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Abstract

We consider the solution of nonlinear optimal control problems sub-
ject to stochastic perturbations with incomplete observations. In par-
ticular, we generalize results obtained by Ito and Kunisch in [8] where
they consider a receding horizon control (RHC) technique based on lin-
earizing the problem on small intervals. The linear-quadratic optimal
control problem for the resulting time-invariant (LTI) problem is then
solved using the linear quadratic Gaussian (LQG) design. Here, we al-
low linearization about an instationary reference trajectory and thus
obtain a linear time-varying (LTV) problem on each time horizon. Ad-
ditionally, we apply a model predictive control (MPC) scheme which
can be seen as a generalization of RHC and we allow covariance matri-
ces of the noise processes not equal to the identity. We illustrate the
MPC/LQG approach for a three dimensional reaction-diffusion system.
In particular, we discuss the benefits of time-varying linearizations over
time-invariant ones.

Keywords. Receding horizon control, model predictive control, non-
linear systems, optimal control, linear quadratic Gaussian design, in-
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when using efficient solvers for the DREs (sparse solvers) we can limit this time
significantly. On the other hand, it does not seem to be worthwile to use DREs
when LTI systems are available.

5 Conclusions

We have shown that the results of Ito and Kunisch in [8] can be generalized in sev-
eral directions: first, we slightly generalize the receding-horizon approach to an
MPC scheme. For the linearization on the time horizon, we study the use of insta-
tionary reference trajectories leading to LTV systems. Essentially, we can obtain
analogous results as in [8] for the time-invariant case. We also allow stochastic
disturbances in the input, the output/measurements, as well as in the initial con-
ditions. This makes the suggested MPC/LQG/LTV scheme fairly robust against
external disturbances and modeling errors. We also note that in summary, the
proposed MPC/LQG/LTV scheme generalizes the RHC/LQG/LTI design. The
presented example emphasizes the possible performance improvement obtainable
using LTV systems embedded in an MPC/LQG approach. Future work will
include improvement of the numerical methods used to compute the feedback
control laws, in particular we will employ large-scale DRE solvers directly linked
to the simulation software.
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We want to present some figures which emphasizes the results in the table.
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Figure 1: u (left) and |u∗ − u| (right) on [0, 0.95]
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Figure 2: |c∗1−c1| (left) and |c∗2−c2| (right) on 59 discretization points at t = 0.95

The left figure in 1 shows the controls for the different cases choosing the length
of the prediction and control horizon as Tp = 0.1 and Tc = 0.05, respectively. It
confirms the results from the table. Since it is difficult to distinguish between
the cases, we plotted the difference |u∗(t) − u(t)| on the right side. There, the
smaller deviation to the reference control for LTV systems becomes obvious.

In Figure 2 we plotted the difference |c∗i (0.95) − ci(0.95)| for the first substance
(i = 1, left side) and second substance (i = 2, right side) on 59 discretization
points, respectively. Therefor we took every fifth point from the 297 discretization
points of each concentration vector at time point t = 0.95. As seen in the table,
we obtain similar deviations from the reference for the first concentrations and
an improvement in the second concentration for the LTV case.

Finally, we can say that using a time-varying linearization improves the results
for this example considerably. Of course, we have longer computation times, but
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1 Introduction

In the following we consider the optimal control problem

min

Tf∫

0

yT (t)Q(t)y(t) + uT (t)R(t)u(t) dt+G(x(Tf )) (1)

subject to the semi-linear stochastic system with additive unmodeled disturbance

ẋ(t) = f(x(t)) +B(t)u(t) + F (t)v(t), t > 0, x(0) = x0 + η, (2)

u(t) ∈ U , x(t) ∈ X , where v(t) is an unknown Gaussian disturbance process with
covariance V and η denotes the noise in the initial condition. Since in many
applications the state is not completely available, we also consider the output
function

y(t) = C(t)x(t) + w(t), y ∈ Y , (3)

where w(t) is a measurement noise process which will also be assumed to be
Gaussian with covariance W . The output equation (3) can be seen as a model
for the measurements of (2) available in practice. If (2) is an ordinary differential
equation (ODE), then we have a finite-dimensional problem with X = Rn, Y = Rp

and U = Rm. In the case of a partial differential equation (PDE) the problem is
infinite-dimensional and X ,Y ,U are in general appropriate function spaces. Here
we will only consider the finite-dimensional case, e.g., resulting from a spatial
semi-discretization of a PDE to obtain an ODE. Extensions of the results in
this paper to the infinite-dimensional case also treated in [7] will be reported
elsewhere.

Based on the ideas of [8] we will derive an approximate solution of (1) by applying
a model predictive control strategy and linear quadratic Gaussian design. In [8]
Ito and Kunisch consider the system

ẋ(t) = f(x(t)) +Bu(t) + v(t), t > 0, x(0) = x0 + η,

y(t) = Cx(t) + w(t).

There, the state equation is linearized about a given reference (x∗(t), u∗(t)) on
small intervals [ti, ti + T ], T < Tf (receding horizon control). Then, x∗(t) is
partially replaced by a stationary operating point x̄ in order to obtain an LTI
system. The resulting linear-quadratic optimal control problem is then solved by
applying an LQG design, which requires in particular the solution of two algebraic
Riccati equations (AREs) on each horizon. Furthermore, a quality criterion to
estimate the performance of the strategy is developed.

We will generalize the results from [8] by using the resulting LTV system after
linearization instead of the LTI system arising after partially replacing x∗(t) by



x̄. We expect a better approximation with respect to suboptimality since the
linearization around a time-varying reference is more precise than replacing it
by a constant operating point. Additionally, it is advantageous for practical
problems, where the system matrices are time-varying, too. But it should also
be noted that the computational effort is larger for LTV systems since we have
to solve differential Riccati equations (DREs) instead of AREs if we want to
apply an LQG controller. In studying the performance of the MPC strategy, we
observed [5] what we believe is a gap in the proof of the stated bound for the
combined estimation and tracking error in [8]. Besides generalizing the result to
the more general situation considered here, we also provide a fix for this problem.

