
Chemnitz Scientific Computing Preprints – ISSN 1864-0087

Jens Saak Stephan Schlömer

RRQR-MEX
Linux and Windows 32bit Matlab MEX-Files for

the rank revealing QR factorization

CSC/09-09

Chemnitz Scientific Computing
Preprints

Impressum:

Chemnitz Scientific Computing Preprints — ISSN 1864-0087
(1995–2005: Preprintreihe des Chemnitzer SFB393)

Herausgeber:
Professuren für
Numerische und Angewandte Mathematik
an der Fakultät für Mathematik
der Technischen Universität Chemnitz

Postanschrift:
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz
Sitz:
Reichenhainer Str. 41, 09126 Chemnitz

http://www.tu-chemnitz.de/mathematik/csc/

References

[1] C. H. Bischof and G. Quintana-Ortí, Algorithm 782: Codes for
rank-revealing QR factorizations of dense matrices., ACM Trans. Math.
Softw., 24 (1998), pp. 254–257. 1

[2] J. Saak, Efficient Numerical Solution of Large Scale Algebraic Matrix
Equations in PDE Control and Model Order Reduction, PhD thesis,
TU Chemnitz, July 2009. available from http://www.tu-chemnitz.de/
~saak/Data/Diss-web.pdf. 8

19

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7
wide rectangular matrices

number of rows

a
v
rg

.
e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(a) Average times.

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
wide rectangular matrices

number of rows

m
in

/m
a

x
 e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(b) Minimum and maximum times.

Figure 10: 64bit Linux execution time comparison for rrqr with and without
accumulation of Q on wide rectangular matrices with growing number of
rows.

18

Chemnitz Scientific Computing
Preprints

Jens Saak Stephan Schlömer

RRQR-MEX
Linux and Windows 32bit Matlab MEX-Files for

the rank revealing QR factorization

CSC/09-09

CSC/09-09 ISSN 1864-0087 December 2009

Abstract

The rank revealing QR decomposition (RRQR) is a special form of the
well known QR decomposition of a matrix. It uses specialized pivoting
strategies and allows for an easy and efficient numerical rank decision for
arbitrary matrices. It is especially valuable when column compression of
rectangular matrices needs to be performed. Here we provide documen-
tation and compilation instructions for a Matlab MEX implementation
of the RRQR allowing the easy usage of this decomposition inside the
Matlab environment.

Contents

1 Introduction 1

2 Contents of the Distribution Archive 1

2.1 Binary Release . 1

2.2 Source Release . 1

3 Usage 2

3.1 Usage of the Gateway . 2

4 Compiling the Gateway 3

4.1 Compiling on MS-Windows (32-bit) 3

4.2 Compiling on Linux (32-bit) 5

4.3 Compiling on Linux (64-bit) 8

5 Measurements and Testing 8

5.1 Tests on Windows 32bit . 10

5.2 Tests on Linux 32bit . 13

5.3 Tests on Linux 64bit . 16

Author’s addresses:
Jens Saak jens.saak@mathematik.tu-chemnitz.de
Stephan Schlömer stephan.schloemer@s2003.tu-chemnitz.de

TU Chemnitz Fakultät für Mathematik D-09107 Chemnitz

http://www.tu-chemnitz.de/mathematik/

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
wide rectangular matrices

number of columns

a
v
rg

.
e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(a) Average times.

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250
wide rectangular matrices

number of columns

m
in

/m
a

x
 e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(b) Minimum and maximum times.

Figure 9: 64bit Linux execution time comparison for rrqr with and without
accumulation of Q on wide rectangular matrices with growing number of
columns.

17

5.3 Tests on Linux 64bit

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
square matrices

matrix dimension

e
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(a) Square matrices.

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16
tall rectangular matrices

number of rows

e
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(b) Tall rectangular matrices.

Figure 8: 64bit Linux average execution time comparison for rrqr with and
without accumulation of Q.

16

Acknowledgments

The author whish to thank Peter Meszmer for the great preparatory work on
the gateway file. The current version is mostly only an extension of his work
that now covers complex data, as well. Special thanks also go to Vasile Sima
(National Institute for Research & Development in Informatics, Bucharest)
and Pascal Gahinet (The Mathworks) for many helpful discussions on mexing
Fortran codes in general.

1 Introduction

We discuss the implementation of the rank revealing QR (rrqr) factorization
[1] as Matlab-MEX-file. We present the documentation of the Matlab user
interface to the rrqr, as well as the compilation of the MEX-files from source.
In the numerical testing section we present extensive computations taken out
to proof the performance of the codes, even when relying on default LAPACK
and BLAS backends.

