actual values. We assume
that numerical cancelation is neglected. The sets PR(A, i) are easily accessible
because we store the matrix in Compressed Sparse Row Storage (CSR) [4, p. 57].
If the matrix is given in Compressed Sparse Column Storage (CSC), we factorize
AT instead of A.

To derive the algorithm we analyze a dense row-wise LU -decomposition presented
in Algorithm 3. The first step is to put in the information we have when we

6

two norm in every step. If we do this every 5-th step we have to compute at
most five steps more, but we easily compensate this by the time saved due to
the dropped 2-norm evaluations. To accelerate the computation of the pattern,
the first decomposition of A is done with UMFPACK. Reasons for not using it for
every LU in the algorithm are shown in Section 6.

6. Future Perspectives

Left-Looking LU decomposition. Like it is implement in CSparse[16], a left
looking LU decomposition is significantly faster then a naive implementation. It
is derived from a block partioning

LU = A

L11

l21 1
L31 l32 L33





U11 u12 U13

u22 u23
U33


 =



A11 a12 A13

a21 a22 a23
A31 a32 A33


 . (7)

The middle row and column of each matrix is the kth row and column of L, U
and A. If the first k − 1 columns of L and U are known, we get three equations
to compute the k-th columns of L and U : L11u12 = a12 is a triangular system
that can be solved for u12, l21u12 + u22 = a22 can be solved for the entry u22,
and L31u12 + l32u22 = a32 can then be solved for l32. The rearrangement of these
equations leads to 


L11

l21 1
L31 0 I





x1
x2
x3


 =



a12
a22
a32


 . (8)

The solution of this system gives u12 = x1, u22 = x2 and l32 = x3

u22
. In our case

L, y and x are sparse. For this case there exist sparse triangular solvers, which
are accelerated with graph-theoretical results like using the reachability set of
underlying directed graph of L [18]. An interessting question is, if we can find a
reuse algorithm which based on the left looking LU and which information are
useful to derive fast parallel algorithms.

Using UMFPACK. UMFPACK [15] is a set of functions to solve sparse linear
systems of equations of the form Ax = b or ATx = b with the non-symmetric
multifrontal method. The factorization of a matrix is divided in a symbolic and
a numerical phase. Because it uses level 3 BLAS it is much faster than standard
sparse LU decompositions. But several problems prohibit the usage for the single-
pattern-multi value idea. The first problem is that UMFPACK appears not to be
thread safe, i.e. when running a construct like
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with 2-norm without 2-norm cache to disk
iterations 78 99 99
final 2-norm residual 5.77e-07 5.87e-07 5.87e-07
final ||Vi||F

||Zi||F 2.86e-11 8.47e-13 8.47e-13
time all (in seconds) 2346.21 2119.76 3168.41
first LU 1017.44 1056.66 1021.02
spmv-LU 854.28 885.77 2040.08
ADI 474.49 177.33 107.31

Table 5: demo_l1 with one rhs and different parameters

2-norm every step 2-norm every 5th step
iterations 107 109
2-norm residual 6.29e-07 6.29e-07
last ||Vi||F

||Zi||F 2.69e-11 9.53e-13
time all 5063.01 1985.44
first LU8 19.14 18.82
spmv-LU 1096.33 1098.45
ADI 3947.54 868.17

Table 6: demo_l1 with 4 rhs

memory usage is as small as possibile. After the iteration the spmv is cleared and
the solution factor is loaded from file to compute the 2-norm residual. Table 5
shows the runtimes for these three configurations. We can see that the naive
LU decomposition costs more time than the reuse computations all together. In
the ADI iteration the evaluation of the 2-norm residual is the most expensive
operation. The speed of the cache-to-disk solution extremely depends on the
storage, where the solvers are read from. Our test system has 4 SATA hard disk
in a RAID-0 array, which allows transfer rates of up to 150MB/s.