Furthermore we do not want to limit ourselves to receding horizon techniques
(RHC), but also consider model predictive control (MPC). MPC means that we
predict the system’s behaviour on a small interval [ti, ti + Tp] by using a model
(prediction step), determine the control over an optimization horizon [ti, ti +
To], T0 ≤ Tp, in such a way, that a cost functional is optimized (optimization
step) and apply the computed control on [ti, ti + Tc], Tc ≤ To (implementation
step) and recede the horizon to [ti + Tc, ti + Tc + Tp] (receding horizon step).
Thereby, we will set To = Tp in the following, since in our case it makes no sense
to linearize the problem on a larger horizon than optimization will be done. RHC
is a special case of MPC for Tc = Tp. See [2] for further details on MPC.

The third additional (as compared to [8]) ingredient is the inclusion of noise
covariance matrices different from the identity as it is suggested in text books
dealing with LQG design. They will play a role in the DREs.

Another goal of this paper is to demonstrate that the MPC/LQG approach is
applicable in the context of large-scale nonlinear dynamical systems, arising, e.g.,
from semidiscretized PDE control problems. For this purpose, we illustrate the
performance of the proposed MPC/LQG strategy using a 3D reaction-diffusion
system from [3, 4], resulting in a semilinear parabolic optimal control problem.
Discretization by the finite element method then leads to a nonlinear finite-
dimensional optimal control problem as considered here.

The outline of the paper is as follows. In the next section, we explain the
MPC/LQG approach to solving the nonlinear optimal control (1). The anal-
ysis of the performance of this control strategy is then given in Section 3. The
benefits of using time-varying linearizations are demonstrated using the numer-
ical example mentioned above in Section 4. We close the paper by conclusions
and an outlook in Section 5.
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• LTV/DRE: We use LTV systems as introduced in Section 2 with time-
varying A and B, where the latter means that the position of the nozzle
changes in each time step.

We will compare the three cases for different prediction and control horizons.

Tp Tc Type
T̃∫
0

zTQz + ũTRũ dt
T̃∫
0

zT1 z1 dt
T̃∫
0

zT2 z2 dt
T̃∫
0

ũT ũ dt

0.1 0.05

LTI/ARE 0.644872 0.067804 0.521638 0.005543

LTI/DRE 0.623733 0.070703 0.524184 0.002885

LTV/DRE 0.129287 0.068377 0.057168 0.000374

0.05 0.05

LTI/ARE 0.646785 0.067504 0.523364 0.005592

LTI/DRE 0.612729 0.068944 0.529253 0.001453

LTV/DRE 0.131773 0.068104 0.061985 0.000168

0.1 0.1

LTI/ARE 0.823303 0.061546 0.687169 0.007459

LTI/DRE 0.812116 0.061004 0.724103 0.002701

LTV/DRE 0.145055 0.067758 0.073827 0.000347

Table 1: Costs for LTI/ARE, LTI/DRE, LTV/DRE on [0, 0.91]

Table 1 shows the total costs (which should be minimized), the deviation from the
reference substances and the deviation from the reference control. The first which
can be noticed, is that total costs for the LTV case are much better than for the
LTI cases. This is due to the fact, that we have a time-varying linearization and a
time-varying nozzle. The partial costs for the concentration of the first substance
are similar, but in the LTV case this is reached with much less effort, which
is also reflected in the control costs and related to it in the costs for the second
substance. If we compare the two LTI cases, one can see that there is only a small
improvement of the total costs if we compute DREs with constant coefficients
instead of AREs. But the control costs could be improved significantly. So for
the two LTI cases we have to weigh the small improvement of the costs against
the shorter computation times, since solving DREs is more extensive than solving
AREs. Using the BDF method for the solution of an DRE means to compute an
ARE in each time step instead of solving only the ARE on the prediction interval.

With respect to the choices of the prediction and control intervals we obtain
expected results. So choosing Tp = Tc (RHC) produces better results for smaller
intervals. If we have a fixed control horizon, but different prediction horizons,
the results are better for larger prediction horizons, since the LQG controller can
work foresighted. So using an MPC approach is advantageous in contrast to the
RHC approach.
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The concentrations of the substances are denoted by ci and the parameters Di

and k are the diffusion and reaction coefficients, respectively. We use Ω for a 3D
annular cylinder where Ωu is the upper surface. The function α(x, t) models a
counter-clockwise revolving nozzle around the upper annular surface. This nozzle
sprays one of the substances onto the reactor and the goal is to achieve a desired
terminal concentration of the substances.

So we have to solve an optimal control problem subject to a nonlinear (semilinear)
partial differential equation. Further we allow the presence of Gaussian white
noise in measured outputs and process dynamics.

The discretization in space is performed by using piecewise linear and globally
continuous finite elements on tetrahedra. On each time-horizon, a linearization
around the reference trajectory is computed. This yields the following linear time-
varying system for the difference z(t) between reference and current estimate of
the solution

Mż(t) = A(t)z(t) + B(t)(ũ(t) + v(t)), z(0) = η, y(t) = Cx(t) + w(t),

see Section 2.

In order to be able to use standard software in Matlab, we choose a coarse
discretization with n = 594. The basic routines are coded in Matlab, the FEM
is done in Femlab and the DREs are solved with a BDF method as described in
[1, 12]. Addressing larger problems requires efficient DRE solvers for sparse and
low-rank data matrices; this is work in progress.

For this example, we assume full measurements and choose the following param-
eters:

D1 = 0.15, D2 = 0.2, k = 1, c10 = 1, c20 = 0, T = 1,
dt = 0.01, C = Q = I594, R = 10, σ(v) = σ(w) = 0.5, η = 0.

