
Chemnitz Scientific Computing Preprints – ISSN 1864-0087

Marcus Meyer

Parameter identification problems for

elastic large deformations

–

Part II: numerical solution and results

CSC/09-06

Chemnitz Scientific Computing

Preprints

Impressum:

Chemnitz Scientific Computing Preprints — ISSN 1864-0087

(1995–2005: Preprintreihe des Chemnitzer SFB393)

Herausgeber:
Professuren für
Numerische und Angewandte Mathematik
an der Fakultät für Mathematik
der Technischen Universität Chemnitz

Postanschrift:
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz
Sitz:
Reichenhainer Str. 41, 09126 Chemnitz

http://www.tu-chemnitz.de/mathematik/csc/

26

Chemnitz Scientific Computing

Preprints

Marcus Meyer

Parameter identification problems for

elastic large deformations

–

Part II: numerical solution and results

CSC/09-06

CSC/09-06 ISSN 1864-0087 September 2009

Abstract

In this paper we continue the considerations of [5]. A numerical study
for the parameter identification problem with linear elastic material and
large deformations is presented. We discuss the numerical implementa-
tion and illustrate some results for a 2D test problem.

Contents

1 Introduction 1

2 Model and solution of the inverse problem 1

3 Numerical implementation 3
3.1 Basics in tensor calculus . 3
3.2 Implementation of a two-dimensional model problem 6
3.3 FE discretization . 8
3.4 Implementation of [IP] with MATLAB 13

4 Numerical results 15

5 Future work, ideas and problems 19
5.1 Ideas and open problems . 19
5.2 Concept for an application of adaptive FEM 19
5.3 Application of Gradient methods 22

Author’s addresses:

Marcus Meyer
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz

http://www.tu-chemnitz.de/mathematik/

marcus.meyer@mathematik.tu-chemnitz.de

[6] Schade, H.: Tensoranalysis. (German), Walter de Gruyter, Berlin, New
York, 1997.

[7] Neubauer, A.: Computation of discontinuous solutions of 2D linear ill-posed
integral equations via adaptive grid regularization. J. Inverse Ill-Posed Probl.,
15(1):99-106, 2007.

[8] Scherzer, O.: An iterative multi level algorithm for solving nonlinear ill-posed
problems. Numer. Math. 80, No.4, 579-600, 1998.

[9] The MathWorks, Inc.: Partial Differential Equation ToolboxTM User’s
Guide. MATLAB software documentation, www.mathworks.com, 2009.

[10] Vexler, B.: Adaptive finite element methods for parameter identification
problems. Heidelberg: Universität Heidelberg, Naturwissenschaftlich- Math-
ematische Gesamtfakultät (Dissertation 2004)., 2004.

25

which means, that an additional elliptic PDE has to be solved.

For the discrete problem, the Landweber iteration is formulated as
(
Uk+1

p
k+1

)
=

(
Uk

p
k

)
− β1

(
P T (P Uk − Udata)

0

)

−β2

(
Ã0(Uk, pk)fR
A(Uk)TfR

)
.

with fR solving the linear system

KRfR = A(Uk)− f ,
where KR denotes the stiffness matrix corresponding to the PDE for calculating
fR.

For the sake of completeness, we mention that regularization may be introduced
by an appropriate choice of the termination index for the Landweber iteration or
additional regularization terms in (22).
Remark 5.1. Instead of using the Riesz isomorphism RZ , we could apply any
operatorR : Z∗ → Z, that transforms F2 from the dual space Z∗ into the function
space Z as a preconditioner, such that the search direction (∆U,∆p)T depends
continuously on U and p. Applicable are e.g preconditioners as implemented
in a conjugate gradient method. In our context, the above mentioned Riesz
isomorphism RZ can be seen as a special case of such preconditioners.

References

[1] Braess, D.: Finite elements. Theory, fast solvers and applications in solid
mechanics. Cambridge: Cambridge University Press, 2007.

[2] Görke, U. J.; Bucher, A.; Kreißig, R.: Zur Numerik der inversen Aufgabe
für gemischte (u/p) Formulierungen am Beispiel der nahezu inkompressiblen
Elastizität bei großen Verzerrungen. (German), TU Chemnitz, CSC-preprint
07-07, 2007.

[3] Griesbaum, A.; Kaltenbacher, B.; Vexler, B.: Efficient computation of the
Tikhonov regularization parameter by goal-oriented adaptive discretization.
Inverse Probl., 24(2):Article ID 025025, 20 p, 2008.

[4] Meyer, A.: Grundgleichungen und adaptive Finite-Elemente-Simulation bei
Großen Deformationen. (German), TU Chemnitz, CSC-preprint 07-02, 2007.

[5] Meyer, M.: Parameter identification problems for elastic large deformations
– Part I: model and solution the inverse problem. TU Chemnitz, CSC-
preprint 09-05, 2009.

24

1 Introduction

With this paper we proceed the considerations of [5], where the identification of
material parameters in a large deformation framework was discussed. Now, we
focus on the numerical solution of the inverse identification problem for linear
elastic material. For simplicity, the identification problem was restricted to a 2D
framework.

In this study FEM with uniform meshes was applied for solving the underlying
nonlinear PDE. Due to the large number of necessary forward operator calls
during the identification process, this leads to immense numerical costs. Thus, the
aim of our work is, to present a concept for implementing adaptive FE methods,
which promises a considerable increase of efficiency.

The paper is organized as follows. A survey on the identification problem and
the solution algorithm is presented in section 2. The numerical implementation is
discussed in section 3, where in the first part of section 3 we focus on some basics
in tensor calculus, concerning the calculation of tensor products. The 4th section
is devoted to numerical results for the Cook membrane test problem. Finally, in
the last section an outlook on future work is given. In this context a survey on the
implementation of adaptive FEM within the identification procedure is presented
and emerging problems and ideas in the concept of adaptivity are discussed.

2 Model and solution of the inverse problem

We shortly sketch the model of the identification problem [IP] with linear elastic
material. See [5] for an extensive discussion of details. We also refer to [5] for an
explanation of the used notation.

