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Abstract

In this paper we discuss the identification of parameter functions in
material models for elastic large deformations. A model of the the for-
ward problem is given, where the displacement of a deformed material
is found as the solution of a nonlinear PDE. Here, the crucial point
is the definition of the 2nd Piola-Kirchhoff stress tensor by using sev-
eral material laws including a number of material parameters. In the
main part of the paper we consider the identification of such parameters
from measured displacements, where the inverse problem is given as an
optimal control problem. We introduce a solution of the identification
problem with Lagrange and SQP methods. The presented algorithm is
applied to linear elastic material with large deformations.
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1 Introduction

In mechanical engineering the simulation of deformations and stresses is an im-
portant application of FEM software. For given geometry and loads the dis-
placement of a body has to be calculated as the solution of an elliptic partial
differential equation. In this context, the stress tensor needs to be defined with
an adequate material law, depending on the considered material. A wide variety
of such material laws exists. Common for all of them is, that several material
properties are involved via material parameters. In the following we want to
deal with the identification of these material parameters from given displacement
data. This denotes an inverse identification problem in contrast to the direct
simulation problem.

While solving identification problems for large deformations, difficulties emerge
due to several facts. At one hand, the governing equation denotes a nonlinear
PDE even for linear material laws. This results from nonlinear terms in the strain
tensor, that cannot be omitted in the case of large deformations. See [11] and [12]
for details on the nonlinear PDE model. Additionally, nonlinearity arises from
nonlinear material laws, such as Neo-Hooke and Mooney-Rivlin (basing on the
fundamental papers [14] and [16]), or Modified Fung material [3]. On the other
hand, we are interested in the identification of parameter functions and thus the
inverse problem may turn out to be ill-posed. Therefore, a stable solution of the
identification problem needs to involve regularization methods. For a survey on
regularization theory see e. g. [4] and [9].

In the last years the theory on the identification of material parameters made
considerable progress. Thus, for the linear theory with small deformations and
linear elasticity the identification of scalar parameters as well as parameter func-
tions is well known. See in the linear context e. g. the survey paper [1] and
the references therein or the numerical study [8]. Results for the identification
of scalar parameters in nonlinear material laws with large deformations can be
found in [6]. A recent study on identification problems for Neo-Hooke material
with large deformations is presented in the paper [5].

In our work we will focus on the identification of parameter functions for com-
pressible material with large deformations. Therefore, the identification problem
will be formulated as an optimal control problem as suggested in the paper [2].
For the solution of the resulting constrained minimization problem Lagrange and
SQP methods will be implemented following the results of [7].

The paper is organized in the following manner. In section 2 a survey on the
large deformation theory is presented. We introduce a nonlinear PDE model for
the direct problem and focus on the material-depending definition of the 2nd
Piola-Kirchhoff stress tensor. The derivation of the stress tensor from special



energy density functions - referring to the material laws - is explained. In the
next section we deal with the inverse problem. Thereby, we discuss the variety
of arising identification problems and present a general solution framework with
SPQ methods. Concluding this section, the identification algorithm is applied
to linear elastic material with large deformations. Finally, an outlook on future
work and open questions is given.

2 Elastic large deformations

In the following section we sketch the PDE model for elastic large deformations as
it was presented in detail in the papers [11] and [12]. Thereby the considered dif-
ferential equations are derived in terms of tensor calculus. An extensive survey
on tensor analysis is given e. g. in the monograph [17]. In this study we as-
sume dealing with compressible material. For incompressible material additional
equations have to be introduced, see e.g. [6] and [11].

2.1 PDE model for the direct problem

The deformation of a body Ω0 is quantified by the displacement, which is defined
as follows.
Definition 2.1 (Displacement U of a body Ω0). Let Ω0 ⊂ R3 be an undeformed
body and let Ωt ⊂ R3 be the same body after a deformation. A mass point at
position X ∈ Ω0 is moved by the displacement to a position x ∈ Ωt. Thus we
define

x = X + U(X)

with the displacement U(X) ∈ R3.

Note, that for elastic material behavior the body returns to state Ω0 after remov-
ing loads. Throughout the paper we distinguish the deformed and undeformed
state by using capital letters for variables in undeformed state and lower case
letters in deformed state.

The governing equation describing the equilibrium of forces in a deformed body
is given by the elliptic PDE

div σ + ρ~f = ~0 ∀x ∈ Ωt . (1)

The complete boundary value problem additionally contains force loads referring
to Neumann boundary conditions and Dirichlet boundary conditions in the case
of fixed displacements at the boundary. In equation (1), σ = σ(x, U) denotes
an appropriately chosen stress tensor, which is depending on x and U . Further
variables are the density ρ = ρ(x) and the vector of volume forces ~f = ~f(x).
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Referring to remark 3.2 the linearizations with respect to p are defined as

a0(U ;V |p; q) := a(U ;V |q)
a1(U ;V |p; q,∆p) := 0

a1(U ;W,V |p; q) := a0(U ;W,V |q)

and therewith the system (34) is completely defined for linear elasticity.