So the aim is to steer c1 to zero by spraying the second substance onto the reactor.
Reference control and trajectory is computed by a primal-dual solution method
whose code was provided by Roland Griesse, see [4].

We will distinguish the three cases

• LTI/ARE: We assume a time-invariant matrix A on each horizon, which
is realized if we partially replace x∗(t) by a constant operating point x̄ and
we fix the nozzle position in the middle of the control horizon. So we obtain
an LTI systems and assume infinite prediction horizons to solve AREs.

• LTI/DRE: We take the same LTI system as a basis as described in the
LTI/ARE case, but we use the real finite prediction intervals and obtain
two DREs with constant coefficients on each interval.
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2 MPC/LQG solution strategy

The MPC/LQG approach is based on a linearization of (2) on small intervals to
obtain a linear time-varying problem. We solve this linear problem on this small
interval by using an LQG design. So the strategy is the following:

(1) Prediction and optimization step on [ti, ti + Tp], Tp < Tf :

linearize (2) around a given reference (x∗(t), u∗(t)) to obtainA(t) = f ′(x∗(t))
and the linear state equation

ż(t) = A(t)z(t) +B(t)ũ(t) +F (t)v(t), z(0) = η, y(t) = C(t)x(t) +w(t),

with z(t) = x(t)− x∗(t) and ũ(t) = u(t)− u∗(t). Then solve the DRE

Ẋ(t) = −X(t)A(t)− AT (t)X(t) +X(t)B(t)R−1(t)BT (t)X(t)
−CT (t)Q(t)C(t),

X(ti + Tp) = G,
(4)

in order to obtain X∗(t) and K(t) = −R−1(t)BT (t)X∗(t).

(2) Implementation step on [ti, ti + Tc], Tc ≤ Tp:

feed the original system with

u(t) = u∗(t)−K(t)(x̂(t)− x∗(t)),
on [ti, ti + Tc] while measuring y(t) by solving the nonlinear ODE and esti-
mating the next state x̂(t) through solving the linear ODE

˙̂z(t) = A(t)ẑ(t) +B(t)ũ(t) + L(t)
(
y(t)− C(t)x̂(t)

)
, ẑ(t) = x̂(t)− x∗(t),

with L(t) = Σ∗(t)CT (t)W−1, where Σ∗(t) is the solution of the filter DRE
(FDRE)

Σ̇(t) = A(t)Σ(t) + Σ(t)AT (t)− Σ(t)CT (t)W−1C(t)Σ(t) + F (t)V F (t)T ,
Σ(ti) = Σ0.

(5)
V , W are the covariance matrices of the noise processes.

(3) Receding Horizon Step:

update ti = ti + Tc and go to the first step.

Remark 2.1 Matrix G in the terminal condition for the DRE (4) results from the
terminal cost in the cost functional to penalize the state at the end of the horizon.
If G is selected as an control Lyapunov function, Ito and Kunisch established the
asymptotic stability and performance estimate for the receding horizon synthesis
for finite-dimensional systems in [6]. The initial condition Σ0 for the FDRE (5)
can be chosen as the expected value of ηηT .
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One main item in this approach is to solve the DREs (4) and (5) and we refer the
reader for example to [10] for detailed information about DREs. To solve large-
scale DREs we will use the backward differentiation formulae (BDF) method,
which requires the solution of an ARE in every time step. The BDF method is
discussed in detail in [12].

The Kalman filter theory for the estimate of the next state can be found, for
instance, in [9, 13].

3 Performance of the Compensator for LTV
Systems

We introduce the performance of the compensator in a similar way as it was done
by Ito and Kunisch in [8] for LTI systems.

Definition 3.1 (Performance of the compensator)

E(t) =

[
1

2

〈
x(t)− x∗(t), X(t)(x(t)− x∗(t))

〉

+
1

2

〈
x(t)− x̂(t),Σ−1(t)(x(t)− x̂(t))

〉
] 1

2

, (6)

where X(t) and Σ(t) are the solutions of the DRE (4) and the FDRE (5). So the
performance contains the tracking error in the first part and the estimation error
in the second part.

Note that in the definition of E(t) in the LTI case in [8], the factors 1
2

are missing
and the brackets are not around the whole term. We include them as otherwise
the definition would not be consistent with the achieved performance result.

Before presenting the main result we prove two propositions, which are the gen-
eralizations for LTV systems of Propostions 2.1 and 2.2 in [8].

Proposition 3.2 Let N(x) = 1
2
xT (t)X(t)x(t). For t ∈ [0, Tp] we have

d

dt
N(x− x∗) = −1

2

[ 〈
X(t)B(t)R−1(t)BT (t)X(t)(x(t)− x∗(t)), x(t)− x∗(t)

〉

+
〈
CT (t)Q(t)C(t)(x(t)− x∗(t)), x(t)− x∗(t)

〉 ]

+ 〈F (t)v(t) + r(x, x∗), X(t)(x(t)− x∗(t))〉
+
〈
B(t)R−1(t)BT (t)X(t)(x(t)− x̂(t)), X(t)(x(t)− x∗(t))

〉
,

4

with c = max{√cX ,
√
cΣ}.

If we evaluate the value on the right hand side of the interval by exploiting (A11)
we obtain with i = 1

E(t2)|[t1,t2] ≤ e−ω̃TcE(t1)|[t1,t2] +

Tc∫

0

e−ω̃(Tc−s)γ(t1 + s) ds

≤ e−ω̃Tcc
δ

2
+
δ

2

(
1− ce−ω̃Tc

)
=
δ

2
.

By induction we can show that from

E(ti)|[ti−1,ti] ≤
δ

2
,

it follows that

E(ti)|[ti,ti+1] ≤ c
δ

2

and (A11) implies

E(ti+1)|[ti,ti+1] ≤
δ

2
∀i.

This implies

E(t) ≤ c
δ

2
e−ω̃t +

t∫

0

e−ω̃(t−s)γ(s) ds ∀t > 0.