The forward problem consist of finding a displacement U as a solution of the
variational problem

∫

Ω0

2

T : E(U ;V)dΩ0 =

∫

Ω0

ρ0
~f · V dΩ0 +

∫

ΓN0

~g · V dS0 ∀V ∈ (H1
0 (Ω0))3 . (1)

For the linear elastic material law, the 2nd Piola-Kirchhoff stress tensor is definded
as

2

T = 2µE(U) + λ((tr E(U))I) = C : E(U) (2)

with a 4th-order material tensor C = C(λ, µ). Hence, the material parameter to
be identified is

p(X) := (λ(X), µ(X)), X ∈ Ω0 .

For simplicity we omit volume forces (~f = 0) and rewrite (1) as

a(U ;V |p) = f(V) ∀V ∈ Z = (H1
0 (Ω0))3 (3)

with the functionals

a(U ;V |p) :=

∫

Ω0

2

T : E(U ;V)dΩ0 (4)

and

f(V) =

∫

ΓN0

~g · V dS0 . (5)

Due to the nonlinearity of a(U ;V |p) in U , the problem (3) is nonlinear and has to
be solved with a Newton linearization (see [5, algorithm 2.1]). The linearization
of a(U ;V |p) for linear elasticity holds

a0(U ;W,V |p) :=

∫

Ω0

[
E(U ;W) : C(p) : E(U ;V)+

(
2

T (U) ·GradW

)
: GradV

]
dΩ0 .

(6)
Note, that a(U ;V |p) is linear in p. The inverse problem [IP] of finding p for given
displacement data Udata can be solved via an SQP iteration [5, algorithm 3.1]. At
this, in each iteration the SQP update for a given iterate (Uk, pk, ξk) is defined as

Uk+1 = Uk + ∆U, pk+1 = pk + ∆p, ξk+1 = ξ

with an iteration update (∆U,∆p) solving the linearized system

αkbp(∆p, q) + a0(Uk; ∆U, ξk|q) + a(Uk; ξ|q) = αkbp(q, p
∗
k) ∀q ∈ Q

a0(Uk; ξk, V |∆p) + bU(∆U, V) ∀V ∈ Z
+a1(Uk; ∆U, ξk, V |pk) + a0(Uk; ξ, V |pk) = 〈Udata − PUk,PV 〉L2(Ω0) (7)

a(Uk;W |∆p) + a0(Uk; ∆U,W |pk) = f(W)− a(Uk;W |pk) ∀W ∈ Z

In this context the second order linearization of a(U ;V |p) is introduced as

a1(U ; ∆U ;W,V |p) :=

∫

Ω0

[(
(E(U ; ∆U) : C) ·GradW

)
: GradV

+
(
(E(U ;W) : C) ·GradV

)
: Grad∆U (8)

+
(
(E(U ;V) : C) ·Grad∆U

)
: GradW

]
dΩ0 .

2

with the operators
[F ′1(Uk, pk)]∗ : (L2(Ω0))3 → Z ×Q

and
[(RZF2(Uk, pk))′]∗ : Z → Z ×Q

denoting the (Hilbert space) adjoint derivatives of F1(U, p) and RZF2(U, p) at
the iterate (Uk, pk). The directional derivatives

[F ′1(U, p)](∆U,∆p) and [(RZF2(U, p))′](∆U,∆p)

are given in weak form as

〈[F ′1(U, p)](∆U,∆p), V 〉(L2(Ω0))3 = 〈P∆U,PV 〉(L2(Ω0))3 ∀V ∈ Z
〈[(RZF2(U, p))′](∆U,∆p), V 〉Z = a0(U ; ∆U, V |p) + a(U ;V |∆p) ∀V ∈ Z .

Hence we derive, that the adjoint derivatives hold

〈[F ′1(U, p)](W, q), V 〉(L2(Ω0))3 = 〈(W, q), [F ′1(U, p)]∗V 〉(L2(Ω0))3×(L2(Ω0))3

= 〈W,P∗PV 〉(L2(Ω0))3 + 〈q, 0V 〉(L2(Ω0))3

〈[(RZF2(U, p))′](W, q), V 〉Z = 〈(W, q), [(RZF2(U, p))′]∗V 〉Z×(L2(Ω0))3

= a0(U ;W,V |p) + a(U ;V |q)

for all V,W ∈ Z, q ∈ Q. Thus, by setting V := RZF2(Uk, pk) and renaming
W as V in the last equation, the Landweber iteration (23) is written in weak
formulation as
(
〈Uk+1, V 〉(L2(Ω0))3

〈pk+1, q〉(L2(Ω0))3

)
=

(
〈Uk, V 〉(L2(Ω0))3

〈pk, q〉(L2(Ω0))3

)

−β1

(
〈P∗PP∗(P(Uk)− Udata), V 〉(L2(Ω0))3

0

)

−β2

(
a0(Uk;RZF2(Uk, pk), V |pk)
a(Uk;RZF2(Uk, pk)|q))

)
∀V ∈ Z, q ∈ Q .

Note, that the convergence of the iteration can be accelerated by an appropriate
step size control, which we omitted here.

Due to the above results, we have to calculate fR := RZF2(Uk, pk) ∈ Z. With

〈F2(Uk, pk), V 〉Z∗,Z = 〈fR, V 〉Z =

∫

Ω0

(fR · V + Grad fR ·GradV)dΩ0

we derive, that fR denotes the solution of the variational problem
∫

Ω0

(fR · V + Grad fR ·GradV)dΩ0 = a(Uk;V |pk)− f(V) ∀V ∈ Z ,

23

5.3 Application of Gradient methods

The introduced SQP algorithm for the solution of [IP] converges fast, but one
drawback is, that each SQP iteration step is expensive, in particular due to the
explicit computation of the (large dimensioned) system matrix in (18). Thus,
for nontrivial FEM problems (with usually > 105 elements) troubles could arise
because of memory overflow or exploding CPU times for solving (18). One idea to
overcome such problems is the application of gradient methods (e.g. Landweber
iteration) with an appropriate step size control. Compared with SQP iterations
such methods have a slower convergence but cheaper iteration steps.

