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Abstract

We provide a unifying projection-based framework for structure-preserving interpo-
latory model reduction of parameterized linear dynamical systems, i.e., systems having
a structured dependence on parameters that we wish to retain in the reduced-order
model. The parameter dependence may be linear or nonlinear and is retained in the
reduced-order model. Moreover, we are able to give conditions under which the gradient
and Hessian of the system response with respect to the system parameters is matched
in the reduced-order model. We provide a systematic approach built on established
interpolatory H2 optimal model reduction methods that will produce parameterized
reduced-order models having high fidelity throughout a parameter range of interest.
For single input/single output systems with parameters in the input/output maps, we
provide reduced-order models that are optimal with respect to an H2 ⊗ L2 joint er-
ror measure. The capabilities of these approaches are illustrated by several numerical
examples from technical applications.
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1 Introduction

The importance of numerical simulation has steadily increased across virtually all scientific and
engineering disciplines. In many application areas, experiments have been largely replaced by
numerical simulation in order to save costs in design and development. High accuracy simulation
requires high fidelity mathematical models which in turn induce dynamical systems of very large
dimension. The ensuing demands on computational resources can be overwhelming and efficient
model utilization becomes a necessity. It often is both possible and prudent to produce a lower
dimension model that approximates the response of the original one to high accuracy. There are
many model reduction strategies in use that are remarkably effective in the creation of compact,
efficient, and high-fidelity dynamical system models. Such a reduced model can then be used
reliably as an efficient surrogate to the original system, replacing it as a component in larger
simulations, for example, or in allied contexts that involve design optimization or the development
of low-order, fast controllers suitable for real time applications.

Typically, a reduced-order model will represent a specific instance of the physical system under
study and as a consequence will have high fidelity only for small variations around that base system
instance. Significant modifications to the physical model such as geometric variations, changes in
material properties, or alterations in boundary conditions generally necessitate generation of new
reduced models. This can be particularly onerous in design optimization where parameters are
changed in each optimization cycle. Since the generation of a high fidelity reduced model may be
comparable in expense to a (brief) simulation of an instance of the original full-order model, the
benefits of model reduction will be fully realized only if the parametric dependence found in the
original dynamical system can be preserved in some fashion within the reduced model. This is
the goal of parameterized model reduction (PMOR): generate a dynamical system of reduced order
which retains a functional dependence on important design parameters and recovers the response
of the original full-order dynamical system with high fidelity throughout the range of interest of
the design parameters.

Many design optimization approaches utilize surrogate models that are constructed using re-
sponse surface modeling or Kriging [33, 32, 42]. These techniques are very flexible, broadly ap-
plicable, and can be efficient for uncertain, unstructured, or empirically-based models, but they
generally cannot exploit fully the character of time-dependent processes generated by an underly-
ing dynamical system. PMOR is an approach that attempts to take direct account of structure in
the underlying dynamical system that is creating the response data. Thus it can be expected to
produce more efficient and accurate models than general purpose approaches that provide ad hoc
fits or regressions to observed input/output responses.

PMOR is at an early stage of the development. Currently there are developments based on
multivariate Padé approximation [5, 6, 12, 14, 15, 17, 18, 19, 27, 26, 36, 37, 40, 44]. These methods
differ in the way moments are computed (implicitly vs explicity) and in the number of (mixed)
moments that are matched. Approaches based on explicitly computed moments suffer from the
same numerical instabilities as analogous methods for model reduction of nonparameterized sys-
tems. However implicit approaches appear to provide a robust resolution of these difficulties at
least for low dimensional parameter spaces. Moment-matching properties can be proved (see [5])
analogously as for standard moment-matching methods like Padé-via-Lanczos [16, 20]. Other ap-
proaches include interpolation of the transfer function, see [3], and reduced basis methods (see,
e.g., [2, 22, 28, 31, 38]). Reduced-basis methods are successful in finding an information rich set
of global ansatz functions for spatial discretization of parameterized partial differential equations
(PDEs). In the setting we consider here, we do not necessarily assume that a PDE is provided,
but we start from a parameterized state-space model. This is the case, e.g., when computer aided
engineering (CAE) tools for automatic model generation are used. In this situation, the spatial
discretization of the PDE is performed inside the CAE tool and reduced basis methods are not
directly applicable. Therefore, we will not discuss them here any further.

We lay out our basic problem setting, define notation, and describe precisely in what sense
our model reduction methods are structure-preserving in Section 2. In Section 3, we review the
particular aspects of interpolatory model reduction in standard (nonparameterized) settings that
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are useful for us, focusing especially on the selection of interpolation points that lead to optimal
reduced-order models. In Section 4, we derive an interpolation-based approach to PMOR that
is closely associated with rational Krylov methods developed by Grimme [24] and earlier work
by Villemagne and Skelton [13]. As in these earlier works, interpolation properties are governed
by the range and cokernel of a (skew) projection associated with the model reduction process.
Remarkably, similar conditions govern the matching of gradient and Hessian information of the
system response with respect to the system parameters. Efficient numerical methods built on
previously known H2 optimal model reduction methods are introduced in Section 5 and we de-
scribe in Section 5.1 how to find optimal parameterized reduced-order models for a special case of
a parameterized single input/single output system. The efficiency of the derived numerical algo-
rithms for PMOR is illustrated using several real-world examples from microsystems technology
in Section 6.

2 Problem Setting

Consider a multi-input/multi-output (MIMO) linear dynamical system parameterized with ν pa-
rameters p = [p1, ..., pν ]T ∈ Rν , presented in state space form as:

E(p) ẋ(t) = A(p)x(t) + B(p)u(t),

y(t) = C(p)x(t),
with x(0) = 0, (1)

where E(p), A(p) ∈ Rn×n, B(p) ∈ Rn×m, and C(p) ∈ R`×n. Our framework allows parameter
dependency in all system matrices. Without loss of generality, assume the parametric dependence
in the system matrices of (1) has the following form:

E(p) = E0 + e1(p)E1 + . . .+ eM (p)EM ,

A(p) = A0 + f1(p)A1 + . . .+ fM (p)AM ,

B(p) = B0 + g1(p)B1 + . . .+ gM (p)BM ,

C(p) = C0 + h1(p)C1 + . . .+ hM (p)CM .

(2)

We assume throughout that (1) is stable for all parameter choices p considered. The parameter
dependence encoded in the functions ej , fj , gj , hj may be linear or nonlinear, but is assumed
smooth enough to allow for approximation by interpolation.

The representation (2) is not unique; there may be many ways in which one may express system
matrices, E(p), A(p), B(p), and C(p), in such a form and the number of terms, M , as well as the
particular parameter functions ej , fj , gj , hj may vary with the representation that one chooses. A
desirable choice should produce as few terms as possible (M as small as possible) for reasons we
describe below; the methods we propose will be most advantageous when M � n. Note also that
the actual number of terms appearing may vary among the matrices E(p), A(p), B(p), and C(p).

A general projection framework for structure-preserving PMOR can be described as follows:
suppose that (constant) matrices Vr, Wr ∈ Cn×r with r � n and rank(Vr) = rank(Wr) = r are
specified and define an associated reduced system:

Er(p) ẋr(t) = Ar(p)xr(t) + Br(p)u(t),

yr(t) =Cr(p)xr(t) with xr(0) = 0,

where Er(p) = WT
r E(p)Vr, Ar(p) = WT

r A(p)Vr, (3)

Br(p) = WT
r B(p), and Cr(p) = C(p)Vr.

The parametric dependence of the original system (1) is retained in the reduced system (3) in the
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region of interest. The 10th order optimal parameterized reduced-order model yields an extremely
satisfactory relative H2 ⊗ L2(D) error of 7.54× 10−4.