2 Contents of the Distribution Archive

2.1 Binary Release

The binary release contains the following files:

rrqr.m the Matlab-Function that calls the MEX-gateway,
rrqrGate.dll the Windows-MEX-File (older Matlab releases,

i.e. before R2008),
rrqeGate.mexw32 the Windows-MEX-File (32bit for Matlab R2008

and later),
rrqrGate.mexglx the Linux-MEX-File (32bit),
rrqrGate.mexa64 the Linux-MEX-File (64bit x86_64) and
readme.pdf this documentation.

2.2 Source Release

The source release contains the following files:

1

gnumex.exe Gnumex (MS-Windows only),
rrqr_batch_tool.exe a small tool for compiling the gateway,

(MS-Windows only),
rrqrGate_src.zip rrqr MEX-Gateway sources and build tools for

Linux, (including the required LAPACK and BLAS
source files)

readme.pdf this documentation

3 Usage

If you intend to use the binary distribution, simply extract the archive and
add the destination folder to your Matlab search path. After that the
gateway should be accessible via rrqr and help rrqr. See the next section
or the help for usage instructions. Users intending to compile the interface
themselves, please refer to Section 4 for detailed instructions.

3.1 Usage of the Gateway

The rrqr.m gateway accepts input and supplies output as described in the
following.

• [Q,R, p, r] = rrqr(A), where A is m-by-n, produces an m-by-n upper
triangular matrix R and an m-by-m unitary matrix Q so that

A · P = Q ·
[
R11 R12

0 R22

]
,

p is a permutation vector, such that A(:, p) = QR and r is the rank of
A.

• [Q,R, p, r] = rrqr(A,’s’) produces the "economy size" decomposition. If
m≤n, R is m-by-n and Q is m-by-m, otherwise R is n-by-n and Q is
m-by-n.

• [Q,R, p, r] = rrqr(A,tol). 1
tol

specifies an upper bound on the condition
number of R11. If tol = 0 or tol is unset, tol = "machine precision" is
chosen as default. tol must be ≥ 0. The tol parameter can be combined
with the ’s’ parameter.

• [B,R, p, r] = rrqr(A,C) returns a matrix B so that B = C ·Q. The tol
parameter is accepted as well.

2

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7
wide rectangular matrices

number of rows

a
v
rg

.
e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(a) Average times.

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
wide rectangular matrices

number of rows

m
in

/m
a

x
 e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(b) Minimum and maximum times.

Figure 7: 32bit Linux execution time comparison for rrqr with and without
accumulation of Q on wide rectangular matrices with growing number of
rows.

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1

2

3

4

5

6
wide rectangular matrices

number of columns

a
v
rg

.
e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

no Q

with Q

(a) Average times.

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

350
wide rectangular matrices

number of columns

m
in

/m
a

x
 e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(b) Minimum and maximum times.

Figure 6: 32bit Linux execution time comparison for rrqr with and without
accumulation of Q on wide rectangular matrices with growing number of
columns.

14

• [R, p, r] = rrqr(A) is identical to the upper cases but does not compute
Q. The tol and ’s’ parameters are accepted as well.

4 Compiling the Gateway

This part describes how to create the rrqr Gateway from source. For us-
age only, the binary-release is available. If you don’t intend to compile the
gateway yourself, you can safely ignore this section completely.

4.1 Compiling on MS-Windows (32-bit)

The following tools are highly recommended for an accurate compilation
process – although any suggestion for the usage of other compilers and sim-
plified compilation procedures is welcome – under the assumption that free
software is required. You should also be able to use the procedure described
here on 64bit Windows machines. Note that the tools have only been tested
on Windows 2000, XP and Vista in conjunction with Matlab upto release
R2008a.

If you happen to have a commercial Fortran compiler things may be as
easy as calling mex -setup prior to compiling the gateway. For example
Intel R©Visual Fortran Compilers integrate easily into Matlab and in con-
junction with the Math kernel library (an implementation of, e.g., the BLAS
and LAPACK libraries.) yield very good performance of the produced codes.

However if you need to use freely available software these are our tools of
choice:
gnumex : http://sourceforge.net/projects/gnumex/
MinGW : www.MinGW.org
g95 : available from www.g95.org
LAPACK& BLAS : sources found on www.netlib.org/lapack/ (op-

tionally one can use the sources provided as part
of the download to only build the parts needed by
the gateway file.)

Install the required tools and extract the libraries if necessary. Start Matlab
and append the Gnumex folder to Matlab search path, respectively change
to Gnumex folder directly. Call gnumex from the Matlab command line and
set the correct MingW root path to the directory, where MinGW is installed.