�

4 Numerical Example

The model for the following three dimensional example was provided by Roland
Griesse, see [3, 4].

Our aim is to model a chemical or biological process where the species involved
are subjected to diffusion and reaction among each other. This process can be
modeled by a coupled system of reaction-diffusion equations (i = 1, 2)

(ci)t(x, t) = Di∆ci(x, t)− kc1(x, t)c2(x, t), i = 1, 2 on Ω× (0, T )

with the boundary conditions

∂
∂n
c1(x, t) = 0 on δΩ× (0, T ),

∂
∂n
c2(x, t) = 0 on (δΩ \ Ωu)× (0, T ), ∂

∂n
c2(x, t) = α(x, t)u(t) on Ωu × (0, T )

and the initial conditions c1(x, 0) = c10(x) and c2(x, 0) = c20(x).
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1
β2
I < Σ(ti) <

1
β1
I. Moreover, the intervals need to be chosen small enough

(or α1, β1 small and α2, β2 large enough) so that the Riccati solutions remain
in the prescribed bounds.

It is quite difficult to show how to realize this but it is plausible that this
can be fulfilled by choosing the intervals small enough.

Assumption (A10) (LTV-analogue to (3.2) in [8]) The smallness condition
(A10) is similar to Assumption (A6) in Theorem 3.5. Here, we require the
smallness condition on every sub-interval [ti, ti+1].

Assumption (A11) (LTV-analogue to (3.3) in [8]) (A11) is a more special as-
sumption since we consider the integral on the whole sub-interval (t = Tc in
Assumption (A10)). Note, that there is an additional constant compared to
that in [8], which is needed to overcome the difficulties with the discontinuity
points discussed in Remark 3.7.

Proof of Theorem 3.8:
Using the assumptions in the theorem we obtain analogously to (19)

E(t) ≤ e−ω̃(t−ti)E(ti)|[ti,ti+1]+

t−ti∫

0

e−ω̃(t−ti−s)γ(ti+s) ds for t ∈ [ti, ti+1] and every i,

if we shift the interval [0, Tc] to [ti, ti + Tc].

Now consider the first interval [0, t1]. Then we obtain with i = 0, t0 = 0 and
(A7), (A11)

E(t1)|[0,t1] ≤ e−ω̃TcE(0)|[0,t1] +

Tc∫

0

e−ω̃(Tc−s)γ(s) ds

≤ e−ω̃Tc
δ

2
+
δ

2

(
1− e−ω̃Tc

)
=
δ

2
.

With (A9) we can move to the next interval and have

E(t1)|[t1,t2] =

[
1

2

〈
x(t1)− x∗(t1), X1(t1)(x(t1)− x∗(t1))

〉

+
1

2

〈
x(t1)− x̂(t1),Σ−1

1 (t1)(x(t1)− x̂(t1))
〉] 1

2

≤
[

1

2
cX
〈
x(t1)− x∗(t1), X0(t1)(x(t1)− x∗(t1))

〉

+
1

2
cΣ

〈
x(t1)− x̂(t1),Σ−1

0 (t1)(x(t1)− x̂(t1))
〉] 1

2

≤ cE(t1)|[t0,t1] ≤ c
δ

2
,

16

where

r(x, x∗) = f(x)− f(x∗)− A(t)(x− x∗). (7)

Proof: Consider

d

dt
(x(t)− x∗(t)) = (f(x) +B(t)u(t) + F (t)v(t))− (f(x∗) +B(t)u∗(t))

with

u(t) = u∗(t)−R−1(t)BT (t)X(t)(x̂(t)− x∗(t)).

Then we obtain

d

dt
(x(t)− x∗(t))

= f(x)− f(x∗) +B(t)u∗(t)−B(t)R−1(t)BT (t)X(t)(x̂(t)− x∗(t))
−B(t)u∗(t) + F (t)v(t)

= A(t)(x(t)− x∗(t))− A(t)(x(t)− x∗(t))
−B(t)R−1(t)BT (t)X(t)(x(t)− x∗(t))
+B(t)R−1(t)BT (t)X(t)(x(t)− x̂(t)) + f(x)− f(x∗) + F (t)v(t).

If we use the function r(x, x∗) defined in (7) above, then it holds that

d

dt
(x(t)− x∗(t))

= A(t)(x(t)− x∗(t))−B(t)R−1(t)BT (t)X(t)(x(t)− x∗(t))
+B(t)R−1(t)BT (t)X(t)(x(t)− x̂(t)) + F (t)v(t) + r(x, x∗). (8)

Since

d

dt
N(x− x∗) =

[
d

dt
(x(t)− x∗(t))T

]
X(t)(x(t)− x∗(t))

+
1

2
(x(t)− x∗(t))T Ẋ(t)(x(t)− x∗(t)),

we obtain with (8) and z(t) = x(t)− x∗(t)

d

dt
N(z) =

〈
A(t)z(t)−B(t)R−1(t)BT (t)X(t)z(t)

+B(t)R−1(t)BT (t)X(t)(x(t)− x̂(t))

+F (t)v(t) + r(x, x∗), X(t)z(t)

〉
+

1

2
zT (t)Ẋ(t)z(t). (9)

5



Now we analyze the first two terms of the right-hand side in (9) and transform
them by using the DRE (4).