To show the superiority of this optimal selection for the introduced H2 ⊗ L2(D) measure, we
compare the results with those obtained by the H2-based method in Algorithm 5.1, i.e. we choose
[0, 0]T , [0, 0.5]T , [0.5, 0]T and [1, 1]T as parameter vectors, use H2 optimal reduced-order models
at each parameter set and then combine the resulting subspaces together. The resulting reduced-
order model of order r = 10 leads to a relative H2 ⊗ L2(D) error of 2.09 × 10−2. Even though
this is a satisfactory relative error, the result using the optimal points is two order of magnitudes
better, illustrating the superiority of the H2 ⊗ L2(D) optimal point selection.

Even though the H2⊗L2(D) optimal approach does not minimize the H2 error at every point
in the parameter range, we compare the quality of the derived results by computing the relative
H2 error (34) over the full parameter range. The results are shown in Figure 12. The H2⊗L2(D)
optimal approach yields much smaller H2-errors for most of the grid points with a maximum error
of 2.04× 10−2. On the other hand, the maximum H2-error due to Algorithm 5.1 is 2.09× 10−2.
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Figure 12: Example C: relative H2 error as p1 and p2 vary.

7 Conclusions

We have introduced a unifying projection-based framework for structure-preserving interpolatory
model reduction of parameterized linear dynamical systems. Analogous to the nonparameterized
case, we provide conditions under which the transfer functions of original and reduced-order model
coincide at interpolation points for the parameter vectors. Furthermore, we are able to give
conditions under which the gradient and Hessian of the system response with respect to the system
parameters is matched in the reduced-order model. We provide a systematic approach built on
established interpolatory H2-optimal model reduction methods that will produce parameterized
reduced-order models having high fidelity throughout a parameter range of interest. For single
input/single output systems with parameters in the input/output maps, we provide reduced order
models that are optimal with respect to an H2⊗L2 joint error measure. The capabilities of these
approaches are illustrated by several numerical examples from technical applications.
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Cases: A B C D E F G
dim. r1 4 5 6 7 7 6 8
at p(i) r2 4 5 4 4 5 6 7
Total dim: r
Hr/Hbal

6/6-8 9/9 9/10 10/11 10/12 11/12 14/14

Max. rel. Hr 1.87 E -1 6.69 E -2 9.75 E -2 8.29 E -2 6.88 E -2 3.50 E -2 2.16 E -2

H∞-err. Hbal ∞ 2.65 E -2 5.23 E -2 5.09 E -2 4.73 E -2 2.47 E -2 4.56 E -2

Table 3: Hr: PiecewiseH2 optimal reduced model; Hbal : Piecewise balanced truncation reduced
model

using balanced truncation for the fixed parameter vectors p(1) and p(2). To give an overall picture,
we use many different combinations of r1 and r2 values and then compute maximum relative H∞
errors encountered while varying p1 and p2 over the full parameter range of [1, 104]. The results are
tabulated in Table 3 where ∞ corresponds to encountering some unstable reduced-order models
while p1 and p2 vary. One obvious conclusion is that the proposed H2-based method consistently
yields results that are as accurate as those obtained by the balancing-based approach. Note that
the error values are computed using the H∞ norm. Hence, the proposed H2-based approach yields
accurate reduced-model not only in the H2 norm but also in the H∞ norm. This is not surprising
since the optimal H2 method described in Algorithm 3.1 for nonparameterized systems is known
to yield both good H∞ performance and H2 performance, see [25].

6.3 Optimal SISO Parameterized Model Reduction Example

In this example, we illustrate the concepts introduced in Section 5.1. The full-order model of
form (23) represents the heat distribution on a plate and is described by the heat equation. A
model of order 197 is obtained by spatial discretization. The vectors b0 and b1 correspond to the
location of the heat source. As the parameter q varies from 0 to 1, the input shifts from one heat
source to the other. Similarly, the vectors c0 and c1 represent point measurements and as the
parameter p varies from 0 to 1, the location of the measurement changes.

We minimize the H2 ⊗ L2(D) error between the full-order and the reduced-order transfer
functions as shown in Theorem 7 by applying Algorithm 5.2. The corresponding MIMO non-
parameterized systems in line 2 of the algorithm are reduced to order r = 10 by H2 optimal
model reduction in Algorithm 3.1. The resulting optimal frequency shifts, {−λ̃i}ri=1, and optimal

parameter interpolation vectors, {p̃(i)}ri=1 are given below:

p̃(i)

−λ̃i pi qi
0.0152 0.559 0.344
0.142 0.246 0.351
0.416 −0.516 0.359
0.862 0.454 0.337
0.102 0.620 0.310
0.184 0.549 0.385
0.419 0.512 0.366
28.9 0.349 0.319

7.24− ı 1.10 0.435 + ı 0.0404 0.406− ı 0.0778
7.24 + ı 1.10 0.435− ı 0.0404 0.406 + ı 0.0778

An interesting observation is that even though both parameters p and q are contained in the
interval [0, 1], some of the optimal parameter values lie outside this region, indeed some of the
optimal points are even complex. This example is a perfect illustration of the fact that the best
parameter selection does not necessarily lies in the parameter range; i.e., one can obtain a better
performance by including complex parameter points or at least parameter values outside the
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sense that

Er(p) = WT
r E0Vr + e1(p)WT

r E1Vr + · · · + eM (p)WT
r EMVr,

Ar(p) = WT
r A0Vr + f1(p)WT

r A1Vr + · · · + fM (p)WT
r AMVr,

Br(p) = WT
r B0 + g1(p)WT

r B1 + · · · + gM (p)WT
r BM ,

Cr(p) = C0Vr + h1(p)C1Vr + · · · + hM (p)CMVr,

(4)

which is evidently structurally similar to (2). Once the matrices Vr and Wr are specified, all the
constituent matrices, WT

r EkVr, W
T
r AkVr, W

T
r Bk, and CkVr for k = 0, . . . ,M contributing to

Er(p), Ar(p), Br(p), and Cr(p) can be precomputed. Although the order, r, of the dynamical
system (3) is an obvious point of focus in judging the cost of using the reduced system, the size
of M , as a measure of the complexity of the representation (2), may also become a factor since
for every new choice of parameter values, the cost of generating Er(p), Ar(p), Br(p), and Cr(p)
obviously grows proportionally to M .

Whenever the input u(t) is exponentially bounded - that is, when there is a fixed γ ∈ R such
that ‖u(t)‖ ∼ O(eγt), then x(t) and y(t) from (1) and xr(t) and yr(t) from (3) will also be
exponentially bounded and the Laplace transform can be applied to (1) and (3) to obtain

ŷ(s,p) = C(p) (sE(p) − A(p))
−1

B(p) û(s), (5)

ŷr(s,p) = Cr(p) (sEr(p) − Ar(p))
−1

Br(p) û(s), (6)

where we have denoted Laplace transformed quantities with “̂”. We define parameterized trans-
fer functions accordingly:

H(s,p) = C(p) (sE(p) − A(p))
−1

B(p) (7)
and

Hr(s,p) = Cr(p) (sEr(p) − Ar(p))
−1

Br(p). (8)

The quality of the approximation ŷr(s,p) ≈ ŷ(s,p) is tied directly to the quality of the ap-
proximation Hr(s,p) ≈ H(s,p). The quality of this approximation in general, and interpolation
properties, in particular, depend entirely on how the matrices Vr and Wr are selected.

There is substantial flexibility in choosing Vr and Wr. We do require that both Vr and Wr

have full rank but it is not necessary to require that either WT
r Vr or WT

r E(p)Vr be nonsingular.
Note that if E(p) is nonsingular, then H(s,p) is a strictly proper transfer function and one may
wish Hr(s,p) to be strictly proper as well — leading to the requirement that Er(p) = WT

r E(p)Vr

be nonsingular as well. This can be thought of as an interpolation condition since under these
circumstances Hr will interpolate H at infinity: lim

s→∞
H(s) = lim

s→∞
Hr(s) = 0 (facilitating, in effect,

a good match between true and reduced-order system response at high frequencies). Although we
allow Vr and Wr to be complex in order to simplify the discussion, in most circumstances Vr

and Wr can be chosen to be real so (3) represents a real dynamical system.