We discuss an ansatz for a gradient method solution of [IP]. Let in this context
[IP] be given as finding a solution of the operator equation

F (U, p) :=

(
F1(U, p)
F2(U, p)

)
=

(
0
0

)
(21)

where the operator F : (H1(Ω0))3 ×Q→ Z∗ × Z∗ is given in weak form as

〈F1(U, p), V 〉(L2(Ω0))3 = 〈PU − Udata,PV 〉(L2(Ω0))3 ∀V ∈ Z
〈F2(U, p), V 〉Z∗,Z = 〈RZF2(U, p), V 〉Z = a(U ;V |p)− f(V) ∀V ∈ Z .

Note, that in the last equation we have to consider F1(U, p) and F2(U, p) as
elements of the dual space Z∗. Despite this, in the case of F1(U, p) we are able
to identify F1(U, p) = P∗(PU − Udata) ∈ (L2(Ω0))3 due to the above definition,
and therefore the standard scalar product in (L2(Ω0))3 can be applied. This will
not work for F2(U, p), which is not an element of (L2(Ω0))3. Thus, we have to
introduce the corresponding Riesz isomorphism

RZ : Z∗ → Z .

Then 〈·, ·〉Z denotes the standard scalar product in the Hilbert space Z = (H1
0 (Ω0))3

and
‖F2(U, p)‖Z∗ = ‖RZF2(U, p)‖Z

holds. A solution of (21) can be found by a least squares minimization

1

2

(
β1‖F1(U, p)− 0‖2

(L2(Ω0))3 + β2‖RZF2(U, p)− 0‖2
Z

)
→ min

U,p
(22)

with weights β1 and β2. Consequently, a gradient method for finding a minimizer
of (22) is e.g. the Landweber iteration

(
Uk+1

pk+1

)
−
(
Uk

pk

)
= −β1[F ′1(Uk, pk)]∗(F1(Uk, pk)) (23)

−β2[(RZF2(Uk, pk))′]∗(RZF2(Uk, pk))

22

3 Numerical implementation

3.1 Basics in tensor calculus

In the following we sketch the calculation of tensor products in orthonormal
bases. See [6] for details on tensor analysis. Note, that for a FEM discretization
of (1) the tensor coordinates have to be implemented w.r.t. a fixed basis in the
domain Ω0. Due to the considerations of [4], it is allowed w.l.o.g. to introduce
an orthonormal tensor basis in Ω0.

For a clear notation, we sign in this section an nth order tensor by n times
underlining. In the further sections the underlining is omitted. Additionally we
assume, that Einstein’s summation convention holds
Definition 3.1 (Einstein’s summation convention). If an index variable appears
twice in a monomial (single term), then we have to sum over all possible values
for this index.

E. g. let i = 1, . . . , d with d denoting the dimension of the Euclidian space
X = Rd. Then the standard scalar product of two vectors in X can be written as

aibi :=
d∑

i=1

aibi = a1b1 + . . .+ adbd = 〈a, b〉Rd .

A Tensor A of k-th order is defined as

A(X) = ai1,...,ik(X)ei1 . . . eik

with coordinates ai1,...,ik(X) ∈ R, X ∈ X and the k-fold tensor product of basis
vectors ei1 . . . eik , i1, . . . , ik ∈ {1, . . . , dimX}, denoting a tensor basis for tensors
of k-th order. According to (1) we assume in the following an underlying 3-
dimensional Euclidian space X = R3 ⊃ Ω0 with an orthonormal basis e1, e2, e3.

We define tensor products, in particular the contraction of tensors. Let A,B
denote tensors of second order. The double contraction of these tensors is defined
as

A : B = D with D = aijbji =
3∑

i,j=1

aijbji .

The tensor D is a tensor of zero order, i.e. scalar. Using the coordinates of A and
B, the double contraction of two second order tensors can be written in matrix
form as

aijbji =




a11

a12

a13




T 


b11

b21

b31


+




a21

a22

a23




T 


b12

b22

b32


+




a31

a32

a33




T 


b13

b23

b33


 .

3

Analogously, the double contraction of a second order and a fourth order tensor
holds

A : C = D with dkl = aijcjikl =
3∑

i,j=1

aijcjikl ,

where D is a second order tensor with coordinates dkl. Finally we consider two
cases of single contraction of tensors. At one hand the contraction of tensors of
second and first order is defined via

A ·B = D with di = aijbj =
3∑

j=1

aijbj

with a first order tensor D with coordinates




d1

d2

d3


 :=




a11 a12 a13

a21 a22 a23

a31 a32 a33






b1

b2

b3


 .

At the other hand the contraction of two first order tensors holds

A ·B = D with D = ajbj =
3∑

j=1

ajbj .

From now on we omit the underlining of tensors. Note, that in the following
considerations underlined variables will denote vectors and matrices.

We discuss specific tensors arising in [IP]. The strain tensor E(U) and its Fréchet
derivative E(U ;V) were introduced as

2E(U) = GradU + GradUT + GradU ·GradUT

2E(U ;V) = GradV + GradV T + GradU ·GradV T + GradV ·GradUT

with the second order tensors

Grad U(X) =
∂Uj(X)

∂Xi

~ei~ej

and

Grad U(X) · Grad V (X)T =
∂Uj(X)

∂Xi

∂Vj(X)

∂Xk

~ei~ek .

Thus, E(U) and E(U ;V) are symmetric second order tensors and for the coor-
dinates of D = Grad U ·Grad V T holds the relation

dij = 〈U,i, V,j〉R3 = UT
,i V,j, i, j = 1, 2, 3 ,

4

START set k = l := 0 and define a coarse initial mesh T 0

choose initial guess p0
0

and set ξ0

0
:= 0

calculate values U0
0 = U(p0

0
) at nodes of T 0:

[U0
0, f

0, P 0, T 0] := FEtool(p
0
, T 0, errU)

REPEAT

REPEAT

SQP ITERATION
assemble matrices:

[A(Uk), A0(Uk, ξk), Ã0(Uk, pk), Ã1(Uk, ξk, pk), Ql, K l, P l, T l]

:= FEtool(U l
k, ξ

l

k
, pl

k
, T l)

calculate a solution ∆U,∆p, ξl of (18)

update U l
k+1 := U l

k + ∆U , pl
k+1

:= pl
k

+ ∆p, ξl
k+1

:= ξl

k := k + 1

UNTIL stopping rule of SQP iteration fulfilled

estimate error of pl
k

and create refined meshT l+1:

[U l+1
k , ξl+1

k
, pl+1

k
, f l+1, P l+1, T l+1] := FEtool(U l

0, ξ
l

0
, pl

0
, T l, errp)

l := l + 1 and k := 0

UNTIL T l = T l−1

Note, that the solution of (18) is calculated w.r.t. the homogeneous Dirichlet
boundary conditions. Additionally we mention, that in algorithm 5.1 the com-
plete SQP iteration is executed before some mesh refinement is done, which seems
to be inefficient. A quite ’natural’ modification would be, to refine the mesh w.r.t.
errp within the SQP iteration, which might influence the convergence of the SQP
iteration.