4 Future work, ideas and problems

A couple of questions concerning the solution of [IP] is still open:

• The convergence analysis in [2] includes a large number of conditions (e. g
restriction of nonlinearity, choice of τ for (44), and a lot of others) that have
to be fulfilled in order to guarantee convergence of the SQP iteration. In
this paper we omitted a discussion of such conditions, and if they coincide
with our framework.

• We also ignored the question, whether [IP] has a unique solution or not. In
the paper [15] the unique identifiability of material parameters for linear
elasticity with small deformations is shown, if the Dirichlet-to-Neumann
map is known. Up to now (see e. g. [1] and [5]) it is not clear, if this result
can be adapted for large deformations. But as a consequence, stepwise ap-
plying of loads with measuring of multiple displacement fields may improve
the results of the identification problem compared to single measurements.

• A convergence analysis for the Newton iteration in algorithm 2.1 may an-
swer questions on how to define ∆t (or ∆U,∆p if the update of a(U ;V |p)
via (35) is used) small enough.

• The identification algorithm was only applied for the linear material law
(10). For an application of nonlinear materials, the corresponding lineariza-
tions have to be introduced.

A numerical study referring to the contents of this paper will be presented in [13].

References
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As derived in [11], the weak solution of (1) is found as the solution of the following
variational problem.
Definition 2.2 (Variational problem for equation (1)). Find a displacement vec-
tor U (fulfilling Dirichlet boundary conditions on ΓD0) as the solution of

∫

Ω0

2

T : E(U ;V )dΩ0 =

∫

Ω0

ρ0
~f · V dΩ0 +

∫

ΓN0

~g · V dS0 ∀V ∈ (H1
0 (Ω0))3 (2)

with the variables:

•
2

T =
2

T (U): 2nd Piola-Kirchhoff stress tensor

• E(U ;V ): Fréchet derivative of the strain tensor E(U)

• ρ0: initial density field

• ~g: given tractions on Neumann boundary ΓN0

• V : test functions with V |ΓD0
= ~0 on Dirichlet boundary ΓD0

The tensors E(U), E(U ;V ), and
2

T are symmetric tensors of second order.

Note, that (2) is defined in Ω0 and therefore the model can be reduced to the
undeformed state. Thus, in contradiction to the general case, where curvilinear
coordinates, covariant and contravariant tensor basis have to be taken into ac-
count, we can simplify our problem to orthonormal coordinates in Ω0. Then the
covariant and contravariant tensor basis coincide with the standard basis.

We consider details of equation (2). The strain tensor E(U) for large deformations
is defined as

2E(U) = GradU + GradUT + GradU ·GradUT , (3)

with A · B denoting the contraction of tensors. Thus, the Fréchet derivative
E(U ;V ) as a linearization of the strain tensor has to fulfill

E(U + V ) = E(U) + E(U ;V ) +O(‖V ‖2) ,

which eventually leads to

2E(U ;V ) = GradV + GradV T + GradU ·GradV T + GradV ·GradUT . (4)

Due to (3) and (4), the PDE (1) is nonlinear in U even for linear material behavior.

In deformed state Ωt a Neumann boundary condition means

~nt · σ = ~gt on ΓNt

3



with given tractions ~gt and outer normal vector ~nt. Transforming this to the
undeformed state, we derive

~n0 ·
1

T = ~g on ΓN0 (5)

with the 1st Piola-Kirchhoff stress tensor
1

T =
2

T · F T . The tensor
1

T is an un-
symmetrical, second order tensor and F = I + Grad UT denotes the deformation
gradient.

The crucial point of the above equations is the definition of the 2nd Piola-

Kirchhoff stress tensor
2

T . With an appropriate choice of this tensor, the stress
tensor σ in (1) is replaced respecting specific material properties.