3 Interpolatory Model Reduction

Consider a full-order (nonparameterized) dynamical system described by

E ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
with x(0) = 0, (9)

where A,E ∈ Rn×n, B ∈ Rn×m, and C ∈ R`×n and we have the associated transfer function
H(s) = C(sE−A)−1B. We seek a reduced system with state-space form

Er ẋr(t) = Ar xr(t) + Br u(t),

yr(t) = Cr xr(t),
with xr(0) = 0, (10)

3



and associated transfer function, Hr(s) = Cr(sEr − Ar)
−1Br, where Ar,Er ∈ Cr×r, Br ∈

Cr×m, and Cr ∈ C`×r, and r � n, are such that yr(t) approximates y(t) well. We adopt the
projection framework described above, specifying matrices Vr ∈ Cn×r and Wr ∈ Cn×r, such
that rank(Vr) = rank(Wr) = r, which determine reduced system matrices Er = WT

r EVr,
Ar = WT

r AVr, Br = WT
r B, and Cr = CVr.

Interpolatory model reduction is an approach that was introduced by Skelton et. al. in
[13, 47, 48] and later placed into a numerically efficient framework by Grimme [24]. Gallivan et
al. [21] developed a more versatile version for MIMO systems, a variant of which we describe
and then adapt to parameterized systems: Starting with a full-order system as in (9) and selected
interpolation points, σk, in the complex plane paired with corresponding left and right directions
ck ∈ C` and bk ∈ Cm, we produce matrices Vr ∈ Cn×r and Wr ∈ Cn×r that define a reduced-
order system (10) in such a way that the reduced transfer function, Hr(s), is a Hermite interpolant
of the full-order transfer function, H(s), at each σk along both left and right directions:

cTi H(σi) = cTi Hr(σi), H(σi)bi = Hr(σi)bi, and (11)

cTi H′r(σi)bi = cTi H′(σi)bi for i = 1, . . . , r.

Since the matrix-valued function, Hr(s), consists of rational functions in s, (11) describes a
rational interpolation problem. The following theorem gives elementary subspace criteria forcing
interpolation.

Theorem 1. Let σ ∈ C be such that both σE − A and σEr − Ar are invertible. If b ∈ Cm and
c ∈ C` are fixed nontrivial vectors then

(a) if (σE−A)
−1

Bb ∈ Ran(Vr), then H(σ)b = Hr(σ)b;

(b) if
(
cTC (σE−A)

−1
)T
∈ Ran(Wr), then cTH(σ) = cTHr(σ); and

(c) if both (σE−A)
−1

Bb ∈ Ran(Vr) and
(
cTC (σE−A)

−1
)T
∈ Ran(Wr),

then cTH′(σ)b = cTH′r(σ)b.

Theorem 1 makes the solution of (11) straightforward. Given a set of distinct shifts {σk}rk=1,

left-tangent directions {ck}rk=1 ⊂ C`, and right-tangent directions {bk}rk=1 ⊂ Cm, construct full-
rank matrices Vr and Wr such that

Ran(Vr) ⊇ span{
[
(σ1E−A)−1Bb1, · · · , (σrE−A)−1Bbr

]
} (12)

and

Ran(Wr) ⊇ span{
[
(cT1 C(σ1E−A)−1)T , · · · , (cTr C(σrE−A)−1)T

]
}. (13)

If σiEr − Ar is nonsingular for each i = 1, . . . , r, then the reduced system Hr(s) = Cr(sEr −
Ar)

−1Br defined by Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, and Cr = CVr solves the

tangential interpolation problem (11). In [4], Beattie and Gugercin showed how to solve the
tangential interpolation problem posed in (11) for a substantially larger class of transfer functions
– those having a coprime factorization of the form H(s) = C(s)K(s)−1B(s) with B(s), C(s), and
K(s) given as meromorphic matrix-valued functions. This generalization lays the foundation of
our present developments for parametrized model reduction described here.

Interpolatory model reduction methods are computationally advantageous since the principal
task that is required is solution of (multiple) linear systems having the form (σE−A)v = Bb or
(σET −AT )w = CT c. Often one is able to take advantage of sparsity or other special structure
in the linear systems.

The fidelity of the final reduced-order model must always be of central concern and clearly the
selection of interpolation points and tangent directions becomes the main factor in determining
success or failure. Until recently, selection of interpolation points was largely ad hoc. Recently how-
ever, Gugercin et al. [25] showed an optimal shift selection strategy that produces reduced-order

4

where E ∈ R4257×4257 and A ∈ R4257×4257 are system matrices, Ai ∈ R4257×4257, i = 1, . . . , 3, are
diagonal matrices arising from the discretization of the convection boundary condition on the ith
interface, and B ∈ R4257 and C ∈ R7×4257; i.e. the system has a single input and seven outputs.
The range for each parameter is the interval [1, 104]. Four important parameter vectors in [1, 104]3

are given in Table 2 below: We use two of them p(1) = [104, 104, 1]T and p(2) = [1, 1, 1]T and

p(1) p(2) p(3) p(4)

p1 104 1 10 104

p2 104 1 104 10
p3 1 1 1 1

Table 2: Example 6.2: parameter vectors (with p3 = 1).

apply Algorithm 5.1 as follows: In step 2, we reduce the order of the systems to r1 = 8 and
r2 = 7 using Algorithm 3.1, i.e. projection subspaces V(i) ∈ R4257×ri and W(i) ∈ R4257×ri were
computed for i = 1, 2. We concatenate these matrices to build the final projection matrices

Vr = [V(1), V(2)] ∈ R4257×15 and Wr = [W(1), W(2)] ∈ R4257×15.

Having removed the rank-deficient components from Vr and Wr, our final parameterized reduced-
order model is of order r = 14 and is given by

WT
r EVrẋr(t) = (WT

r AVr +
3∑

i=1

piW
T
r AiVr)xr(t) + WT

r Bu(t), yr(t) = CVrxr(t).

To illustrate the quality of this reduced-order model, we fix p3 = 1 and vary both p1 and p2
between 1 and 104. For each mesh point (i.e., for each triple of parameter values in this range),
we compute the corresponding full-order model and the reduced-order model; and compute the
corresponding relative H∞ errors. The resulting mesh plot is given in Figure 11. The maximum
relative H∞ error is 2.16× 10−2. The parameterized reduced model Hr(s,p) has system order of
less than 4% of the original system yet is able to maintain a small relative error of around 2% or
less over the full range of variation of p1 and p2.
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Figure 11: Example 6.2: relative H∞ error as p1 and p2 vary.

6.2.1 Comparison with piecewise balanced truncation

As in the previous example, we present a comparison between our piecewise H2 optimal approach
and piecewise balanced truncation that concatenates the projection matrices that are obtained by
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systems that are optimal H2 approximations to the original system. An optimal H2 approximant
to the system H(s) is a system Hr(s) of reduced order, r, which solves:

min
Hr is stable

‖H−Hr‖H2
, where ‖H‖H2

:=

(
1

2π

∫ +∞

−∞

∥∥H(ıω)
∥∥2
F
dω

)1/2

,

and ‖ · ‖F denotes the Frobenius norm of a matrix.
The set over which the optimization problem is posed, the set of all stable dynamical systems

of order no greater than r, is nonconvex, so obtaining a global minimizer is at best a hard task
and, indeed, it can be intractable. One moves instead toward a more modest goal and generally
seeks “good” reduced models that satisfy first-order necessary optimality conditions, in principle
allowing the possibility of having a local minimizer as an outcome. Many have worked on this
problem; see [7, 29, 30, 35, 39, 41, 45, 46, 50]. Interpolation-based H2 optimality conditions
were developed first by Meier and Luenberger [39] for SISO systems. Analogous H2 optimality
conditions for MIMO systems have been placed within an interpolation framework recently in
[10, 25, 43]. This is summarized in the next theorem:

Theorem 2. Suppose H̃r(s) = Cr(sEr − Ar)
−1Br minimizes ‖H − Hr‖H2 over all (stable)

rth-order transfer functions and that the associated reduced-order pencil sEr − Ar has distinct
eigenvalues {λ̃i}ri=1. Let y∗i and xi denote left and right eigenvectors associated with λ̃i so that
Arxi = λ̃iErxi, y

∗
iAr = λ̃iy

∗
iEr, and y∗iErxj = δij. Define c̃i = Crxi and b̃Ti = y∗iBr.