The algorithm 5.1 is easy to implement in MATLAB, if an arbitrary (extern)
FEtool is available with the explained properties. Applicable FE packages and
options for the communication with MATLAB are e.g.:

• adaptive FE code SPC (FORTRAN based): link of MATLAB and SPC via
MATLAB meshfiles or a master-slave communication

• COMSOL FE software: the package is basing on MATLAB and assessable
from MATLAB

Besides an improvement of efficiency, we expect a higher accuracy of the iden-
tification results, if a well-developed extern adaptive FE code is used for the
identification algorithm. The results in this study are disturbed by the limited
skills of the MATLAB PDE-toolbox and therefore the presented results with more
than 10% error even for noiseless data may be improved in future.

21

strategy is suggested, where [IP] is solved for a coarse discretization and then for
the corresponding discrete solution pT ∈ Q(2np) an error functional

e(pT − p)

is estimated, which measures the discrepancy between pT and the (unknown)
exact p. Then these error estimation w.r.t. p is used for adaptive mesh refine-
ment and the solution of [IP] is reiterated until a stopping criterion for e(pT − p)
is fulfilled. See [10] for details on the implementation of such error estimators.
Note, that the author additionally suggests error estimators, which measure si-
multaneously the discretization errors in U and p.

Consequently, an existing FE code for the solution of the forward problem can
also be used for adaptive mesh refinement in the inverse problem [IP], if the
error estimator is modified appropriately. Depending on the ’quantity of interest’
in the underlying inverse problem, several error estimating strategies may be
applicable. E.g. in [3] the authors mention a couple of so called goal-oriented
error estimators. Another concept of adaptive parameter identification is given by
the adaptive grid regularization discussed in [7]. In this context we also mention
multilevel methods as presented e.g. in [8]. Such methods start the parameter
identification at a coarse discretization level and during an iteration the mesh is
refined. Contrary to classical adaptive FEM strategies, here the discretization
level is used as a regularization parameter and consequently the discretization is
chosen such that optimal regularizing properties are reached.

Referring to the discussion above we present an algorithmic scheme for the solu-
tion of [IP] with adaptive mesh refinement. In this context we assume, that an
adaptive PDE solver FEtool is available with the following properties:

• FEtool knows geometry, boundary conditions, material law, a(U ;V |p),
a0(U ;W,V |p), and a1(U ; ∆U,W, V |p)

• for given initial mesh and parameter p, FEtool calculates U = U(p), where
adaptivity is controlled with an error estimator errU for e(UT − U)

• for given mesh, U , and p, FEtool is able to estimate the error e(pT − p)
with an error estimator errp and to refine the mesh w.r.t. errp

• furthermore, for given mesh, U , and p, all matrices and vectors needed for
the implementation of (18) should be available as output of FEtool

Under this assumption we derive an algorithmic scheme for the adptive solution
of [IP].
Algorithm 5.1. Adaptive FEM identification algorithm according to [5, algo-
rithm 3.1]:

20

where

U,i :=

(
∂U1

∂Xi

,
∂U2

∂Xi

,
∂U3

∂Xi

)T

denotes the partial derivative of U w.r.t. Xi. The coordinates of E(U) and
E(U ;V) are calculated via

2e(U)ij =
∂Uj

∂Xi

+
∂Ui

∂Xj

+
∂Uk

∂Xi

∂Uk

∂Xj

= Uj,i + Ui,j + UT
,i U,j (9)

and

2e(U ;V)ij =
∂Vj
∂Xi

+
∂Vi
∂Xj

+
∂Uk

∂Xi

∂Vk
∂Xj

+
∂Vk
∂Xi

∂Uk

∂Xj

(10)

= Vj,i + Vi,j + UT
,i V,j + V T

,i U,j .

We shortly discuss, how to define the fourth order material tensor C := C(λ, µ)

appropriately. We derive from (2), that at one hand the coordinates of
2

T are
expressed in terms of C as

2
tij = cijkle(U)lk

and otherwise they have to fulfill

2
t11 = 2µe(U)11 + λ [e(U)11 + e(U)22 + e(U)33] =

3∑

k,l=1

c11kle(U)lk

⇒ c1111 = 2µ+ λ, c1122 = c1133 = λ, c11kl = 0 ∀k 6= l

2
t12 = 2µe(U)12 =

3∑

k,l=1

c12kle(U)lk

⇒ c1221 = 2µ, c12kl = 0 otherwise

. . . ,

which defines C. Additionally we mention, that in [5] the definition (2) of the
2nd Piola Kirchhoff tensor was derived as

2

T = 2
∂Ψ

∂G
.

If an orthonormal tensor basis is introduced, this is equivalent to

2

T = 2
∂Ψ

∂G
= 2

(
∂Ψ(G)

∂gij

)
~ei~ej ,

which means, that the coordinates of
2

T are derivatives of Ψ w.r.t. the coordinates
of G.