In the case of a multiple input system, we have to solve with multiple right hand
sides. To test the implementation we use a rank four randomly generated right
hand side for the Lyapunov equation. Table 6 shows the results with computing
the 2-norm residual in every step and every 5-th step. The stopping criteria are
the same as in the single right hand side case. We observe that the main iteration
takes more than eight times the execution time (compared to that for a rank-1
right hand side) if we evaluate the 2-norm in every step. In the case we compute
the 2-norm residual in every 5-th step, we only need about double the time. The
largest problem is, that the size of the solution factor Zi increases more rapidly.
The data in the CPU cache can not be used again because we have to transfer
to much data from CPU to memory for every basic operation while evaluating
the 2-norm residual. The example shows that it is not nessecary to evaluate the
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Algorithm 3 rowise LU -decomposition
Input: A ∈ Rn×n

Output: L ∈ Rn×n lower triangular, U ∈ Rn×n upper triangular with LU = A

for i = 1, . . . , n do
U(i, :) = A(i, :)
L(i, i) = 1
for all j = 1, . . . , i− 1 do

L(i, j) = α = U(i,j)
U(j,j)

U(i, :) = U(i, :)− α · U(j, :)
end for

end for

Algorithm 4 sparse axpy - SpAXPY(α, v, w)
Input: w ∈ Rn, v ∈ Rn as vval and vind, α ∈ R
Output: w = w + αv

for i = 1, . . . , |vind| do
w(vind(i)) = w(vind(i)) + αvval(i)

end for

know P(L) and P(U). The for-loop with respect to the index j needs only access
elements which exist in L. After putting in the information we have already
from P(L), we can turn the inner continous for-loop into a loop over all elements
j ∈ PR(L, i). Next we have to avoid working on a full row in U . The best way
to do this is to copy the i-th row of A into a temporary vector w and perform all
operations done on the i-th row of U on this vector. After finishing the j-loop
we move only the in PR(U, i) existing columns from w to U(i, :). Thefore the
operation

U(i, :) = U(i, :)− α · U(j, :)
turns into

w = w − α · U(j, :),
which can be implemented by scattering the j-th row of U and using BLAS, or
by using the sparsity of U . We use a sparse axpy operation. Assuming U(j, :) is
a sparse vector, we only have to modify w at position where U(i, :) is non zero,
which will be done by Algorithm 4.

This enables us to compute the LU-factors L̃, Ũ of Ã with P(Ã) = P(A) reusing
the knowledge of the patterns as is shown in Algorithm 5. Thus Algorithm 5 is the
answer to our second question. With a given factorization of A we can compute
the factorization of a matrix with the same pattern (as, e.g., Ã = A+ pI) faster
than starting a new decomposition of Ã from scratch. Numerical results and
timings that show the adavantage of this method will be presented in Section 5.
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Algorithm 5 Pattern-reuse-LU
Input: Ã ∈ Rn×n, P(L) and P(U) with LU = A and P(A) = P(Ã)
Output: L̃, Ũ with L̃Ũ = Ã

Ũ(1, :) = Ã(1, :)
for i = 2, . . . , n do

w = Ã(i, :)
for all j ∈ PR(L, i) ordered ascending do

L̃(i, j) = α = w(j)/Ũ(j, j)
SpAXPY(−α, U(j, :), w)

end for
for all j ∈ PR(U, i) do

Ũ(i, j) = w(j)
end for

end for

We present a C implementation in Appendix A. If we do not know the patterns
of L and U beforehand, we can compute them using existing software packages,
like CSparse [16] or UMFPACK [15].

Single Pattern Idea. To derive an algorithm decreasing the memory usage, we
have to analyse the pattern reuse idea again. We observe that the access to the
given pattern structure is read-only.

The patterns of the new factors are the same as those of the previously computed
ones, as we discussed in the previous section. The systems A+piI have the same
pattern as A for all i, then the computed LU -factors have the same structure.
Note that we assume A to be Hurwitz, i.e., all diagonal entries need to be non-
zero anyway and we cannot add elements to the sparsity pattern shifting with
multiples of the identity.