Then the residue of H̃r(s) at λ̃i is matrix-valued and has rank one: res[H̃r(s), λ̃i] = c̃ib̃
T
i . We

can write H̃r(s) =
∑r
i=1

1

s−eλi
c̃ib̃

T
i . Then, for i = 1, · · · , r,

H(−λ̃i)b̃i = H̃r(−λ̃i)b̃i, c̃Ti H(−λ̃i) = c̃Ti H̃r(−λ̃i),
and c̃Ti H

′(−λ̃i)b̃i = c̃Ti H̃
′
r(−λ̃i)b̃i. (14)

That is, first-order conditions for H2 optimality can be formulated as tangential interpolation
conditions at reflected images of λ̃i through the origin.

Evidently, the H2 optimal interpolation points and associated tangent directions depend on
knowledge of the reduced-order system and so will not be available a priori. An iterative algorithm
was introduced in [25], called the Iterative Rational Krylov Algorithm (IRKA), built on successive
substitution. Interpolation points used for the next step are chosen to be the reflected images
of reduced-order poles for the current step: σ ← −λ̃ for eigenvalues, λ̃i, of the pencil λEr −Ar

associated with reduced matrices of the current step. The tangent directions are corrected in a
similar way, using residues of the previous reduced model successively until (14) is satisfied. A
brief sketch of IRKA is described in Algorithm 3.1.

From Steps 3.d and 3.e, one sees that upon convergence, the reduced transfer function will
satisfy, (14), first-order conditions forH2 optimality. The main computational cost involves solving
2r linear systems at every step to generate Vr and Wr. Computing the left and right eigenvectors
yi and xi, and eigenvalues, λi(Ar,Er), of the reduced pencil λEr−Ar is cheap since the dimension
r is small.

4 Interpolatory Model Reduction of Parameterized Sys-
tems

We are able to extend the results of the previous section in a natural way to an interpolation
framework for applying PMOR to the parameterized system (1)–(2) in order to produce a param-
eterized reduced system (3)–(4). In addition to the basic interpolation conditions for the transfer
function as in (14), we develop conditions that also will guarantee matching of both the gradi-
ent and Hessian of the transfer function with respect to the parameters. Our framework allows
parameter dependency (linear or nonlinear) in all state-space quantities.

5



Algorithm 3.1. MIMO H2 optimal tangential interpolation method

1. Make an initial r-fold shift selection: {σ1, . . . , σr} that is closed under conju-
gation (i.e., {σ1, . . . , σr} ≡ {σ1, . . . , σr} viewed as sets)

and initial tangent directions b̃1, . . . , b̃r and c̃1, . . . , c̃r, also closed under con-
jugation.

2. Vr =
[
(σ1E−A)−1Bb̃1 , . . . , (σrE−A)−1Bb̃r

]
,

WT
r =

[(
c̃T1 C(σ1 E−A)−1

)T
, . . . ,

(
c̃Tr C(σr E−A)−1

)T ]T
.

3. while (not converged)

a) Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, and Cr = CVr.

b) Compute Arxi = λ̃iErxi and y∗iAr = λ̃iy
∗
iEr with y∗iErxj = δij

where y∗i and xi are left and right eigenvectors associated with λ̃i.

c) σi ← −λ̃i, b̃Ti ← y∗iBr and c̃i ← Crxi, for i = 1, . . . , r.

d) Vr =
[
(σ1E−A)−1Bb̃1 , . . . , (σrE−A)−1Bb̃r

]
.

e) WT
r =

[(
c̃T1 C(σ1 E−A)−1

)T
, . . . ,

(
c̃Tr C(σr E−A)−1

)T ]T
.

4. Ar = WT
r AVr, Er = WT

r EVr, Br = WT
r B, Cr = CVr.

Theorem 3. Suppose σ ∈ C and p̂ ∈ Cν is such that both σE(p̂) − A(p̂) and σEr(p̂) − Ar(p̂)
are invertible. Suppose b ∈ Cm and c ∈ C` are fixed nontrivial vectors.

a) If (σE(p̂)−A(p̂))
−1

B(p̂)b ∈ Ran(Vr), then H(σ, p̂)b = Hr(σ, p̂)b. (15)

b) If
(
cTC(p̂) (σE(p̂)−A(p̂))

−1
)T
∈Ran(Wr), (16)

then cTH(σ,p̂) = cTHr(σ, p̂).

Proof. Define A(s,p) = sE(p) − A(p) and Ar(s,p) = sEr(p) − Ar(p) = WT
r A(s,p)Vr, and

consider the (skew) projections

Pr(s,p) = VrAr(s,p)−1WT
r A(s,p) and Qr(s,p) = A(s,p)VrAr(s,p)−1WT

r .

Define f(s,p) = A(s,p)−1B(p)b and gT (s,p) = cTC(p)A(s,p)−1. Then observe that the hy-
potheses of (15) means f(σ, p̂) ∈ Ran(Pr(σ, p̂)) and thus

H(σ, p̂)b−Hr(σ, p̂)b = C(p̂) (I−Pr(σ, p̂)) f(σ, p̂) = 0,

proving (a). Analogously, the hypotheses of (16) means g(σ, p̂) ⊥ Ker(Qr(σ, p̂)) and

cTH(σ, p̂)− cTHr(σ, p̂) = gT (σ, p̂) (I−Qr(σ, p̂))B(p̂) = 0,

yielding (b).

Next, we show how to construct an interpolatory reduced-order model whose transfer function
not only interpolates the original one, but also matches its gradient with respect to the given
parameter set.

Theorem 4. Assume the hypotheses of Theorem 3. Suppose, in addition, that E(p), A(p),
B(p), and C(p) are continuously differentiable in a neighborhood of p̂. Then both cTH(σ,p)b and
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Figure 9: Example 6.1 (ν = 3) with piecewise balanced truncation: relative H2 error.
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Figure 10: Example 6.1 (ν = 3) with piecewise balanced truncation: relative H∞ error.

models. Note that in another PMOR approach based on balanced truncation and interpolation [3]
the computation of unstable systems is avoided.

6.2 Thermal conduction in a semiconductor chip

We consider now a model representing thermal conduction in a semiconductor chip as described
in [34]. An important requirement for a compact and efficient model of thermal conduction in
this context is that it should allow flexibility in specifying boundary conditions in order to allow
independent designers to evaluate how changes in the environment can influence the temperature
distribution in the chip. The thermal problem is modeled as homogenous heat diffusion with
heat exchange occurring at three device interfaces modeled with convection boundary conditions.
These conditions introduce film coefficients, p1, p2, and p3, describing the heat exchange on the
three device interfaces. Discretization leads to a system of ordinary differential equations

Eẋ(t) = (A +
3∑

i=1

piAi)x(t) + Bu(t), y(t) = Cx(t),

19
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Figure 7: Example 6.1 (ν = 3) without optimal H2 shift selection: relative H2 error.
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Figure 8: Example 6.1 (ν = 3) without optimal H2 shift selection: relative H∞ error.

p(i). On the other hand, if V(i) and W(i) are interpolating spaces that are obtained by forcing
interpolation at some interpolation points {σik}rik=1 for the parameter set described by p(i), even
after the subspaces are concatenated, the final reduced-order parameterized model would still in-
terpolate the original model at the same interpolation points {σik}rik=1 for the parameter set p(i).
In short, our piecewise H2 optimal algorithm has two important properties. Firstly, due to the
interpolatory structure, the final parameterized reduced-order model interpolates the original one
even after the subspaces augmented. Secondly, the interpolation points at each parameter set are
chosen in an H2 optimal way yielding accurate reduced-order models.