5

Concluding this section, we discuss, how the the variational problem (1) can be
formulated in terms of the tensor coordinates. We introduce the vectors

E(U) :=




e(U)11

e(U)22

e(U)33

2e(U)12

2e(U)13

2e(U)23




=




U1,1 + 1
2
UT
,1U,1

U2,2 + 1
2
UT
,2U,2

U3,3 + 1
2
UT
,3U,3

U1,2 + U2,1 + UT
,1U,2

U1,3 + U3,1 + UT
,1U,3

U2,3 + U3,2 + UT
,2U,3




(11)

and

E(U ;V) :=




e(U ;V)11

e(U ;V)22

e(U ;V)33

2e(U ;V)12

2e(U ;V)13

2e(U ;V)23




=




V1,1 + 1
2
UT
,1V,1

V2,2 + 1
2
UT
,2V,2

V3,3 + 1
2
UT
,3V,3

V1,2 + V2,1 + UT
,1V,2 + UT

,2V,1
V1,3 + V3,1 + UT

,1V,3 + UT
,3V,1

V2,3 + V3,2 + UT
,2V,3 + UT

,3V,2




, (12)

referring to the coordinates of E(U) and E(U ;V). Additionally we define the
matrix

C :=




2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




, (13)

which contains the coordinates of the tensor C. Then the semilinear functional
a(U ;V |p) holds

a(U ;V |p) =

∫

Ω0

E(U)TCE(U ;V)dΩ0 , (14)

if we assume, that an underlying orthonormal tensor basis is fixed. Note, that
analogously the functionals a0(U ;W,V |p) and a1(U ; ∆U,W, V |p) can be written
in terms of the tensor coordinates. We omit details here, due to the fact, that this
results in extensive but straight forward calculations with tensor contractions in
coordinate form as introduced at the beginning of this section.

3.2 Implementation of a two-dimensional model problem

In order to simplify the numerical calculations, we want to introduce a model
problem, which can be reduced from a three-dimensional domain Ω0 ⊂ R3 to a
two-dimensional domain Ω0 ⊂ R2.

6

5 Future work, ideas and problems

5.1 Ideas and open problems

Following from the studies above, there are a lot of open questions:

• identification of parameters with multiple displacement measurements, e.g.
the load-displacement curve w.r.t. the stepwise applied load is given, which
refers to knowledge of the Dirichlet-to-Neumann map and should improve
the solution

• numerical studies on the influence of noisy data and experimental design
on the identification results

• simultaneous identification of heterogenous material parameters

• studies on the identifiability of parameters for nonlinear material laws (for
’real’ large deformations it is expected, that the linear elasticity model may
not be applicable and will lead to useless numerical results)

• identification of discontinuous parameter functions

• optimal choice of the weights ϑi, ωi and the regularization parameter αi

• solution of 3D identification problems

• identification of material parameters with experimental data

Furthermore, the question, if an implementation of different discretizations for U
and p (such that T 6= T2) may be appropriate, could be discussed.

5.2 Concept for an application of adaptive FEM

The solution of [IP] via (18) involves the numerical costs of a number of forward
operator calculations. From this reason the repeated calls of a PDE solver should
be as efficient as possible, e.g. by using adaptive FEM. The basic principle of
adaptive FEM for the forward operator calculation with given p is, that an error
estimator is implemented in the FEM solver, which estimates for each triangle in
T an appropriately chosen error functional

e(UT − U) .

Here UT ∈ V(2nU)
D denotes the discrete solution of (1) and U corresponds to the

(unknown) exact solution.

For the solution of the inverse problem [IP] the adaptivity has to be modified
slightly, due to the fact that now the error in p is of interest. E.g. in [10] a

19

]elem. boundary ω ϑ regul. α λ0]iter. ident.
condition method error

484 (20), Uload = 2 1 10−5 Tikh. 10−7 110 5 11.6411%
1936 (20), Uload = 2 1 10−5 Tikh. 10−7 110 5 10.4609%
1936 (20), Uload = 2 1 0 Tikh. 10−7 110 5 10.5917%
484 (20), Uload = 2 1 0 Tikh. 10−7 150 4 17.1042%
484 (20), Uload = 2 1 0 Lev.-Mar. 10−7 110 15 12.5976%
484 (20), Uload = 2 1 10−4 Lev.-Mar. 10−7 110 15 15.0586%
484 (19), Fload = 16 1 0 Tikh. 10−7 110 4 21.2502%
484 (19), Fload = 16 1 0 Tikh. 10−7 150 5 18.7010%

1936 (19), Fload = 16 1 0 Tikh. 10−7 150 5 19.2354%

Table 1: Identification of λ, full displacement data measurement Udata

toolbox. Thus, a more detailed study requires an improved and more accurate
solution of the forward problem. See section 5.2 for a discussion of adaptive FE
software.

]elem. boundary ω ϑ regul. α λ0]iter. ident.
condition method error

484 (20), Uload = 2 1 0 Tikh. 10−7 110 7 19.0781%
484 (20), Uload = 2 1 10−5 Tikh. 10−7 110 7 18.6737%
484 (20), Uload = 2 1 10−4 Tikh. 10−7 110 7 17.0270%

1936 (20), Uload = 2 1 10−4 Tikh. 10−7 110 6 17.8963%

Table 2: Identification of λ, displacement data Udata measured at Γ4

Concluding this study, we verify by the results of table 4, that a restriction of
available data increases the identification error.

18

@
@@
@

@@
@

@@
@

@@
@

@@
@

@@
@

@@
@

@@
@

@@

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,,

u
(0, 0)

u
(0, 44)
��
��
��

��
��
��
��

��
��
���

u
(48, 44)

u
(48, 60)

-

6

�
���

?

X1

X2

X3

~g

Ω0

Γ1
Γ2

Γ3

Γ4

Figure 1: 2D Cook membrane

In our study we focus on the Cook membrane test problem which is widely used
in numerical studies on structural mechanics (see e.g [2]). As displayed in figure
1, the geometry of the Cook membrane is given as a trapezoidal profile which is
constant in X3-direction. Thus

Ω3D
0 = Ω0 × [0, d], Ω0 ⊂ R2

holds with a thickness d of the membrane. We assume, that the load ~g is constant
w.r.t. X3 and hence the deformation of the membrane is constant over X3 as well,
i. e.

U = U(X1, X2) ⇒ U3 ≡ 0, Ui,j ≡ 0 if i = 3 or j = 3 . (15)

Consequently, if the test functions V fulfill (15), the vectors E(U) and E(U ;V)
and the matrix C can be simplified by removing rows and columns, which refer
to X3. Due to the fact, that E(U)TCE(U ;V) is not depending on X3 we derive
under the assumption (15) that

a(U ;V |p) = d

∫

Ω0

E(U)TCE(U ;V)dΩ0 Ω0 ⊂ R2

7

holds. Finally, in (1) the thickness d can be canceled and the variational prob-
lem is two-dimensional. In an analogous way, the functionals a0(U ;W,V |p) and
a1(U ; ∆U,W, V |p) can be simplified. Note, that despite the independence of X3

the stress tensor C : E(U) denotes a three-dimensional stress tensor.