The answer to our first question turns out to be: factorize the the system A+ pI
or a system with the same pattern and use the pattern sets P(L) and P(U)
for all subsequent factorizations of shifted matrices. Only the values of the new
factorizations are saved. In case of CSR storage this means that we keep the
rowptr -array and the colptr -array for all systems in main memory and only the
values-array differs for each shift. Table 2 shows the reduced memory usage and
the savings in comparison to the naive memory usage from example 3.1. It shows
that we can save nearly half of the memory on a 64bit architecture. The maximum
savings depend on the size of double and long data types on the architecture
used. On 32bit architectures we only save 30% up to 40%, because there long
variables, which used for the pattern sets, are only 4 Byte large instead of 8 byte
on 64bit.
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dimension time CSparse time reuse savings
2 500 0.0062 0.0022 63.85%

10 000 0.0539 0.0235 56.32%
40 000 0.4147 0.2120 48.89%
90 000 1.7549 1.1670 33.50%
250 000 8.8364 6.9544 21.30%
562 500 34.2441 28.6534 16.33%

1 000 000 89.1395 75.8866 14.87%

Table 3: pattern reuse: normal LU with CSparse, reuse with alogrithm 5

dim. naive LU spmv LU max.
1 core 2 cores 4 cores savings

90 000 98.506 19.594 10.479 10.054 89.79%
160 000 299.400 60.046 34.161 33.481 88.81%
250 000 686.910 121.172 69.666 66.768 90.28%
562 500 4 069.529 506.111 296.987 269.753 93.37%

1 000 000 18 526.310 1 318.375 762.947 707.374 96.18%

Table 4: spmv vs. naiv sparse LU, 16 LU decompositions

implemented rowwise LU decomposition and 1 up to 4 cores for the spmv algo-
rithm. Table 4 show the computation time for a system with 16 shift parameters,
like we would typically employ it inside an ADI process.

Basic example. As test example, we use a simple FDM-semidiscretized PDE
problem from Example 3.1. The unit square is discretized with an aperture size of
1000 points in each direction. The resulting system matrix has the dimension 106.
The solution of the Lyapunov eqaution has about 1012 degrees of freedom. They
are approximated by a low rank factor, computed by the ADI. The configuration
parameters of the ADI are:

• maximum number of iterations: 500

• 2-norm residual truncation: 1e-8

• relative change truncation ( ||Vi||F
||Zi||F ): 1e-12

The solution is computed in three different ways. The first one computes a naive
LU decomposition to get the patterns of L and U and store the complete spmv-LU
in the main memory. The 2-norm residual is evaluate in every step. The second
one stores everything in memory but the 2-norm residual is only computed at the
end of the iteration. The third one uses the cache-to-disk technique presented in
Section 3.2. In this case, the spmv does not work in parallel to ensure that the
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loaded. The wait-until-loaded stops the execution of the current program until
a specified solver is loaded. Since OpenMP does not provide easy facilities to
implement such behavior, we use pthreads, the thread environment existing on
nearly all POSIX compatible operating systems. Our thread pool only has one
worker thread because parallel I/O to hard disk should be avoided to ensure short
reading of the solvers from hard disk to memory.

Dense linear algebra operations. Many operations in the ADI process, like
scaling vectors or adding matrices, are dense operation. The Basic Linear Al-
gebra Subroutines (BLAS) are used in this case. To accelerate them we choose
a multithreaded implementation. This can be GotoBlas6, ATLAS7 or a vendor
specific one, provided by CPU or server vendors.

5. Numerical Verification

The numerical test have been performed on a dual Intel®Xeon®5160 computer
with 64GB DDR2-667ECC memory. Every CPU has two cores and 4MB L2
cache. Thus we can use up to 4 cores in parallel jobs. The operating system used
is OpenSuse 11.1 x86-64. The four SATA harddisks are accessed via RAID-0
delivering high performance. The following numerical test were carried out on this
machine with the matrices generated for example 3.1. The BLAS implementation
used is GotoBlas2 1.08 with OpenMP thread support.