To more thoroughly compare the two approaches, we used many different values for r1, r2, . . . , r6
at the corresponding parameter values p(i) and computed the corresponding reduced-order models
both by balanced truncation and by IRKA, producing projection subspaces V(i) and W(i). The
final reduced-order parameterized systems are obtained as in (3) and their quality is compared by
computing the maximum relative H2 error and H∞ error again varying p1 and p2 over the full pa-
rameter range of [0, 1]. The results are tabulated in Table 1. In this table, the ∞ entries indicate
that some unstable reduced-order models were encountered for some choices of p1 and p2. The
table shows that except for cases where the approach using balanced truncation results in unsta-
ble reduced-order models, both approaches are comparable yielding similar quality reduced-order
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cTHr(σ,p)b are differentiable with respect to p in a neighborhood of p̂ as well.

If both (σE(p̂)−A(p̂))
−1

B(p̂)b ∈ Ran(Vr)

and
(
cTC(p̂) (σE(p̂)−A(p̂))

−1
)T
∈ Ran(Wr),

(17)

then ∇pc
TH(σ, p̂)b = ∇pc

THr(σ, p̂)b. (18)

From Theorem 1, these conditions also guarantee ∂
∂sc

TH(σ, p̂)b = ∂
∂sc

THr(σ, p̂)b.

Proof. Fix an arbitrary nontrivial direction n = [n1, . . . , nν ]T ∈ Cν and denote the associated
directional derivative as

n · ∇p =

ν∑

i=1

ni
∂

∂pi
.

Note that for all s and p at which Pr and Qr are continuous, we have:
Ran ((n · ∇p)Pr(s, p)) ⊂ Ran (Pr(s, p)) and Ker ((n · ∇p)Qr(s, p)) ⊃ Ker (Qr(s, p)). Thus

(I−Pr(s,p)) [(n · ∇p)Pr(s,p)] = 0 and [(n · ∇p)Qr(s,p)] (I−Qr(s,p)) = 0. (19)

As a consequence,

(n · ∇p) [(I−Qr(s, p))A(s, p) (I− Pr(s, p))] = (I−Qr(s, p)) [(n · ∇p)A(s, p)] (I− Pr(s, p)) .

Observe that

cTH(s,p)b− cTHr(s,p)b = gT (s,p) (I−Qr(s,p))A(s,p) (I−Pr(s,p)) f(s,p).

So, we may calculate a directional derivative and evaluate at s = σ and p = p̂:

(n · ∇p)
[
cTH(σ,p)b− cTHr(σ,p)b

]∣∣
p=p̂ =[

(n · ∇p)gT (σ, p̂)
]

(I−Qr(σ, p̂))A(σ, p̂) (I−Pr(σ, p̂)) f(σ, p̂)
+ gT (σ, p̂) (I−Qr(σ, p̂)) [(n · ∇p)A(σ, p̂)] (I−Pr(σ, p̂)) f(σ, p̂)

+ gT (σ, p̂) (I−Qr(σ, p̂))A(σ, p̂) (I−Pr(σ, p̂)) [(n · ∇p)f(σ, p̂)] .

The hypotheses (17) implies both f(σ, p̂) ∈ Ran(Pr(σ, p̂)) and g(σ, p̂) ⊥ Ker(Qr(σ, p̂)) so (n ·
∇p)

[
cTH(σ,p)b− cTHr(σ,p)b

]∣∣
p=p̂ = 0. Since n was arbitrarily chosen the conclusion follows.

Notice that the conditions (17) of Theorem 4 are enforced as a matter of course (for the
nonparameterized case) in Algorithm 3.1. For SISO systems (where tangent directions play no
role), we create a parameterized reduced system, Hr(s,p), that is not only a Hermite interpolant
(with respect to frequency) to H(s,p) at (σ, p̂) but the p-gradients of Hr and H will also match at
(σ, p̂) and we can guarantee this matching for essentially no greater cost without computing the p-
gradient of eitherHr(s,p) orH(s,p). This is a significant feature with regard to sensitivity analysis
[11]: notice that the parameterized reduced-order model may be used to compute parameter
sensitivities more cheaply than the original model and will exactly match the original model
sensitivities at every parameter interpolation point, p̂.

There are also interesting consequences for optimization with respect to p of objective functions
depending on H(s,p) (or on the output ŷ(s,p) for a fixed input û). Under natural auxiliary
conditions, reduced-order models satisfying the conditions (17) of Theorem 4 will lead to, in the
terminology of [1], first order accurate approximate models for the objective function and this
feature is sufficient in establishing robust convergence behaviour of related trust region methods
utilizing reduced-order models as surrogate models.

In the context of optimization, the next obvious question is under what conditions will a
reduced-order model retain the same curvature or Hessian information with respect to parameters
as the original model ?
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Theorem 5. Assume the hypotheses of Theorem 4 including (17) and suppose that E(p), A(p),
B(p), and C(p) are twice continuously differentiable in a neighborhood of p̂. Then cTH(σ,p)b
and cTHr(σ,p)b are each twice continuously differentiable at p̂.

a) Let {n1, n2, . . . , nν} be a basis for Cν with related quantities

fi(σ, p̂) =
(
ni · ∇p

)
(σE(p̂)−A(p̂))−1B(p̂)b and

gTi (σ, p̂) =
(
ni · ∇p

)
cTC(p̂) (σE(p̂)−A(p̂))

−1
.

If either {f1, f2, . . . , fν} ⊂ Ran(Vr) (20)

or {g1, g2, . . . , gν} ⊂ Ran(Wr), (21)

then ∇2
p[cTH(σ,p̂)b] = ∇2

p[cTHr(σ, p̂)b].

b) Let n be a fixed nontrivial vector in Cν and suppose that
(
n · ∇p

)
(σE(p̂)−A(p̂))

−1
B(p̂)b ∈ Ran(Vr) and

(
n · ∇p

)(
cTC(p̂) (σE(p̂)−A(p̂))

−1
)T
∈ Ran(Wr).

Then ∇2
p[cTH(σ, p̂)b]n = ∇2

p[cTHr(σ, p̂)b]n. (22)

Proof. Let n = [n1, . . . , nν ]T and m = [m1, . . . ,mν ]T be arbitrary vectors in Cν and consider the
composition of the associated directional derivatives:

(m · ∇p)(n · ∇p)
h
cTH(σ, p)b− cTHr(σ, p)b

i˛̨̨
p=p̂

= mT ∇2
p[cTH(σ, p̂)b− cTHr(σ, p̂)b]n.

Using (19), one may calculate:

(m · ∇p)(n · ∇p) [(I−Qr(s,p))A(s,p) (I−Pr(s,p))] =

− [(m · ∇p)Qr(s,p)] [(n · ∇p)A(s,p)] (I−Pr(s,p))

+ (I−Qr(s,p)) [(m · ∇p)(n · ∇p)A(s,p)] (I−Pr(s,p))

− (I−Qr(s,p)) [(n · ∇p)A(s,p)] [(m · ∇p)Pr(s,p)] .

Then with (17), one finds

mT ∇2
p[cTH(σ, p̂)b− cTHr(σ, p̂)b]n =
[[

(m · ∇p)cTC(p)A(s,p)−1
]
· (I−Qr(s,p))A(s,p) (I−Pr(s,p)) ·

[
(n · ∇p)A(s,p)−1B(p)b

]

+
[
(n · ∇p)cTC(p)A(s,p)−1

]
· (I−Qr(s,p))A(s,p) (I−Pr(s,p)) ·

[
(m · ∇p)A(s,p)−1B(p)b

]]∣∣∣
p=p̂

.

If (20) holds then both vectors (m · ∇p)A(s, p̂)−1B(p̂)b and (n · ∇p)A(s, p̂)−1B(p̂)b are in
Ran(Pr(σ, p̂)), leading to the conclusion of (a), since m and n could be arbitrarily chosen. A
similar argument holds if (21) is true.