3

(a) RRQR batch tool

(b) GnuMex

Figure 1: Screenshots of Windows tools

4

5.2 Tests on Linux 32bit

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
square matrices

matrix dimension

e
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(a) Square matrices.

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

18
tall rectangular matrices

number of rows

e
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(b) Tall rectangular matrices.

Figure 5: 32bit Linux average execution time comparison for rrqr with and
without accumulation of Q.

13

100 150 200 250 300 350 400 450 500
0

5

10

15

20

25
wide rectangular matrices

number of rows

a
v
rg

.
e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

no Q

with Q

(a) Average times.

100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35
wide rectangular matrices

number of rows

m
in

/m
a
x
 e

x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

no Q

with Q

(b) Minimum and maximum times.

Figure 4: 32bit Windows execution time comparison for rrqr with and with-
out accumulation of Q on wide rectangular matrices with growing number of
rows.

12

Choose MinGW as linker and select g95 as language for compilation (also
compare Figure 1). Set the correct target processor if necessary. Declare
rrqrGate as destination path and create the optionsfile by clicking on the
Makeopts button. You can now quit Gnumex and Matlab.

Execute rrqr_batch_tool from outside Matlab and build the gateway by
clicking on the compile button. Make sure that you have already selected
accurate RRQRand LAPACKdirectories (and BLASfolder, if necessary). With-
out these, a faultless compile process is not possible.

Note: The BLAS source is part of the LAPACK package. If no BLAS root
is declared, the BLAS root will be expand from LAPACK root folder auto-
matically. It may be desirable to use threaded BLAS implementations, e.g,
GotoBlas1, on MulitCore processors, though.

Note: By clicking the check button, rrqr batch tool tests availability for all
needed sources.

Note that it is essential that the three files makeopts.bat, rrqrGate.f and
rrqr_batch_tool.exe are in the same working directory.

Note further that when building the LAPACK and BLAS routines need by the
RRQR from the sources provided with the download, it is essential that the
file dlamch.f is compiled without any compiler optimization flags. Compare
also the behavior of make mexfromsrc in the following section.

4.2 Compiling on Linux (32-bit)

The following tools are required for compiling the rrqr Gateway.

g95/gfortran : found on www.g95.org or as part of recent gcc suites
on gcc.gnu.org respectively. (Any other Fortran
95 compliant compiler may work as well.)

LAPACK& BLAS : found on www.netlib.org/lapack/ (optional, one
may as well compile against the shared object li-
braries coming as part of Matlab. However build-
ing a standalone version can help avoiding many
hour of debugging.)

Extract rrqr_acm.tar.gz. Compile the RRQR library. For more details, see
the corresponding README. Compile the required libraries BLAS , LAPACK ,

1http://www.cs.utexas.edu/users/flame/goto/

5

if necessary. Run Matlab and change directory to rrqrGate. Compile the
Gateway by prompting the following line.

mex -fortran rrqrGate.f -L/rrqrGate/rrqr_acm/ -lrrqr

This will build the MEXfile for your architecture in the working directory
and link it against the shared object versions of LAPACK and BLAS provided
by Matlab. This should be fine on recent Matlab versions. So if it works
you are done. Alternatively you can compile using make and the Makefile
provided in the package. You will need to supply some information in the
make.inc, though. A sample include file looks like this:

##
select the mex-compiler binary and options
##
FC = $(PATH_TO_MATLAB)/bin/mex

FFLAGS = -fPIC
#FFLAGS = -v #let’s MEX show you what it uses
#FFLAGS = -n #let’s MEX show you which commands it would run

OFLAGS = -O
Note that OFLAGS = -O is the only option all other optimization flags
have to go to the mexopts.sh file. This only tell mex to use the
OFLAGS given in that file.

##
where do we find the required libraries and files?
##
MEXOPTS =
#MEXOPTS = -f ./mexopts.sh
use empty MEXOPTS to use the default mexopts.sh in the current working
directory, your .matlab directory or the globally installed one if
both the others do not exist.

##
and now specify the tools needed to build the library containing
the required parts of LAPACK and BLAS from source
##
FORTRAN = g95
OPTS = -funroll-all-loops -O3 -fPIC
NOOPT = -fPIC

LOADER = g95
LOADOPTS = -O -fPIC

6

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6

7

8

9

10
wide rectangular matrices

number of columns

a
v
rg

.
e

x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

no Q

with Q

(a) Average times.

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

350

400

450

500
wide rectangular matrices

number of columns

m
in

/m
a
x
 e

x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

no Q

with Q

(b) Minimum and maximum times.

Figure 3: 32bit Windows execution time comparison for rrqr with and with-
out accumulation of Q on wide rectangular matrices with growing number of
columns.