〈(A(t)−B(t)R−1(t)BT (t)X(t))z(t), X(t)z(t)〉
=

1

2
zT (t)(AT (t)X(t) +X(t)A(t))z(t)− zT (t)X(t)B(t)R−1(t)BT (t)X(t)z(t)

=
1

2
zT (t)(AT (t)X(t) +X(t)A(t)−X(t)B(t)R−1(t)BT (t)X(t))z(t)

−1

2
zT (t)X(t)B(t)R−1(t)BT (t)X(t)z(t)

=
1

2
zT (t)(−CT (t)Q(t)C(t)− Ẋ(t))z(t)

−1

2
zT (t)X(t)B(t)R−1(t)BT (t)X(t)z(t)

= −1

2

[ 〈
CT (t)Q(t)C(t)z(t), z(t)

〉
+
〈
Ẋ(t)z(t), z(t)

〉

+
〈
X(t)B(t)R−1(t)BT (t)X(t)z(t), z(t)

〉 ]
. (10)

If we insert the result (10) into (9), the term zT (t)Ẋ(t)z(t) is cancelled and we
obtain

d

dt
N(z) = −1

2

[ 〈
X(t)B(t)R−1(t)BT (t)X(t)z(t), z(t)

〉

+
〈
CT (t)Q(t)C(t)z(t), z(t)

〉 ]

+ 〈F (t)v(t) + r(x, x∗), X(t)z(t)〉
+
〈
B(t)R−1(t)BT (t)X(t)(x(t)− x̂(t)), X(t)z(t)

〉
,

which is the assertion for z(t) = x(t)− x∗(t). �

Proposition 3.3 Let Ñ(z) = 1
2
zT (t)Σ−1(t)z(t). For t ∈ [0, Tp] we have

d

dt
Ñ(x− x̂) = −1

2

[ 〈
W−1C(t)(x(t)− x̂(t)), C(t)(x(t)− x̂(t))

〉

+
〈
V F T (t)Σ−1(t)(x(t)− x̂(t)), F T (t)Σ−1(t)(x(t)− x̂(t))

〉 ]

+
〈
F (t)v(t) + r(x, x∗),Σ−1(t)(x(t)− x̂(t))

〉

−
〈
w(t),W−1C(t)(x(t)− x̂(t))

〉
,

where

r(x, x∗) = f(x)− f(x∗)− A(t)(x− x∗).

6

Theorem 3.8 Assume

(A7) E(0) ≤ δ

2
;

(A8) (A1), (A2), (A4) hold uniformly on all horizons [ti, ti+1];

(A9) ∃cX , cΣ with 1 < cX � 2 and 1 < cΣ � 2 such that

‖x(ti)‖2
Xi(ti)

≤ cX‖x(ti)‖2
Xi−1(ti)

and ‖x(ti)‖2
Σ−1

i (ti)
≤ cΣ‖x(ti)‖2

Σ−1
i−1(ti)

∀i > 0 with Xi(ti),Σi(ti) being the solutions of the DREs on [ti, ti+1]

at ti;

(A10)

t∫

0

e−ω̃(t−s)γ(s+ ti) ds <
δ

2
∀t ∈ [0, Tc] and ∀i = 0, 1, . . . ;

(A11)

Tc∫

0

e−ω̃(Tc−s)γ(s+ ti) ds ≤
{

δ
2

(
1− e−ω̃Tc

)
i = 0,

δ
2

(
1− ce−ω̃Tc

)
i = 1, 2, . . .

with c = max{√cX ,
√
cΣ} and Tc such that e−ω̃Tc <

1

c
.

Then

E(t) ≤ e−ω̃(t−ti)E(ti)+

t−ti∫

0

e−ω̃(t−ti−s)γ(ti+s) ds ∀t ∈ [ti, ti+Tp] and ∀i = 0, 1, ..

(21)
In particular this implies

E(t) ≤ c
δ

2
e−ω̃t +

t∫

0

e−ω̃(t−s)γ(s) ds ∀t > 0. (22)

Remark 3.9 Discussion of the assumptions in Theorem 3.8:

Assumptions (A8) and (A9) Assumption (A9) is needed to treat the disconti-
nuity points discussed in Remark 3.7. Therefor we have to require that

‖Xi+1(ti)−Xi(ti)‖ ≤ εX and ‖Σ−1
i+1(ti)− Σ−1

i (ti)‖ ≤ εΣ,

which are quite natural conditions, since the time-varying system matrices
coincide at the time-points ti.

Assumption (A1) from Theorem 3.5 has to hold uniformly on all horizons
[ti, ti+1]. We discussed this in Remark 3.6 for the interval [0, Tp]. Here, it
means that the solutions of all DREs and FDREs on every interval [ti, ti+1]
have to be uniformly bounded by αi > 0, βi > 0, i = 1, 2. Again this means
that the initial and terminal conditions satisfy α1I < X(ti + Tp) < α2I and
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Assumption (A6) and continuity of t→
t∫

0

e−ω̃(t−s)γ(s) ds implies

∃α ∈ (0, 1) :

t∫

0

e−ω̃(t−s)γ(s) ds ≤ αδ

2
∀t ∈ [0, Tp]

and with 0 < e−ω̃t < 1, ω̃, t > 0 it follows that

E(t) ≤ δ

2
+
αδ

2
=
δ

2
(1 + α) ∀t ∈ [0, τ ]. (20)

Step 4: So far we have proved the inequalities for the interval [0, τ ]. Now we
need to extend this to the interval [0, Tp].

If (20) holds on [0, Tp] then (19) must hold on [0, Tp] as we have seen in the proof.
So we have to show that (20) holds on [0, Tp].

Assume that (20) is not valid on [0, Tp]. Let τ̃ denote the smallest value in [0, Tp]
such that E(τ̃) = δ

2
(1+α). This implies that ∃ε > 0 so that (19) holds on [0, τ̃+ε].

So it follows that (20) holds on [0, τ̃ + ε] and with this E(τ̃ + ε) < δ
2
(1 +α). But

this contradicts E(τ̃) = δ
2

+ αδ
2

. So (20) holds on [0, Tp]. �.

It is obvious that if (20) holds on [0, Tp], it also holds on [0, Tc] with Tc ≤ Tp.

Now we want to expand these results to the interval [0, Tf ].