If the hypotheses of (b) holds then observe that

mT ∇2
p[cTH(σ, p̂)b− cTHr(σ, p̂)b]n = 0,

independent of how m is chosen, which then yields the conclusion (22).
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Figure 5: Example 6.1 with ν = 3: relative H2 error as p1 and p2 vary.
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Figure 6: Example 6.1 with ν = 3: relative H∞ error for as p1 and p2 vary.

adjusted these points iteratively without any user intervention, yielding in the end very accurate
parameterized reduced models. Since the IRKA iteration generally converges very quickly (see
[25]), the additional sparse linear systems that must be solved do not significantly increase cost,
yet additional iterations increase the accuracy of the reduced model by two orders of magnitude.

Next, we compare our piecewise H2 optimal method with an approach where balanced trunca-
tion is used to reduce the order at each parameter set, p(i). Towards this goal, we chose a reduced
order of four at each parameter value and obtained corresponding V(i) and W(i) for i = 1, . . . , 6.
Then as before, we concatenate the subspaces obtained by balanced truncation to form a final
parameterized reduced-order model; since it is similar in structure to our piecewise H2 optimal
method, we call this ”piecewise balanced truncation”. (Note that this approach differs from the
hybrid interpolation balanced truncation method described in [3].) For a fixed p0 = 0.1, the max-
imum relative H∞ error calculated on the same grid for p1 and p2 is 6.10 × 10−3; the maximum
relative H2 error 4.91× 10−3. Plots for the relative H2 error and relative H∞ error are shown in
Figures 9 and 10, respectively. We note that both errors are somewhat higher than the results
obtained by the proposed approach in Section 5. This result is not surprising. Even though V(i)

and W(i) are the balancing subspaces at the parameter values p(i), once they are concatenated,
the resulting reduced-order model is no longer balanced even when evaluated at the parameter set

17
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Figure 3: Example 6.1 with ν = 3: relative H2 error as p1 and p2 vary.
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Figure 4: Example 6.1 with ν = 3: relative H∞ error as p1 and p2 vary.

6.1.1 Comparison with other model reduction approaches

To illustrate the superiority of our piecewiseH2 optimal approach as described in Algorithm 5.1, we
compare it with assorted generic interpolatory model reduction methods where the interpolation
points do not have the (local) H2 optimality that Algorithm 5.1 produces. We proceed as follows:
For the same parameter sets as above, {p(i)}6i=1, we obtain the projection matrices V(i) and W(i)

using the frequency interpolation points that are used to initiate the optimal H2 reduction process
at each p(i). In effect, we apply only one-step interpolatory model reduction as opposed to the
iterative H2-optimal (IRKA) process. This is what one would do in a generic interpolation setting
by choosing some interpolation points and obtaining the reduced model. We have concatenated
V(i) and W(i) for i = 1, . . . , L as Algorithm 5.1 does, and then obtained the corresponding
parameterized reduced model. For comparison, we calculate the error at the same grid points
used before by fixing p0 at 0.1 and display the resulting relative H2 errors and relative H∞ error
in Figures 7 and 8. The maximum relative H∞ errors and relative H2 errors are, respectively,
4.98 × 10−1 and 2.19 × 10−1. Note that these relative errors are two orders of magnitude higher
than those obtained by the piecewise H2 optimal approach that we propose. This illustrates
clearly the importance of optimal H2 shift selection in our algorithm. It is useful to note that
we have initialized Algorithm 5.1 with the same interpolation points and IRKA (Algorithm 3.1)
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Algorithm 4.1. PMOR with Interpolatory Projections

1. Select “frequencies” σ1, . . . , σK ∈ C, parameter vectors p(1), . . . ,p(L) ∈ Rν ,
left tangent directions {c11, . . . , c1,L, c21, . . . , cK,L} ⊂ C`, and right tangent
directions {b11, . . . , b1,L, b21, . . . , bK,L} ⊂ Cm.

The order of the reduced model will be r = K · L.

2. Compute a basis {v1, . . . ,vr} for

Vr = span
i=1,...,K
j=1,...,L

{
A
(
σi,p

(j)
)−1

B(p(j))bij

}
.

3. Compute a basis {w1, . . . ,wr} for

Wr = span
i=1,...,K
j=1,...,L

{(
cTijC(p(j))A

(
σi,p

(j)
)−1)T

}
.

4. Set Vr := [v1, . . . ,vr] and Wr := [w1, . . . ,wr].

5. (Pre)compute from (4): Ar(p) = WT
r A(p)Vr, Er(p) = WT

r E(p)Vr,
Br(p) = WT

r B(p), Cr(p) = C(p)Vr.

A generic implementation of PMOR using interpolatory projections as described in Theorem 3
is provided in Algorithm 4.1, where we continue to use the notation A(s,p) := sE(p) − A(p)
as we have above. Note that the number of interpolation frequencies, K, and the number of
interpolation points for parameter vectors, L, needs to be chosen a priori and the total model
order is (nominally) r = K · L.

Certainly, the performance of the procedure strongly depends on the choice of interpolation
data. A first refinement of this basic approach is to compute frequency points for a fixed selection
of parameter vectors that are locally optimal with respect to H2 error measures using the Itera-
tive Rational Krylov Algorithm (IRKA) as in [25]. Choosing both the frequency and parameter
interpolation data as well as the tangent directions in an optimal way will be discussed in the next
section.

5 An H2-based approach to parameterized model reduction

Algorithm 4.1 will produce a parameterized reduced-order model that interpolates the original
system in the tangent directions bi and cTi at the (complex) frequency σi and parameter values,
p̂j . In many problem scenarios, there will be a natural choice of parameter vectors that will be
representative of the parameter ranges within which the original system must operate. Sometimes
designers will specify important parameter sets in the neighborhood of which reduced-order models
should be particularly accurate. In other cases, the physics of the problem will provide some insight
to where parameters should be chosen. In all these circumstances, the choice of interpolation data
for parameter vectors has been made, leaving open the question of how best to choose the frequency
interpolation data. We will give a heuristic approach to resolve this problem using methods for
nonparameterized systems that can yield optimal H2 frequency interpolation points.

Given a full-order parameterized system H(s,p), suppose L different parameter vectors
{p(1), . . . ,p(L)} are selected as parameter interpolation points. For each p(i), define H(i)(s) =
H(s,p(i)). For each i = 1, . . . , L, H(i) can be viewed as a (nonparameterized) full-order model
and we may apply Algorithm 3.1 to each H(i)(s) to obtain an H2 optimal reduced-order model

9



(say, of order ri) and corresponding projection subspaces V(i) ∈ Rn×ri and W(i) ∈ Rn×ri . Let
r = r1 + r2 + · · · rL. We concatenate these matrices to get

Vr = [V(1), V(2), . . . , V(L)] ∈ Rn×r and Wr = [W(1), W(2), . . . , W(L)] ∈ Rn×r.

This leads to the final parameterized reduced-order model, Hr(s,p), as in (3). Note that the
Hr(s,p) will not be an H2 optimal system approximation to H(s,p) for any parameter choice
although it contains L smaller H2 optimal submodels that can be recovered by truncation of Hr

evaluated at each of the L given parameter vectors. In any case, Hr still interpolates H at all
parameter choices. A brief sketch of the method is given in Algorithm 5.1. Effectiveness of this
algorithm is illustrated with several numerical examples in Section 6.

Algorithm 5.1. Piecewise H2 Optimal Interpolatory PMOR

1. Select L parameter vectors {p(1),p(2), . . . ,p(L)}
and reduction orders {r1, r2, . . . , rL}.

2. For each i = 1, 2, . . . , L
Define the ith system instance: H(i)(s) = H(s,p(i)) and apply the optimal
H2 reduction of Algorithm 3.1 to H(i)(s), constructing interpolating spaces of
dimension ri spanned by V(i) and W(i).

3. Concatenate V(i) and W(i) for i = 1, . . . , L to obtain the final projection
matrices Vr and Wr of dimension r = r1 + . . .+ rL:

Vr = [V(1), V(2), . . . , V(L)] and Wr = [W(1), W(2), . . . , W(L)].