Pattern reuse. The pattern reuse idea, described in Section 3.1 is tested with
matrices from Example 3.1. The matrices are reordered using the approximate
minimum degree (AMD) [1] reordering strategie to reduce fill-in. The patterns
P(L) and P(U) have been computed with CSparse [16]. CSparse implements an
easy to use left looking LU decomposition for sparse matrices. We see in table 3,
that the reuse idea can be used to save up to the half of the computation time
for an LU decomposition, if we know the structure of the factors beforehand. For
larger systems the CPU-cache limitation introduces additional difficulties. Ideas
to prevent this will be noted in Section 6.

Single-Pattern-Multi-Value LU decomposition. The extension of the pattern
reuse idea to save memory was presented in Section 3.1 and its parallelization in
Section 4. The test uses one core for the initial LU decomposition with a naiv

6http://www.tacc.utexas.edu/resources/software/#blas
7http://math-atlas.sourceforge.net/
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N 16 LUs in MB spmv3 LU savings
100 0.35 0.17 51.70%
625 3.34 1.66 50.28%

2 500 18.59 9.35 49.69%
10 000 103.20 53.68 47.99%
40 000 537.92 281.26 47.71%
90 000 1 452.00 760.91 47.60%
160 000 2 804.50 1 471.50 47.53%
250 000 4 561.30 2 394.50 47.50%
562 500 11 488.00 6 038.00 47.44%

1 000 000 22 064.00 11 604.00 47.41%

Table 2: memory usage of the single pattern multi value idea and savings on a
64-bit architecture

In case of generalized systems, the patterns of stiffness matrix A and mass-matrix
F may differ. That means we can not directly use P(L) and P(U) from A.
Nevertheless we can use the idea to compute A + pE. Instead of P(L) and
P(U) for LU = A we construct P(L̃) and P(Ũ) by decomposing A + E. The
factorization of (A+E) can be done in a symbolic way on the pattern only, because
we do not need the values if we compute the shifted systems with algorithm 5. If
we want to skip the symbolic factorization of A + E, we may factorize A + p1E
with a standard LU solver and and reuse its factors patterns to compute A+piE
(i > 1), with Algorithm 5.

3.2. A Memory Efficient Cache to Disk Technique

The technique in Section 3.1 can reduce the memory usage dramatically. But
on standard workstations it is impossible to store these in memory for large
systems (n ≥ 250 000). To discover a way to be able to solve very large problems
on standard workstations, we analyse the ADI algorithm again. The analysis
focuses on which data is needed per iteration step and which data does not effect
the current iteration step.

First we take a look at the data dependency between two iteration steps in algo-
rithm 2. Line 4 and 5 refer to the previously computed Vi.

Solve (F + piI)Ṽ = Vi−1

Vi =
√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)Ṽ )

and line 6 refers to the previously computed Zi. But the already computed
columns of Zi are not needed to compute the next iterate. Because Zi is a dense
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matrix, it is stored in the Fortran matrix format. That means the data is stored
in one large one dimensional array, where the columns are contained one after
the other. The update

Zi = [Zi−1 Vi]

can easily be performed by resizing Zi to dim ([Zi−1 Vi]) and concatenating Vi to
the end of Zi−1. For Vi ∈ Rn×m, Zi in every step uses n · m · sizeof(double)
of additional memory. In the case that Zi can not be resized directly. This
happens if there is not enough free memory behind the current Zi. Then all
data is copied to a new memory location, which has sufficient size. Therefore
the system temporarily needs nearly twice the memory of the factor. The worst
case would be if this happened in every iteration step. To prevent this, we want
to write Z to external storage like a hard disk drive. If we realize the update
of Zi by writing Zi to disk adding of new columns at the end is equivalent to
appending the new data at the end of the file. The replacement of Zi = [Zi−1 Vi]
by

fwrite(Vi, sizeof(double), n, m, filepointer);

where filepointer is the output file opened for the Z factor, eliminates the
need to store Zi in memory. The only data we have to keep in memory are the
current Vi and Ṽ , whose memory locations can be overwritten in every iteration
step. The size of Vi and Ṽ is fixed. Reallocation is not needed and the complete
memory can be allocated en block at the beginning of the iteration. After finishing
the iteration, the matrix Z can be loaded into the memory as one block again.