Remark 3.7 The following theorem is the time-varying generalization of Theo-
rem 3.1 in [8]. Since we believe that there is a gap in their theorem we suggest
a corrected version. The gap in their theorem occurs in the transition from one
prediction interval to the next. There they assume that from

E(ti)|[ti−1,ti] ≤
δ

2
,

it follows that

E(ti)|[ti,ti+1] ≤
δ

2
,

which does not have to be the case since we take different operating points for the
LTI case and consequently different ARE solutions as a basis on different intervals
[5]. As a consequence we have discontinuity points at the interval boundaries. The
aim is to get a hold on these discontinuity points. The same has to be regarded
for the LTV case. But the advantage is that we use the time-varying reference
itself instead operating points.
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Proof: Consider

d

dt
(x(t)− x̂(t))

=
[
f(x) +B(t)u(t) + F (t)v(t)

]
−
[
A(t)(x̂(t)− x∗(t)) + f(x∗) +Bu(t)

+Σ(t)CT (t)W−1(y(t)− C(t)x̂(t))
]

= −A(t)(x̂(t)− x∗(t)) + A(t)(x(t)− x(t)) + f(x)− f(x∗)

+F (t)v(t)− Σ(t)CT (t)W−1
(
C(t)x(t) + w(t)− C(t)x̂(t)

)

= A(t)(x(t)− x̂(t)) + F (t)v(t)− Σ(t)CT (t)W−1
(
C(t)x(t) + w(t)

−C(t)x̂(t)
)

+ r(x, x∗) (11)

and

d

dt
Ñ(x− x̂) =

[
d

dt
(x(t)− x̂(t))T

]
Σ−1(t)(x(t)− x̂(t))

+
1

2
(x(t)− x̂(t))T

(
d

dt
Σ−1(t)

)
(x(t)− x̂(t))

=

[
d

dt
(x(t)− x̂(t))T

]
Σ−1(t)(x(t)− x̂(t))

−1

2
(x(t)− x̂(t))TΣ−1(t)Σ̇(t)Σ−1(t)(x(t)− x̂(t)), (12)

since from Σ(t)Σ−1(t) = I it follows Σ̇(t)Σ−1(t) + Σ(t) d
dt

Σ−1(t) = 0 which implies
d
dt

Σ−1(t) = −Σ−1(t)Σ̇(t)Σ−1(t). Equation (12) together with (11) and z(t) =
x(t)− x̂(t) implies

d

dt
Ñ(z) =

〈
A(t)z(t) + F (t)v(t)− Σ(t)CT (t)W−1

(
C(t)x(t) + w(t)− C(t)x̂(t)

)

+r(x, x∗),Σ−1(t)z(t)
〉
− 1

2

〈
z(t),Σ−1(t)Σ̇(t)Σ−1(t)z(t)

〉
. (13)

Now we analyze the term

〈
A(t)− Σ(t)CT (t)W−1C(t)z(t),Σ−1(t)z(t)

〉
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by using the FDRE (5). So we obtain

〈
A(t)− Σ(t)CT (t)W−1C(t)z(t),Σ−1(t)z(t)

〉

= zT (t)
(
AT (t)− CT (t)W−1C(t)Σ(t)

)
Σ−1(t)z(t)

= zT (t)Σ−1(t)
(
Σ(t)AT (t)− Σ(t)CT (t)W−1C(t)Σ(t)

)
Σ−1(t)z(t)

=
1

2
zT (t)Σ−1(t)

(
Σ(t)AT (t) + A(t)Σ(t)

−Σ(t)CT (t)W−1C(t)Σ(t)
)
Σ−1(t)z(t)− 1

2
zT (t)CT (t)W−1C(t)z(t)

=
1

2
zT (t)Σ−1(t)

(
− F (t)V F T (t) + Σ̇(t)

)
Σ−1(t)z(t)

−1

2
zT (t)CT (t)W−1C(t)z(t)

= −1

2

[〈
V F T (t)Σ−1(t)z(t), F T (t)Σ−1(t)z(t)

〉

−
〈
Σ−1(t)z(t), Σ̇(t)Σ−1(t)z(t)

〉
+
〈
W−1C(t)z(t), C(t)z(t)

〉]
. (14)

If we insert (14) into (13), the term
〈
Σ−1(t)z(t), Σ̇(t)Σ−1(t)z(t)

〉
is cancelled and

we obtain

d

dt
Ñ(z) = −1

2

[〈
V F T (t)Σ−1(t)z(t), F T (t)Σ−1(t)z(t)

〉
+
〈
W−1C(t)z(t), C(t)z(t)

〉]

+
〈
F (t)v(t) + r(x, x∗),Σ−1(t)z(t)

〉
− 〈w(t),W−1C(t)z(t)

〉
,

which is the assertion for z(t) = x(t)− x̂(t). �

Remark 3.4 Using the notation from Proposition 3.2 and 3.3, (6) can be written
as

E(t) =
[
N(x(t)− x∗(t)) + Ñ(x(t)− x̂(t))

] 1
2
.

Note that with the definition of E(t) in [8], one would have

E(t) =
(

2N(x(t)− x∗(t))
) 1

2
+
(

2Ñ(x(t)− x̂(t))
) 1

2
.

Now we can formulate the main theorem for the interval [0, Tp], which generalizes
Theorem 2.1 in [8].

Theorem 3.5 If the following assumptions are fulfilled:

(A1) α1I ≤ X(t) ≤ α2I, β1I ≤ Σ−1(t) ≤ β2I, α1, α2, β1, β2 > 0,∀t ∈ [0, Tp];

(A2) 1
2

[〈
R−1(t)BT (t)X(t)x(t), BT (t)X(t)x(t)

〉
+
〈
CT (t)Q(t)C(t)x(t), x(t)

〉

8

= −ω̃
(
N(x− x∗) + Ñ(x− x̂)

)
+

1

2

〈
F (t)v(t), X(t)(x(t)− x∗(t))

+Σ−1(t)(x(t)− x̂(t))
〉
− 1

2

〈
w(t),W−1C(t)(x(t)− x̂(t))

〉
.