11

5.1 Tests on Windows 32bit

0 200 400 600 800 1000
0

5

10

15
square matrices

matrix dimension

e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

no Q

with Q

(a) Square matrices.

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

40

45
tall rectangular matrices

number of rows

e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

no Q

with Q

(b) Tall rectangular matrices.

Figure 2: 32bit Windows average execution time comparison for rrqr with
and without accumulation of Q.

10

ARCHIVER = ar
ARCHIVERFLAGS = cr
RANLIB = ranlib

##
These are the libraries involved in the build
##
RRQRLIB = $(YOUR_WORK_DIR)/rrqr_acm/rrqr.a
LAPACKLIB = $(PATH_TO_LAPACK)/lapack.a
BLASLIB = $(PATH_TO_LAPACK)/blas.a
TMGLIB = $(PATH_TO_LAPACK)/tmglib.a

So mainly you have to specify the path to your mex binary, the Fortran com-
piler to use and the Paths to your RRQR, LAPACK, and BLAS libraries. The
-fPIC flag comes in handy when switching between 32 and 64bit processors
frequently. You may want to add more processor specific optimization flags
to the OPTS variable if you are building for a special machine only. As an
example, gfortran from the GCC suite starting in version 4.2 supports the
-march=native flag that tries to figure out optimal settings for your proces-
sor automatically.

Note that the compiler specified in the FORTRAN variable needs to be binary
compatible to the one specified in your mexopts.sh. To play it save you may
want to use the same compiler and flags in both of them. Note further that
these settings are only relevant in the mexfromsrc case (see below).

After providing the required information you can compile the MEXfile by
simply calling

make

This will build theMEXfile, linking it against the specified LAPACK and BLAS
libraries. The Makefile also provides a target mexfile_so that allows you
to build a MEXfile linked against the LAPACK and BLAS libraries provided
by Matlab, as in the example from within Matlab above. It is used by
calling

make mexfile_so

A third target will compile only the required parts of LAPACK and BLAS
(see files in ffiles subdirectory) from source and link them into the MEXfile.
Note that these are not updated frequently and therefore may not include the
most recent features of latest LAPACK and BLAS versions, so you may whish

7

to replace them by the latest files from http://www.netlib.org/lapack/
Run

make mexfromsrc

to use this compilation approach.

4.3 Compiling on Linux (64-bit)

Compiling on 64bit Linux essentially works as above. We just want to note,
that the g95 compiler has shown much more reliable than the gfortran com-
piler. Especially the handling of integer types is more than tricky in gfortran.
To get real 64bit integers one needs to specify the -fdefault-integer-8 flag.
This however breaks the compatibility with the mwSize datatype. Also note
that the rrqrGate MEX-function does not meet the API description (we use
integer instead of integer*4) due to problems with 64bit MEXcompilation.

5 Measurements and Testing

The performance of the MEXfile has been measured in four test sequences on
three different platforms. The test sequences show the scaling of the runtimes
of the codes corresponding to rising dimension in four typical appearances.
The first sequence tests square n × n matrices. The dimension here is in-
creased from 100 to 1 000 in steps of 100. In the second sequence we tested
tall and thin matrices, i.e., the number of rows m is larger than the number
of columns n. In this case it is much more efficient with regard to mem-
ory consumption to compute the economy size QR decomposition, which has
been performed throughout this test. Here we fixed n = 100 and varied m
from 500 to 5 000 in steps of 250. As third test case we used the transposed
situation, where n � m. These tests were carried out with m = 100 fixed
and n varying from 1 000 to 50 000 in steps of 500. Since the last version
is especially important in column compression techniques performed in it-
erative methods computing low rank solution factors of large scale matrix
equations (see, e.g.[2]) a fourth sequence treats the scaling with increasing
m in the case n � m. Here we fixed the number of columns to n = 10 000
and m grew from 100 to 500 in steps of 25

All test have been performed with the default truncation tolerance and re-
peated 100 times per chosen dimension. The test matrices were generated as

8

random matrices with an expected rank deficiency of 10 by generating them
lacking the last 10 columns (tests 1 and 2) or rows (tests 3 and 4). The miss-
ing rows/columns have then been added as random linear combinations of
the first 10 rows or columns, respectively. A new matrix of the corresponding
size has been generated in each of the 100 repetitions per size. We can nicely
observe the expected rates corresponding to the complexity of the algorithm.
Only in the cases of the wide rectangular matrices we observe strange peaks
(see Figures 3a, 6a and 9a). However judging from Figures 3b, 6b and 9b
each of these seems to be produced by a single outlier, such that the standard
behavior is again as theoretically expected.

9