We also keep the previously computed solvers for (A+piI) in the system memory.
From Example 3.1 we know that this is an undesirable amount of memory. But
we only have to solve with one of these solvers in every iteration step. The idea is
to dump all the other solvers to external storage after the solvers are computed
and load them on demand once the iteration step needs them. After solving
we overwrite the memory location with the next solver to avoid malloc and
free calls. Depending on the available memory, we can pre-load the next k
solvers to accelerate the iteration. The complete cache-to-disk solution is shown
in Algorithm 6.

Even if we can compute the low rank solution of a Lyapunov equation with less
memory, we have some new problems. The evaluation of the stopping criteria
has to be compatible with our data storage. The most accurate criterion, the
residual, is taken in the 2 norm in our case. In this norm it can be computed
via a power iteration applied to the symmetric residual operator. In that case
we have to compute matrix vector products with the system matrix F and the
current solution factor Zi. Because F is sparse, we store it in the main memory,
but Z only exists in a file and not in memory. If we load the complete Zi into
the memory to compute the residual in every step, the iteration is becomes much
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have to compute

y =
n∑

k=1

xk(Ak,·)
T .

If we parallelize this like y = Ax we have to deal with the problem, that an entry
in y has to be written by different computational threads. Therefore we need
synchronization statements, before every access on y. This will potentially slow
down the computation significantly. Alternatively every job computes its own
part of the linear combination and all parts are summed up at the end. This is
done by a reduction operation over all local result. Unfortunately the reduction
operation, which is provided by OpenMP, only works on scalars and not on vec-
tors. The only way to accelerate the computation without using synchronization
thus is to implement a workaround for the missing vector-reduction. The idea is
first to compute the local parts of the linear combination via

y(i) =
n∑

k=1,...,n
row k belongs to job i

xk(Ak,·)
T

and afterward merge them by the product

y =
[
y(1), . . . , y(#jobs)

]
· e with e = [1, . . . , 1]T ∈ R#jobs.

The merge step can be computed with a dense BLAS matrix vector product
again. The complete approach is shown in Listing 3. If the matrices are stored
in compressed sparse column storage (CSC), the resulting algorithm will be the
same, but they work on the transposed matrix. That means rowptr and colptr
change their roles and Listing 2 computes y = ATx and Listing 3 computes
y = Ax.

I/O pool for the cache to disk technique. Certain kinds of parallelization
can not be implemented using OpenMP easily, for example an implementation of
a thread pool. When using the cache to disk technique to save memory we have
to load the solvers from disk and have to wait until this is done. We accelerate
this by loading the solver for iteration step i+1 in the background, while working
with solver i. Depending on the amount of free memory we may also pre-load
more than one solver to minimize delays caused by waiting times. Therefore we
implement a thread pool, where we register the loading tasks for the solvers.
The jobs in the pool are served in first-in-first-out order, i.e., the order they were
inserted. The pool is created in the background, such that the program execution
continues unharmed. To ensure that the solver is completly loaded, before we
use it, all solvers have to provide an is-loaded property and a wait-until-loaded
function. The is-loaded property is used to check whether the solver is already
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Algorithm 9 Solution of multiple right hand sides in parallel.
Input: L ∈ Rn×n, U ∈ Rn×n, B ∈ Rn×m

Output: X ∈ Rn×m with LUX = B

1: #prama omp parallel for shared(L,U ,X,B) default(private)
2: for i = 1, . . . ,m do
3: solve Ly = B(:, i)
4: solve UX(:, i) = y
5: end for

parallel techniques. On ther other hand, the columnwise variant solves systems
LUX(:, j) = Vi(:, j) for every j. Looking at how data depend on each other, we
can see that L and U are read-only and the columns of the right hand side are
independend from each other. Considering the options, OpenMP provides, the
easiest way is to solve the systems for the different columns j in parallel. This
can be done by inserting only one OpenMP directive, as shown in Algorithm 9.