4. Use an SVD or rank-revealing QR factorization to remove rank-deficient com-
ponents from Vr and Wr.

The final parameterized reduced model is determined by Vr and Wr from (3).

The situation becomes harder if we do not have any a priori knowledge of particular parameter
values that are important but have instead, perhaps only information about allowable parameter
ranges within the parameter space. There are methods to address this difficulty. One possible
approach is the so-called greedy selection algorithm of Bui-Thanh et al. [8]. Even though the final
reduced-order model of [8] proves to be a high quality approximation, the optimization algorithm
that needs to be solved at each step could be computationally expensive, possibly prohibitively
so. Another strategy for an effective and representative choice of parameter points in higher
dimensional parameter spaces (for example, say, with ν = 10) comes through the use of sparse
grids [9, 23, 49]. This approach is based on a hierarchical basis and a sparse tensor product
construction. The dimension of the sparse grid space is of reduced order O(2nnν−1) compared to
the dimension of the corresponding full grid space given by O(2νn). See [3] for another approach
to parameterized model reduction using sparse grids. However, as has been done for optimal H2

interpolation point selection achieved by the original Algorithm 3.1, a promising goal would be
to obtain optimal parameter selection points that minimize error measures that are appropriate
to parameterized systems. We consider this problem below, for SISO systems with a specific
parameter dependency.

5.1 Optimal interpolation for special SISO parameterizations

In the particular case that H(s,p) is a single input/single output system with the parametric
dependence occurring solely in C(p) and B(p), we are able to produce reduced-order systems that
are optimal with respect to a composite error measure that is an L2 error relative to parameters
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Figure 1: Example 6.1 with ν = 2: relative H2-error as p1 and p2 vary.
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Figure 2: Example 6.1 with ν = 2: relative H∞ error as p1 and p2 vary.

p0 = 0.8 and add three more choices for p1 and p2 for the case p0 = 0.1. Overall, our parameter
selection for p = [p0, p1, p2]T becomes

p(1) = [0.8, 0.5, 0.5]T , p(2) = [0.8, 0, 0.5]T , p(3) = [0.8, 1, 0.5]T ,
p(4) = [0.1, 0.5, 0.5]T , p(5) = [0.1, 0, 1]T , p(6) = [0.1, 1, 1]T .

As in the two parameter case, we apply Algorithm 5.1 by reducing the order at parameter values
p(i), i = 1, . . . , 6, using H2 optimal frequency interpolants with orders r1 = r2 = r3 = 3 and
r4 = r5 = r6 = 4. To illustrate the performance of the reduced-order model, we fix p0 at a
specific value, vary the parameters p1 and p2 over the full parameter space [0, 1] × [0, 1], and
compute relative H∞ error (35) and relative H2 error (34) at each grid point. We choose the
values p0 = 0.1 and p0 = 0.5. Note that p0 = 0.5 is not in the parameter selection set. The error
plots for p0 = 0.1 are shown in Figures 3 and 4. As in the two-parameter case, the reduced models
approximate the full-order dynamics accurately. The resulting maximum relative H∞ error and
relative H2 error for p0 = 0.1 are 2.66× 10−3 and 2.13× 10−3, respectively.

The errors over the full range of p1 and p2 are even smaller for p0 = 0.5, as can be seen
in Figures 5 and 6. The maximum relative H∞ error and relative H2 error are, respectively,
3.62× 10−4 and 1.44× 10−4, i.e., one order of magnitude smaller than for p0 = 0.1.
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6 Numerical Examples

6.1 Convection-diffusion flow in two dimensions

We consider a convection-diffusion equation on the unit square Ω = (0, 1)2:

∂x

∂t
(t, ξ) = ∆x(t, ξ) + p · ∇x(t, ξ) + b(ξ)u(t), ξ ∈ Ω, t ∈ (0,∞),

with homogeneous Dirichlet boundary conditions: x(t, ξ) = 0, ξ ∈ ∂Ω.
The parameter vector p = [p1, p2]T determines convective transport in both coordinate di-

rections whereas the function b(·) is the characteristic function of the domain where the input
function u(·) acts.

We discretize the convection-diffusion equation with finite differences to obtain a parameterized
linear system in state-space form

ẋ(t) = (A0 + p1A1 + p2A2)x(t) + Bu(t), y(t) = Cx(t), (33)

with A0, A1, A2 ∈ R400×400, B ∈ R400×1 and C ∈ R1×400. We assume B = e1 (first unit vector)
and C = eT (all ones). The parameter range considered is p1, p2 ∈ [0, 1].

In this example, the physics of the problem does not provide particular insight to what param-
eter values might be important. The range of parameter values we consider keep the behaviour of
the system diffusion-dominated, so we don’t take into account the possible desirability of changing
the discretization for different parameter values so as to maintain an upwind bias in the discretiza-
tion. Motivated by sparse-grid point selection in a two-dimensional space, we use the following
level-1 sparse-grid points p = [p1, p2]T to discretize the parameter space:

p(1) = [0.5, 0.5]T , p(2) = [0, 0.5]T , p(3) = [1, 0.5]T , p(4) = [0.5, 0]T , p(5) = [0.5, 1]T .

We further simplify this selection by removing the p(4) and p(5) due to symmetry of the problem.
Hence, our parameter set becomes {p(1),p(2),p(3)}. We apply Algorithm 5.1 with r1 = r2 = r3 = 4
for p(i), i = 1, 2, 3; the final parameterized reduced-order system as defined in (3) has dimension
r = 12.

A good parameterized reduced-order model needs to represent the full parameterized model
with high fidelity for a wide range of parameter values; certainly not just for those values chosen as
the interpolation parameters. To illustrate the quality of our parameterized reduced-order models,
we evaluate the full-order model, H(·,p), varying parameter values, p = [p1, p2]T , across the full
parameter range [0, 1]× [0, 1], and compute

the relative H2-error at p =
‖H(·,p)−Hr(·,p)‖H2

‖H(·,p)‖H2

and (34)

the relative H∞-error at p =
‖H(·,p)−Hr(·,p)‖H∞

‖H(·,p)‖H∞

. (35)

The corresponding mesh plots of relative error are shown in Figures 1 and 2. With a model of
order r = 12, the maximum relative H∞ errors and H2 errors are, respectively, 5.21 × 10−3 and
1.86× 10−3. In terms of either error measure, the reduced-order model is accurate to an order of
at least 10−3 and we are able to capture the full-order dynamics accurately throughout the whole
parameter range.

Next, we add a third parameter p0 to the model (33) in order to vary the diffusion:

ẋ(t) = (p0A0 + p1A1 + p2A2)x(t) + Bu(t), y(t) = Cx(t). (36)

The diffusion coefficient p0 varies in [0.1, 1] and becomes the crucial parameter for smaller values
in that range. Hence, we weight our parameter selection as follows. The problem approaches the
previous case as p0 increases to 1. Thus, we keep the same choice for p1 and p2 as above for
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and H2 error relative to the system response. To illustrate, we consider a simple two parameter
case for a system having the form:

H(s,p) =cT (p) (sE − A)
−1

b(q), (23)

with c(p) = c0 + p c1 and b(q) = b0 + q b1,

where p = [p, q]T and 0 ≤ p, q ≤ 1. This setting can be generalized in many directions but serves
to illustrate the main points.

Denoting D = [0, 1]× [0, 1], define a norm for systems having the form (23):

‖H‖2H2⊗L2(D)
def
=

1

2π

∫ +∞

−∞

∫∫

D

|H(ıω, p)|2 dA(p) dω. (24)

Obviously other choices forD and other measures aside from Lebesgue measure, dA(p) are possible.