Consider now only the noise terms:

〈F (t)v(t), X(t)(x(t)− x∗(t))〉+
〈
F (t)v(t),Σ−1(t)(x(t)− x̂(t))

〉

−
〈
w(t),W−1C(t)(x(t)− x̂(t))

〉

≤ √α2‖F (t)‖‖v(t)‖Y (t) +
√
β2‖F (t)‖‖v(t)‖Z(t)

+
1√
β1

‖C(t)‖‖W−1‖‖w(t)‖Z(t)

=
√
α2‖F (t)‖‖v(t)‖

(
2N(x− x∗)

) 1
2

+

(√
β2‖F (t)‖‖v(t)‖+

1√
β1

‖C(t)‖‖W−1‖‖w(t)‖
)(

2Ñ(x− x̂)
) 1

2

≤
(√

α2 + β2‖F (t)‖‖v(t)‖

+
1√
β1

‖C(t)‖‖W−1‖‖w(t)‖
)√

2
(
N(x− x∗) + Ñ(x− x̂)

) 1
2

= 2γ(t)
(
N(x− x∗) + Ñ(x− x̂)

) 1
2
.

So we obtain

E(t)
d

dt
E(t) ≤ −ω̃

(
N(x− x∗) + Ñ(x− x̂)

)
+ γ(t)

(
N(x− x∗) + Ñ(x− x̂)

) 1
2
.

This implies

d

dt
E(t) ≤ E−1(t)


−ω̃

(
N(x− x∗) + Ñ(x− x̂)

)

︸ ︷︷ ︸
=E(t)2

+γ(t)
(
N(x− x∗) + Ñ(x− x̂)

) 1
2

︸ ︷︷ ︸
=E(t)




= −ω̃E(t) + γ(t).

This differential inequality can be solved by variation of constants. The solution
is

E(t) ≤ e−ω̃tE(0) +

t∫

0

e−ω̃(t−s)γ(s) ds ∀t ∈ [0, τ ]. (19)
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we obtain

E(t)
d

dt
E(t) =

1

2

{
h(x(t), x∗(t), x̂(t))

+
〈
F (t)v(t) + r(x(t), x∗(t)), X(t)(x(t)− x∗(t))

〉

+
〈
F (t)v(t) + r(x(t), x∗(t)),Σ−1(t)(x(t)− x̂(t))

〉

−
〈
w(t),W−1C(t)(x(t)− x̂(t))

〉}
.

By using assumption (A2) and multiplying h(x(t), x∗(t), x̂(t)) with −1 this can
be bounded by

h(x(t), x∗(t), x̂(t)) ≤ −ω
(
N(x(t)− x∗(t)) + Ñ(x(t)− x̂(t))

)
.

It follows that

E(t)
d

dt
E(t)

≤ 1

2

[
− ω

(
N(x(t)− x∗(t)) + Ñ(x(t)− x̂(t))

)

+
〈
F (t)v(t) + r(x(t), x∗(t)), X(t)(x(t)− x∗(t)) + Σ−1(t)(x(t)− x̂(t))

〉

−
〈
w(t),W−1C(t)(x(t)− x̂(t))

〉 ]
.

In (18) we estimate the term
〈
r(x(t), x∗(t)), X(t)(x(t)− x∗(t)) + Σ−1(t)(x(t)− x̂(t))

〉
.

By using assumption (A5) we obtain
〈
r(x(t), x∗(t)), X(t)(x(t)− x∗(t)) + Σ−1(t)(x(t)− x̂(t))

〉

≤
(ω

2
− ω̃

)
(Y 2(t) + Z2(t)).

This implies

E(t)
d

dt
E(t) ≤ −ω

2

(
N(x− x∗) + Ñ(x− x̂)

)
+

1

2

(ω
2
− ω̃

)
(Y 2(t) + Z2(t))

+
1

2

〈
F (t)v(t), X(t)(x(t)− x∗(t)) + Σ−1(t)(x(t)− x̂(t))

〉

−1

2

〈
w(t),W−1C(t)(x(t)− x̂(t))

〉

= −ω
2

(
N(x− x∗) + Ñ(x− x̂)

)
+
(ω

2
− ω̃

)(
N(x− x∗) + Ñ(x− x̂)

)

+
1

2

〈
F (t)v(t), X(t)(x(t)− x∗(t)) + Σ−1(t)(x(t)− x̂(t))

〉

−1

2

〈
w(t),W−1C(t)(x(t)− x̂(t))

〉

12

+
〈
W−1C(t)z(t), C(t)z(t)

〉
+
〈
V F T (t)Σ−1(t)z(t), F T (t)Σ−1(t)z(t)

〉]

−
〈
R−1(t)BT (t)X(t)Σ(t)Σ−1(t)z(t), BT (t)X(t)x(t)

〉

≥ ω
(
N(x) + Ñ(z)

)
∀x, z ∈ Rn;

(A3) E(0) ≤ δ
2

on [0, Tp] for some δ > 0;

(A4) ∃ L = constant : ‖r(x, x∗)‖ ≤ L(x− x∗)2[
note: r(x, x∗) = f(x)− f(x∗)− A(t)(x− x∗)

]
;

(A5) ω̃ = ω
2
− Lδ

√
α2+
√
α2+β2

2α1
> 0;

(A6)
t∫

0

e−ω̃(t−s)γ(s) ds < δ
2

∀t ∈ [0, Tp], where

γ(t) =
√

2
2

√
α2 + β2‖F (t)‖ ‖v(t)‖+

√
2

2β1
‖C(t)‖ ‖w(t)‖ ‖W−1‖.

Then

E(t) ≤ e−ω̃tE(0) +

t∫

0

e−ω̃(t−s)γ(s) ds (15)

holds ∀t ∈ [0, Tp].