Matrix-Vector-Products. Another basic operation is the matrix vector prod-
uct. In the ADI iteration it is only needed if we solve the generalized equations.
In the computation of the shift parameters and in the evaluation of the 2-norm
residual by applying the power iteration, the fast computation of the matrix
vector product is a key ingredient. For dense matrix calculation of y = Ax is
computed applying (multi-threaded)BLAS 5. For sparse matrices it strongly de-
pends on the storage format, how an efficient parallelization can be achieved.
In the case, that the matrix is stored in compressed sparse row storage (CSR)
format, the product is computed by evaluating scalar products

yi =
n∑

k=1

Aikbk

of the rows of the matrix and the vector. Since the rows are data-independend,
the computation can be distributed across the CPUs, like it is done for the spmv-
LU. Listing 2 shows a short parallel C implementation.

The matrix vector product with a transpose matrix is another issue. The explicit
transposition of the matrix should be avoided and the effect of the transpose
should be exploited implicitly while computing y = ATx. For matrices in CSR
Storage this is a linear combination of the rows of A with coefficients from x. We

5provided by the CPU Vendor, the ATLAS/GotoBlas projects or via in the reference imple-
mentation at NetLib.
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Algorithm 6 (Low-rank Cholesky factor ADI iteration (LRCF-ADI))
Input: F ,G defining FX +XF T = −GGT and shift parameters {p1, . . . , pimax}
Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X

1: load solver for p1
2: Solve (F + p1I)V1 =

√
−2Re (p1)G for V1

3: free solver for p1
4: write V1 to a new file Z
5: for i = 2, 3, . . . , imax do
6: load solver for pi
7: Solve (F + piI)Ṽ = Vi−1 for Ṽ
8: free solver for pi
9: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)Ṽ )

10: append Vi to file Z
11: end for

to slow. Another stopping criterion suggested in [8] is the relative change of the
factor

||Vi||F
||Zi||F

≤ ε.

The computation of ||Vi||F can be performed easily. To compute ||Zi||F we employ
the definition of the Forbenius norm

||Zi||F =

√√√√
n∑

k=1

p∑

l=1

Z
(i)
kl

and exploit Zi = [Zi−1 Vi]:

||Zi||2F =
n∑

k=1

p∑

l=1

Z
(i)
kl

=
n∑

k=1

p−m∑

l=1

Z
(i−1)
kl +

n∑

k=1

m∑

l=1

V
(i)
kl

= ||Zi−1||2F + ||Vi||2F (6)

Thus we can easily compute this criterion by updating ||Zi||2F without accessing
Zi. Column compression is another technique to save memory, but as for the
2-norm residual, we have to load the complete Zi factor from disk to perform
the column compression. Therefore column compression has to be postponed for
post processing in this case. The solution of generalized systems can be done the
same way. We need some additional memory to evaluate EVi−1, though.
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Algorithm 7 Single-Pattern-Multi-Value LU decomposition (sequential)
Input: A ∈ Rn×n, pi ∈ R i = 1, . . . , np

Output: Li and Ui for i = 1, . . . , np

1: compute P(L) and P(U) with LU = A or LU = A+ E
2: for i = 1, . . . , np do
3: Ã = A+ piI or Ã = A+ piE
4: compute LiUi = Ã with Algorithm 5 using P(L) and P(U) as pattern.
5: end for