We seek an optimal reduced-order parameterized model, H̃r(s,p), having the same form as H(s,p),

H̃r(s,p) = (c0,r + p c1,r)
T (sEr −Ar)

−1(b0,r + q b1,r), (25)

such that
‖H − H̃r‖H2⊗L2(D) = min

Hr stable
for all p∈D

‖H −Hr‖H2⊗L2(D). (26)

Theorem 6. Let H(s,p) be given as in (23) and let D = [0, 1]× [0, 1]. Define the auxiliary MIMO
transfer function:

H(s) = [c0, c1]
T

(sE − A)
−1

[b0, b1] . (27)

Then, ‖H‖H2⊗L2(D) = ‖LTHL‖H2
where L =

[
1 0
1
2

1
2
√
3

]
.

In particular, the norm we have defined on H2 ⊗ L2(D) for the parameterized system H(s,p)
is equivalent to a (weighted) MIMO H2 norm for H(s).

Proof. Observe that

H(s,p) = [ 1, p ]H(s)

[
1
q

]
. (28)

Substitute this expression into (24), rearrange the integrand, and note that L is the Cholesky

factor of

∫ 1

0

[
1
q

]
[ 1, q ] dq =

∫ 1

0

[
1
p

]
[ 1, p ] dp =

[
1 1

2
1
2

1
3

]
= LLT .

Although the model system we consider in (23) has a parameter range restricted to p =
[p, q]T ∈ D, interpolation is well-defined for parameter values outside of D. Indeed, parameter
interpolation will be well-defined even for p =∞ or q =∞: consider for nonzero (but finite) p, q
the interpolation condition,

H(σ,p) =p q (
1

p
c0 + c1)T (σE−A)−1(

1

q
b0 + b1)

=p q (
1

p
c0,r + c1,r)

T (σEr −Ar)
−1(

1

q
b0,r + b1,r) = Hr(σ,p),

and then let p or q (or both) approach ∞. We interpret the interpolation condition H(σ, [p, q]) =
Hr(σ, [p, q]) for such extended complex values for p = [p, q] as follows:

• H(σ, [∞, q]) = Hr(σ, [∞, q]) with q fixed and finite is interpreted as:

cT1(σE−A)−1(b0 + qb1) = cT1,r(σEr −Ar)
−1(b0,r + qb1,r);

• H(σ, [p, ∞]) = Hr(σ, [p, ∞]) with p fixed and finite is interpreted as:

(c0 + pc1)T(σE−A)−1b1 =(c0,r + pc1,r)
T(σEr −Ar)

−1b1,r;
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• H(σ, [∞, ∞]) = Hr(σ, [∞, ∞]) is interpreted as:

cT1(σE−A)−1b1 = cT1,r(σEr −Ar)
−1b1,r.

Similar extensions can be made for derivative interpolation conditions.
Theorem 6 shows that the least-squares error measure in the H2 ⊗ L2(D) norm for the SISO

parametric system is indeed a MIMO H2 norm for a nonparametric linear system. This means
we can solve the parametric H2 ⊗ L2(D) optimization problem (26) by solving an equivalent
nonparametric MIMO H2 optimization problem which we know how to solve using Theorem 2
and Algorithm 3.1. This leads to the following result:

Theorem 7. Let H(s,p) be given as in (23). Suppose a parameterized reduced-order model

H̃r(s,p) of the form (25) minimizes ‖H −Hr‖H2⊗L2(D) over all (stable) rth-order transfer func-

tions and that the associated reduced-order pencil sEr −Ar has only simple eigenvalues {λ̃i}ri=1.

Then there are optimal frequency shifts, {−λ̃i}ri=1, and optimal parameter interpolation vectors,
{p̃i}ri=1 such that

H(−λ̃i, p̃i) = H̃r(−λ̃i, p̃i),
∂

∂s
H(−λ̃i, p̃i) =

∂

∂s
H̃r(−λ̃i, p̃i),

and ∇pH(−λ̃i, p̃i) = ∇pH̃r(−λ̃i, p̃i), (29)

for i = 1, . . . , r.

Proof. Define a reduced-order MIMO system associated with H̃r:

H̃r(s) = [c0,r, c1,r]
T

(sEr − Ar)
−1

[b0,r, b1,r] .

Analogously to (28), we have

H̃r(s,p) = [ 1, p ] H̃r(s)

[
1
q

]
.

Since H̃r(s,p) minimizes the H2 ⊗ L2(D) error from the original system H(s,p), we find an
equivalent weighted H2 approximation problem:

‖LTHL− LT H̃rL‖H2
= ‖H − H̃r‖H2⊗L2

= min
Hr is stable

‖H −Hr‖H2⊗L2

= min
Hr is stable

‖LTHL− LTHrL‖H2
.

Thus, LT H̃r(s)L is an H2 optimal reduced-order approximation to the associated MIMO system

LTH(s)L. Since the reduced-order pencil sEr −Ar has only simple eigenvalues, LT H̃r(s)L has
a partial fraction expansion,

LT H̃r(s)L =
r∑

i=1

1

s− λ̃i
c̃ib̃

T
i ,

with c̃i, b̃i ∈ C2 for i = 1, . . . , r. This reduced-order MIMO system must satisfy tangential
interpolation conditions that are necessary consequences of H2 optimality:

LTH(−λ̃i)Lb̃i = LT H̃r(−λ̃i)Lb̃i,
c̃Ti L

TH(−λ̃i)L = c̃Ti L
T H̃r(−λ̃i)L,

and
∂

∂s
c̃Ti L

TH(−λ̃i)Lb̃i =
∂

∂s
c̃Ti L

T H̃r(−λ̃i)Lb̃i. (30)

Define for i = 1, . . . , r,

c̃Ti L
T = [µi, αi] and Lb̃i =

[
νi
βi

]
, (31)
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and associated optimal parameter values:

pi = αi/µi, and qi = βi/νi. (32)

For µi 6= 0 and νi 6= 0, we may simplify (30) as

νiH(−λ̃i)
[

1
qi

]
= νiH̃r(−λ̃i)

[
1
qi

]
,

µi [1, pi]H(−λ̃i) = µi [1, pi] H̃r(−λ̃i), and

µiνi [1, pi]

[
∂H

∂s
(−λ̃i)

] [
1
qi

]
= µiνi [1, pi]

[
∂H̃r

∂s
(−λ̃i)

] [
1
qi

]
,

which leads immediately to the conditions (29). If either µi = 0 or νi = 0 (or both), then either
pi or qi (or both) could take the value ∞ and the interpolation conditions (30) are equivalent to
interpolation conditions given above for extended complex values of parameter values.

Note that the optimal parameter interpolation points p̃i = [pi, qi]
T in Theorem 7 are not

necessarily contained in D, although if H̃r(s, [0, 0]) is a minimal realization, then at least all of
them can be guaranteed to be finite.

The definitions in (31) and (32) will be used in Algorithm 5.2 for the computation of an optimal
parameterized reduced-order SISO system having the special form (25). Using the results of
Theorem 7, Algorithm 5.2 first converts the SISO parameterized model reduction problem in H2⊗
L2(D) to an equivalent (nonparametrized) MIMO H2 model reduction problem. Algorithm 3.1
provides frequency interpolation points and tangent directions. Optimal parameter interpolation
points are then recovered using (31) and (32), yielding in the end an optimal parameterized reduced
model for the original problem with respect to the H2 ⊗ L2(D) norm.

Algorithm 5.2. Optimal Interpolation for SISO parameterizations with
H(s,p) = (c0 + p c1)T (sE − A)

−1
(b0 + q b1)

1. Construct H̃(s) as in (27) and L as in Theorem 6.

2. Apply Algorithm 3.1 to find an H2 optimal rth-order approximant to
LT H̃(s)L. Let c̃i and b̃i, for i = 1, . . . , r denote the resulting optimal left

and right tangent directions, respectively. Also, let λ̃i denote the resulting
reduced-order poles.

3. Compute pi and qi for i = 1, . . . , r using (31), (32).

4. Construct Vr and Wr as in lines 2.-4. in Algorithm 4.1 using p̃i = [pi, qi]
T

as optimal parameter interpolation points, σi = −λ̃i as frequency interpolation
points, c̃i and b̃i as left and right tangent directions for i = 1, . . . , r.

The final optimal parameterized reduced-order model is determined from (3).
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