3.3 FE discretization

We consider a discretization of [IP]. For simplicity we assume the two-dimensional
situation with (15). Let a triangulation T of Ω0 ⊂ R2 be given with nU nodes
τi , i = 1, . . . , nU , and FE ansatz functions ϕ1, . . . , ϕnU

, such that ϕ(τj) = δij , 1 ≤
i, j ≤ nU . Here, δij denotes the Kronecker symbol

δij =

{
1, i = j;
0, i 6= j.

We define the FE space

V(2nU) := [span{ϕ1, . . . , ϕnU
}]2

as a finite dimensional subspace of Z = (H1(Ω0))2. Additionally we introduce

subspaces V(2nU)
D and V(2nU)

0 of V(2nU), which fulfill the corresponding inhomoge-
neous and homogeneous Dirichlet boundary conditions at ΓD0 . Then an approx-
imation of U is given as

U ≈
(

nU∑

i=1

U
(i)
1 ϕi ,

nU∑

i=1

U
(i)
2 ϕi

)T

∈ V(2nU)
D ,

Thus, in the discretized context we identify U with the vector

U := (U
(1)
1 , . . . , U

(nU)
1 , U

(1)
2 , . . . , U

(nU)
2)T ∈ R2nU .

Analogously we discretize the parameter p with ansatz functions ψi, , i = 1, . . . , np

p ≈
(

np∑

i=1

λ(i)ψi ,

np∑

i=1

µ(i)ψi

)T

∈ Q(2np)

with Q(2np) = [span{ψ1, . . . , ψnp}]2 as a subspace of Q = [L∞(Ω0)]2. Let e. g. the
ψi refer to a triangulation T2, where T is a refinement of T2 or vice versa. In a
simple ansatz we may choose T = T2. Finally we identify p with

p := (λ(1), . . . , λ(np), µ(1), . . . , µ(np))T ∈ R2np .

8

The relative identification error is calculated as
∥∥λK0

− λ†
∥∥

∥∥λ†
∥∥ .

Here we used the standard Euclidian vector norms.

0

50

0

50

100
100

150

200

Exact parameter λ=100(1+x/50*y/60)

 100

120

140

160

180

0

50

0

50

100
50

100

150

200

Identified parameter λend

 100

110

120

130

140

150

160

170

0

50

0

50

100
100

150

200

250

µ=80(2−x2/2500+y/60)

150

160

170

180

190

200

210

220

0

50

0

50

100
100

150

200

250

µend=µ

 150

160

170

180

190

200

210

Figure 3: Identification of parameter λ with Tikhonov regularization, identifica-
tion error ≈ 11.6%

An example for the solution of [IP] is given in figure 3. See table 4 for a concluding
survey of detailed results. Here, the displacement data was given as the whole
displacement field, i.e. P was set as the identity matrix. In table 4 results for
the identification of λ with restricted data are presented.

As table 4 shows, the experimental design influences the quality of the results
considerably. The identification error for boundary condition (19) is almost two
times larger than for boundary condition (20). In the case of boundary condition
(20) the additional force measurement can be applied by choosing ϑ > 0, which
improves the results slightly. As usual for identification problems, the choice of
the initial guess influences the results as well. We mention, that all results are
corrupted by numerical errors, due to the limited skills of the MATLAB PDE

17

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

55

60

65

deformed mesh

undeformed mesh

Figure 2: Solution of the direct problem: deformed and undeformed mesh of 2D
test problem Cook-Membrane with boundary condition (20)

For solving [IP] via the SQP iteration algorithm (18), we introduce lower and
upper bounds for the box conditions as

Cl = 100 = const and Cu = 200 = const

and set the initial guess

p0 = λ0 = const with 100 ≤ λ0 ≤ 200 .

The SQP iteration is terminated at iteration K0, if the relative residual norm and
the relative norm of the parameter update ∆λ are smaller than given tolerances,
in particular i.e.

∥∥P UK0
− Udata

∥∥
‖Udata‖

≤ tolres = 10−3 and
‖∆λ‖∥∥λK0

∥∥ ≤ tolp = 10−5 .

16

According to (7), we introduce matrices and vectors referring to the functionals
bp(p, q), bU(U, V), a(U ;V |p), a0(U ;W,V |p), a1(U ; ∆U,W, V |p), and f(V). Let

ϕ̃i :=

(
ϕi

0

)
, ϕ̃i+nU

:=

(
0
ϕi

)
, 1 ≤ i ≤ nU

as well as

ψ̃i := ψi, ψ̃i+np := ψi, 1 ≤ i ≤ np .

We define the matrices

Q = (qij) ∈ R2np×2np : qij :=

∫

Ω0

ψ̃iψ̃j dΩ0

K = (kij) ∈ R2nU×2nU : kij :=

∫

Ω0

ϕ̃iϕ̃j dΩ0

A(U) = (aij) ∈ R2nU×2np : aij := a(U ; ϕ̃i|ψ̃j)

Ak
0(U) = (akij) ∈ R2nU×2nU : akij := a0(U ; ϕ̃i, ϕ̃j|ψ̃k), k = 1, . . . , 2np

Ak
1(U, p) = (âkij) ∈ R2nU×2nU : âkij := a1(U ; ϕ̃i, ϕ̃k, ϕ̃j|p), k = 1, . . . , 2nU

and the vector

f := (f(ϕ̃1), . . . , f(ϕ̃2nU
))T ∈ R2nU .

Additionally, in the discrete sense, the linear projection operator P picks the
displacement data Udata ∈ Rndata from U , where we bear in mind, that the ndata

measuring points denote nodes of the mesh T . Hence, it refers to the matrix

P := (pij) ∈ R2ndata×2nU with

{
pij = p(i+ndata)(j+nU) := 1, if the ith measuring point is the jth node in T

pij := 0, otherwise .