4. OpenMP Parallelization

Parallelization of algorithms has become an increasingly important topic since
standard desktop and server CPUs have more than one core, support multi-
threading and similar technologies to work in parallel. To accelerate an algorithm
it is no longer feasible to use faster CPUs the way it has been done over the
recent decades. We have to search for ways existing algorithms can exploit the
new capabilities of modern CPUs or we have to develop new strategies to use
them. A compiler add-on and runtime library which supports the programmer in
solving this problem is OpenMP4. OpenMP defines a standard how compilers have
to behave, when compiling your C or Fortran code. The actual parallelization
is performed by inserting pre-processor statements into existing code together
with a small set of library functions. It is also possible to design software in a
way, that it can be compiled on systems, which do not support OpenMP without
loss of functionality (besides the parallelization). Another advantage of OpenMP
is, that we can parallelize code step by step and there is no problem using non
parallel code, as it is the case for other parallel computation paradigms. The list
of available compiler directives and library functions is described in the OpenMP
Standard [14].

Parallelization of the SPMV LU. The first step to parallelize an algorithm is
to check the data dependencies. The problem with the parallelization of an LU
decomposition is, that every step depends on all previously computed values. So a
direct parallelization of the reuse algorithm is nearly impossible or too expensive
because we have to use graph theoretical algorithms to compute the elemination
tree and to find subtree in this. In our case we have to compute, for a given set
of shift parameters pi, the factors of the systems (A + piI) or (A + piE). If we
do this in a sequential way, this will look like in Algorithm 7. Looking on how
P(L) and P(U) are accessed in Algorithm 5 (or the C variant in Listing 1), it is
easy to see, that these sets are used read-only. That means the computations for

4http://www.openmp.org
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Algorithm 8 Single-Pattern-Multi-Value LU decomposition (parallel)
Input: A ∈ Rn×n, pi ∈ R i = 1, . . . , np

Output: Li and Ui for i = 1, . . . , np

1: compute P(L) and P(U) with LU = A or LU = A+ E
2: #pragma omp parallel for shared(P(L), P(U), A, E) default(private)
3: for i = 1, . . . , np do
4: Ã = A+ piI or Ã = A+ piE
5: compute LiUi = Ã with Algorithm 5 using P(L) and P(U) as pattern.
6: end for

(A+ piI) and (A+ pjI) (i 6= j) are independent of each other. Therefore we can
perform them in parallel. The parallelization idea is: Distribute the computation
of Li and Ui over all available computational units and work on the same P(L)
and P(U) read-only. A for-loop with no data dependency can be parallelized in
OpenMP easily with the #pragma omp parallel for statement. It realizes
a workshare on all CPUs by splitting the iteration intervall in a number of disjoint
sub-intervals equal to the number of available processing units. If the CPU
supports HyperThreading®or similar techniques, these should be turned off,
because half of the cores only exist in a virtual way and the memory bandwidth
is insufficient to provide all required data on time. For example, if we have np = 16
and compute on a four-core CPU, every core has to factorize four systems. In
practice, the splitting of the intervall is controlled by a load balancer, which can
be configured, as well, but the default settings are usually sufficient. To specify
that P(L) and P(U) should be the same for all jobs, we define shared(P(L),
P(U)) in the OpenMP directive. All other data is private for each job, so the
default for the OpenMP block is set to private. The preparation of Ã = A+piI
is performed by each processor in its own memory to get independent of the other
processors. The resulting parallel variant is shown in Algorithm 8.

Dealing with multiple right hand sides. Depending on the number of inputs
and outputs of the system, we have to solve with (A+piI) on multiple right hand
sides. If the right hand side of the Lyapunov equation is a rank one dyad (i.e.
spanned by only one column), all Vi are column vectors. In any other case we
have to solve for multiple right hand sides in every step. To do this, we have two
choices. Either we process the right hand side rowwise or columnwise. In the
rowwise case, we compute for every value in L and U the corresponding values
in the right hand side. The advantage of this solution is, that L and U are only
loaded one time from memory. But depending on the size of the right hand side,
the distance between two entries in the same row in the memory can get too large.
In this case the computation runs out of cache permanently, which slows down
the whole algorithm. Another problem is, that there is no easy way to apply
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