Remark 3.6 Discussion of the assumptions in Theorem 3.5 in comparison to
the LTI case in [8]:

Assumption (A1) ((2.10) in [8]). Now we have to ensure that the solutions of
the DREs are uniformly bounded by αi > 0, βi > 0, i = 1, 2 on [0, Tp]. Espe-
cially that means that the initial and terminal conditions satisfy X(Tp) = G,
with α1I < G < α2I, and Σ(0) = Σ0, with 1

β2
I < Σ0 <

1
β1
I. Moreover, the

intervals need to be chosen small enough (or α1, β1 small and α2, β2 large
enough) so that the Riccati solutions remain in the prescribed bounds.

Assumption (A2) ((2.11) in [8]). This inequality can be assumed as in the LTI
case but with time dependent matrices and inserted covariance matrices V
and W and noise input matrix F (t).

Assumptions (A3) and (A4) ((2.12) and (2.13) in [8]). These assumptions
can be simplified since we do not need to consider a stationary operating
point.

Assumption (A5) ((2.14) in [8]). We have to adapt ω̃ to our (corrected) ver-
sion of the performance and for the LTV case this parameter has to be
modified.

Assumption (A6) ((2.15) in [8]). We insert the covariance matrices V and W

and the noise input matrix F (t) and we need the factor
√

2
2

for the corrected
version of the performance.
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Proof of Theorem 3.5:
Step 1: Assumption (A3) implies the existence of τ > 0 with E(τ) ≤ δ. Also,

√
α1‖x(t)− x∗(t)‖ ≤ E(t), implies ‖x(t)− x∗(t)‖ ≤ δ√

α1

on [0, τ ]. (16)

Define

Y (t) =
√
〈x(t)− x∗(t), X(t)(x(t)− x∗(t))〉,

Z(t) =
√
〈x(t)− x̂(t),Σ−1(t)(x(t)− x̂(t))〉.

Step 2: If we consider (A3), (A4) we obtain

〈r(x(t), x∗(t)), X(t)(x(t)− x∗(t))〉+
〈
r(x(t), x∗(t)),Σ−1(t)(x(t)− x̂(t))

〉

≤ L‖x(t)− x∗(t)‖
(
Y 2(t) +

√
β2√
α1

Y (t)Z(t)

)
,

since 〈x(t)− x∗(t), X(t)(x(t)− x∗(t))〉 = Y 2(t) and

〈
x(t)− x∗(t),Σ−1(t)(x(t)− x̂(t))

〉

=
〈

Σ−
1
2 (t)X−

1
2 (t)X

1
2 (t)(x(t)− x∗(t)),Σ− 1

2 (t)(x(t)− x̂(t))
〉

≤
√
β2

1√
α1

Y (t)Z(t).

Factoring out 1√
α1

, employing
√
α1 <

√
α2 and (16) yields

〈r(x(t), x∗(t)), X(t)(x(t)− x∗(t))〉+
〈
r(x(t), x∗(t)),Σ−1(t)(x(t)− x̂(t))

〉

≤ L
δ

α1

(√
α2Y

2(t) +
√
β2Y (t)Z(t)

)
. (17)

Now we use the Cauchy inequality with epsilon

ab =
(√

2εa
)( b√

2ε

)
≤

(
√

2εa)2 +
(

b√
2ε

)2

2
= εa2 +

b2

4ε
,

with ε =
√
α2+
√
α2+β2

2
for the second term

√
β2Y (t)Z(t) and we obtain
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〈r(x(t), x∗(t)), X(t)(x(t)− x∗(t))〉+
〈
r(x(t), x∗(t)),Σ−1(t)(x(t)− x̂(t))

〉

≤ L
δ

α1

(√
α2Y

2(t) +
√
β2Y (t)Z(t)

)

≤ L
δ

α1

(√
α2Y

2(t) +
√
β2Y (t)Z(t)

)

≤ L
δ

α1

(
√
α2Y

2(t) +

√
α2 +

√
α2 + β2

2
Z2(t) +

β2

2
(√

α2 +
√
α2 + β2

)Y 2(t)

)

= L
δ

α1

(
√
α2Y

2(t) +

√
α2 +

√
α2 + β2

2
Z2(t) +

β2 + α2 − α2

2
(√

α2 +
√
α2 + β2

)Y 2(t)

)

= L
δ

α1

(
√
α2Y

2(t) +

√
α2 +

√
α2 + β2

2
Z2(t)

+

(√
β2 + α2 −

√
α2

) (√
β2 + α2 +

√
α2

)

2
(√

α2 +
√
α2 + β2

) Y 2(t)

)

= L
δ

α1

(√
α2Y

2(t) +

√
α2 +

√
α2 + β2

2
Z2(t) +

√
β2 + α2 −

√
α2

2
Y 2(t)

)

= L
δ

α1

(√
α2 +

√
α2 + β2

2
(Y 2(t) + Z2(t))

)
for t ∈ [0, τ ]. (18)

Step 3: Consider

E(t)
d

dt
E(t) =

1

2

d

dt

(
E(t)2

)
=

1

2

d

dt

(
N(x(t)− x∗(t)) + Ñ(x(t)− x̂(t))

)
.

(Note again that in [8] the factor 1
2

is missing which is once more in conflict with
their definition of the performance index.)

If we apply Propositions 3.2 and 3.3, rearrange terms and substitute some of the
terms by

h(x(t), x∗(t), x̂(t))

= −1

2

[〈
X(t)B(t)R−1(t)BT (t)X(t)(x(t)− x∗(t)), x(t)− x∗(t)

〉

+
〈
CT (t)Q(t)C(t)(x(t)− x∗(t)), x(t)− x∗(t)

〉]

+
〈
B(t)R−1(t)BT (t)X(t)(x(t)− x̂(t)), X(t)(x(t)− x∗(t))

〉

−1

2

[ 〈
W−1C(t)(x(t)− x̂(t)), C(t)(x(t)− x̂(t))

〉

+
〈
V F T (t)Σ−1(t)(x(t)− x̂(t)), F T (t)Σ−1(t)(x(t)− x̂(t))

〉]
,

11