Consequently, we derive for the terms arising in (7) the following discretizations

bp(∆p, q) ∀q ⇒ Q∆p

bU(∆U, V) ∀V ⇒ P TP K∆U

as well as

a(Uk;W |∆p) ∀W ⇒ A(Uk)∆p

a(Uk; ξ|q) ∀q ⇒ A(Uk)T ξ .

9

For the terms including first and second order linearizations of a(U ;V |p) we
deduce

a0(Uk; ∆U,W |pk) ∀W ⇒
(

2np∑

l=1

(p
k
)lA

l
0(Uk)

)

︸ ︷︷ ︸
=: Ã0(Uk, pk)

∆U

a0(Uk; ξ, V |pk) ∀V ⇒ Ã0(Uk, pk)ξ = Ã0(Uk, pk)T ξ (Ã0(Uk, pk) is symm.)

a0(Uk; ξk, V |∆p) ∀V ⇒
2np∑

l=1

(∆p)la0(Uk; ξk, V |ψ̃l) ∀V

⇒
2np∑

l=1

(∆p)lA
l
0(Uk) ξ

k
= (A1

0(Uk)ξ
k
, . . . , A

2np

0 (Uk)ξ
k
)

︸ ︷︷ ︸
=: A0(Uk, ξk)

∆p

a0(Uk; ∆U, ξk|q) ∀q ⇒




2nU∑
i,j=1

(∆U)i(ξk)j a0(Uk; ϕ̃i, ϕ̃j|ψ̃1)

...
2nU∑
i,j=1

(∆U)i(ξk)j a0(Uk; ϕ̃i, ϕ̃j|ψ̃2np)




⇒




(A1
0(Uk)ξ

k
)T

...

(A
2np

0 (Uk)ξ
k
)T




︸ ︷︷ ︸
= A0(Uk, ξk)T

∆U

and

a1(Uk; ∆U, ξk, V |pk) ∀V ⇒
(

2nU∑

l=1

(ξ
k
)lA

l
1(Uk, pk)

)

︸ ︷︷ ︸
=: Ã1(Uk, ξk, pk)

∆U .

Remark 3.1. The matrix Ã0(Uk, pk) can be calculated directly without any

summation of Al
0(Uk) via

Ã0(Uk, pk) = (āij) ∈ R2nU×2nU : ākij := a0(U ; ϕ̃i, ϕ̃j|pk) ,

which may be more efficient than the summed definition. But despite this, it
might be practicable to apply the summed definition due to the fact, that the
Al

0(Uk) have to be calculated anyway. The same holds for Ã1(Uk, ξk, pk).

10

4 Numerical results

Throughout the numerical study presented in this section we assume the following
framework:

• discretization with uniform meshes

• dicretization of U and p referring to equivalent triangulations T = T2

• [IP] is restricted to the estimation of λ for a known µ (remove rows and
columns referring to µ in the linear system (18))

• noiseless data Udata

• single measurements ndata = 1

Referring to the domain Ω0 ⊂ R2 as defined in figure 1 the boundary conditions
are applied as





U = 0, on Γ1

~n0 ·
1

T (U) = 0, on Γ2 ∪ Γ4

~n0 ·
1

T (U) = ~g = (0,− 1
16
Fload)

T , on Γ3

(19)

with Γ1 = ΓD0 , Γ2 ∪ Γ3 ∪ Γ4 = ΓN0 and





U = 0, on Γ1

~n0 ·
1

T (U) = 0, on Γ2 ∪ Γ4

U = (−Uload, 0)T , on Γ3

(20)

with Γ1 = ΓD0 , Γ4 = Γ̃D0 , Γ2 ∪ Γ3 = ΓN0 . The exact parameter functions are set
as

λ† := 100

(
1 +

X1

50

X2

60

)
and µ† := 80

(
2− X2

1

2500
+
X2

60

)
.

If all lengths are given in mm and the units of Fload, λ, µ are scaled as kN/mm2,
then the above defined parameters are similar to a steel material. In this context,
integrating the load ~g in the Neumann boundary condition over Γ3 will result in
a force load Fload with unit kN .

The displacement data Udata is simulated as the solution of the forward problem
(16) with a triangulation T consisting of 30976 elements (nU = np = 15737).
Here, for the incremental applying of loads, the time t is subdivided in 10 load
steps ∆t = 0.1. In order to avoid inverse crime, [IP] is solved at coarser dis-
cretization levels, namely with T consisting of 484 or 1936 elements. See figure
2 for an example of the solution of the direct problem with boundary condition
(20).

15

appropriate choice of ansatz functions and calculation of stiffness matrices are
presented e.g. in [1], [4], or [9] .

We discuss some facts of the MATLAB implementation. The matrices assembled
for (18) are in general sparse matrices and therefor MATLAB provides the sparse
function, which creates sparse matrices. Hence, an efficient storage of the system
matrix in (18) is possible, if all submatrices are defined as sparse.

The PDE or the variational problem (14), resp., refer to an elliptic system (of
order 2 in the 2D case). Those systems are implemented in MATLAB with a
fourth order tensor C = C(U, λ, µ) such that the main part of the elliptic system
is written as

−∇ · (C⊗∇U) .

Consequently, for Ω0 ⊂ R2 from integrating by parts of

−
∫

Ω0

(∇ · (C⊗∇U))V dΩ0

follows the equivalence

a(U ;V |p) =

∫

Ω0

E(U)TCE(U ;V)dΩ0

=

∫

Ω0

(
V1,1

V1,2

)T [(
ĉ1111 ĉ1112

ĉ1121 ĉ1122

)(
U1,1

U1,2

)
+

(
ĉ1211 ĉ1212

ĉ1221 ĉ1222

)(
U2,1

U2,2

)]

+

(
V2,1

V2,2

)T [(
ĉ2111 ĉ2112

ĉ2121 ĉ2122

)(
U1,1

U1,2

)
+

(
ĉ2211 ĉ2212

ĉ2221 ĉ2222

)(
U2,1

U2,2

)]
dΩ0 .

Here, the scalars ĉijkl denote the coordinates of C and thus the tensor C is defined
by the last equation. See [9, chapter 3] for details.

Furthermore, the following MATLAB functions were used:

• decsg for defining the geometry Ω0

• boundary conditions defined as explained in assemb

• assemble stiffness matrices with assema

• calculate a solution of a PDE with assempde

For details we refer to [9].

14

Remark 3.2. The solution of the nonlinear forward problem (1) with a Newton
linearization was introduced in [5] as algorithm 2.1. Applying the above defini-
tions to algorithm 2.1, in each iteration we have to solve the discretized linear
system

Ã0(U, p)∆U = tf − A(U)p, ∆U ∈ V2nU
0 (16)

with ∆U ∈ V2nU
0 fulfilling homogeneous Dirichlet boundary conditions at ΓD0 .

Remark 3.3. In (16), the update vector ∆U has to satisfy Dirichlet bound-
ary conditions, which means, that (16) has to be solved under the additional
constraint

H∆U = R , (17)

where H and R are appropriately chosen matrices and vectors. Two possibilities
for solving (16) under (17) exist. First, the equations (17) may be eliminated in
(16) or, in a second approach, (16) can be formulated as a minimization problem,
where the constraint (17) is added with a Lagrange multiplier. See [9] for details.

Finally, for a given iterate Uk, ξk, pk a discretization of the linear system (7) reads
as




αkQ A0(Uk, ξk)T A(Uk)T

A0(Uk, ξk) P TP K + Ã1(Uk, ξk, pk) Ã0(Uk, pk)T

A(Uk) Ã0(Uk, pk) 0






∆p
∆U
ξ


 (18)

=




αkQp
∗
k

P TP K P T (Udata − P Uk)
f − A(Uk)p

k


 ξ,∆U ∈ V2nU

0

and therefore the SQP iteration update is defined as

Uk+1 := Uk + ∆U, p
k+1

:= p
k

+ ∆p and ξ
k+1

:= ξ .

Note, that Uk ∈ V2nU
D and ξ,∆U ∈ V2nU

0 have to fulfill Dirichlet boundary con-
ditions at ΓD0 coinciding with the definition of the forward problem. The state-
ments of remark 3.3 can be applied analogously.

For the sake of completeness we shortly discuss the implementation of box con-
ditions and the additional force measuring operator G (see [5, section 3.3] for
details).

If the additional force measurement via G is included, we have to add several
terms refering to [5, equations (37) and (38)] in the linear system (18). In this
context we define a data vector

hdata :=

(
〈~hdata, ϕ̃i1〉L2(Γ̃D0

), . . . , 〈~hdata, ϕ̃inh
〉L2(Γ̃D0

),

= 〈~hdata, ϕ̃i1+nU
〉L2(Γ̃D0

), . . . , 〈~hdata, ϕ̃inh
+nU
〉L2(Γ̃D0

)

)T

,

11

where the ansatz functions ϕ̃ij , ϕ̃ij+nU
, j = 1, . . . , nh, refer to nh nodes located

at Γ̃D0 . Additionally we introduce the matrices

P G := (p̃ij) ∈ R2nh×2nU :

{
p̃ij = 1, if (hdata)i refers to ϕ̃j

p̃ij = 0, else .

and
BU := (B1

U , . . . , B
2nU
U) ∈ R2nU×2nU

defined via

Bi
U = Ai

1(Uk, pk)TP T
G

[
P G(A(Uk)p

k
− f)− hdata

]
, i = 1, . . . , 2nU

as well as
Bp := (B1

p, . . . , B
2np

U) ∈ R2nU×2np

given via

Bi
p = Ai

0(Uk)TP T
G

[
P G(A(Uk)p

k
− f)− hdata

]
, i = 1, . . . , 2np .

Consequently, with a weight factor ϑ the added terms are

• 1st equation, left hand side

ϑ

[
A(Uk)TP T

GP G

[
Ã0(Uk, pk)∆U + A(Uk)∆p

]
+BT

p ∆U

]

• 1st equation, right hand side

ϑ

[
A(Uk)TP T

G

[
hdata + P G(f − A(Uk)p

k
)
]]

• 2nd equation, left hand side

ϑ

[
Ã0(Uk, pk)TP T

GP G

[
Ã0(Uk, pk)∆U + A(Uk)∆p

]
+BU∆U +Bp∆p

]

• 2nd equation, right hand side

ϑ

[
Ã0(Uk, pk)TP T

G

[
hdata + P G(f − A(Uk)p

k
)
]]

Finally we sketch, how to implement the box conditions [5, equation (26)] for the
parameter p, which here means, that vectors C l and Cu are given with

C l ≤ p ≤ Cu .

12

Thus, for a given iterate p
k

we define the active sets referring to the lower and
the upper bound as

Al = {i : (p
k
)i < (C l)i, i = 1, . . . , 2np}

Au = {i : (p
k
)i > (Cu)i, i = 1, . . . , 2np} .

If Al and Au are empty sets, the box conditions are not active and the linear
system (18) needs not to be modified. Otherwise, we introduce the additional
variables

ξ
l
∈ R|Al| and ξ

u
∈ R|Au|

and referring to the considerations in [5, section 3.3], we define the matrices

Q
l
:= (qlij) ∈ R2np×|Al| :

∫

Ω0

ψ̃iψ̃j dΩ0, i ∈ Al, j = 1, . . . , 2np

Q
u

:= (quij) ∈ R2np×|Au| :

∫

Ω0

ψ̃iψ̃j dΩ0, i ∈ Au, j = 1, . . . , 2np

and modify (18) as follows

• add in the first equation at the left hand side

−Q
l
ξ
l
+Q

u
ξ
u

• add an equation referring to the lower bound

−QT

l
∆p = QT

l
(p

k
− C l)

• add an equation referring to the upper bound

QT

u
∆p = QT

u
(Cu − pk) .

3.4 Implementation of [IP] with MATLAB

For the numerical studies presented in this paper, the SQP identification algo-
rithm and therefore the solution of (18) was implemented in MATLAB including
the PDE toolbox [9]. We mention, that the PDE toolbox provides limited skills
for the solution of PDEs, as e.g. only linear ansatz functions ϕi are available,
which increases numerical errors in the considered identification problem. Addi-
tionally, the applicability of MATLAB is restricted to 2D problems. In general,
a variety of sophisticated FEM software exists and could be used as well. See in
this context section 5.2 for notes on the use of extern FE code. Details on the

13