2.2 Material laws and the 2nd Piola-Kirchhoff stress tensor

For defining the 2nd Piola-Kirchhoff stress tensor we follow a quite abstract ansatz
as explained in [11]. Thus, with an energy density function Ψ we set the energy
functional

Φ(U) =

∫

Ω0

Ψ(G)dΩ0 − f(U) ,

where f denotes the linear functional

f(U) =

∫

Ω0

ρ0
~f · UdΩ0 +

∫

ΓN0

~g · UdS0

and G is the right Cauchy-Green tensor

G = F T · F = I + 2E(U) . (6)

Then minimizing Φ over U yields

Φ(U ;V ) :=
∂Φ

∂U
(V ) = 0 ∀V ,

which is in fact the variational problem (2) with

2

T = 2
∂Ψ(G)

∂G
. (7)

Note, that induced by this ansatz the stress tensor
2

T =
2

T (E(U)) depends on
E(U). The energy density function Ψ includes material laws and has to be

4

We calculate linearizations of a(U ;V |p). As deduced in [11], the first order lin-
earization with respect to U is given by

a0(U ;W,V |p) :=

∫

Ω0

[
E(U ;W ) : C(p) : E(U ;V )+

(
2

T (U) ·GradW

)
: GradV

]
dΩ0 .

The linearization of a0(U ;W,V |p) with respect to U reads as

a0(U + ∆U ;W,V |p) =

∫

Ω0

[
E(U + ∆U ;W ) : C : E(U + ∆U ;V )

+
(
(E(U + ∆U) : C) ·GradW

)
: GradV

]
dΩ0

with

E(U + ∆U) = E(U) + E(U ; ∆U) +O(‖∆U‖2)

and

E(U+∆U ;V ) = E(U ;V )+
1

2

(
(Grad ∆U) · (Grad V )T + (Grad V ) · (Grad ∆U)T

)
.

Hence it follows

a0(U + ∆U ;W,V |p) = a0(U ;W,V |p)

+

∫

Ω0

[
E(U ;W ) : C :

1

2

(
(Grad ∆U) · (Grad V )T + (Grad V ) · (Grad ∆U)T

) ]
dΩ0

+

∫

Ω0

[
1

2

(
(Grad ∆U) · (Grad W )T + (Grad W ) · (Grad ∆U)T

)
: C : E(U ;V )

]
dΩ0

+

∫

Ω0

[(
(E(U ; ∆U) : C) ·GradW

)
: GradV

]
dΩ0

+ O(‖∆U‖2)

and consequently

a1(U ; ∆U ;W,V |p) :=

∫

Ω0

[(
(E(U ; ∆U) : C) ·GradW

)
: GradV

+
(
(E(U ;W ) : C) ·GradV

)
: Grad∆U

+
(
(E(U ;V ) : C) ·Grad∆U

)
: GradW

]
dΩ0 .
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Common and natural stopping rules are e.g.

• terminate, if the residual norm is smaller than a given tolerance:

K0 : ‖PUK0 − Udata‖ ≤ tolres

• terminate, if the norm of the updates in the K0th iteration is smaller than
given tolerances:

K0 : ‖∆U‖ ≤ tolU , ‖∆p‖ ≤ tolp

• terminate, if an a priori defined maximum number of iterations is reached:

K0 := Kmax.

These stopping rules work quite well for well posed problems or noiseless data.
In the case of ill posed problems with noisy data, the stopping index has to be
defined appropriately with respect to the noise level δ. This denotes an iterative
regularization method, which is discussed in detail in [2]. Under the assumption,
that the given data is corrupted by noise with a noise level δ, i. e.

‖U δ
data − PU(p†)‖ ≤ δ ,

a suitable choice for the stopping index K0 is given by the generalized discrepancy
principle

‖PUK0 − U δ
data‖ ≤ τδ < ‖PUk − U δ

data‖ ∀k < K0 (44)

with an appropriately chosen τ > 1. See [2] for details.

3.4 Parameter identification for linear elastic material

Now we to apply the identification algorithm presented above for the linear elastic
material law (10). According to (11), the 2nd Piola-Kirchhoff stress tensor holds

2

T = C : E(U)

with a symmetrical material tensor C = C(p) = C(λ, µ). Note, that C is de-
pending linearly on the parameter p = (λ, µ). Consequently, the semilinearform
a(U ;V |p) is defined as

a(U ;V |p) =

∫

Ω0

E(U) : C(p) : E(U ;V )dΩ0 .

24

appropriately chosen according to the considered material. Following the notation
of [11] and [12] we define

Ψ(G) = Ψ(a1, a2, a3) , (8)

where the dependence on G is formulated in terms of the invariants of G by using

ak = ak(G) =
1

k
tr Gk, k = 1, 2, 3 .

Hence, for the invariants holds (see e. g. [17, p. 186]):

• 1st invariant: I = tr G = a1

• 2nd invariant: II = 1
2
(a2

1 − 2a2)

• 3rd invariant: III = detG = 1
6
(a3

1 − 6a1a2 + 6a3)

For calculating
2

T via (7) we apply the chain rule and derive

2

T = 2
∂Ψ(G)

∂G
= 2

3∑

k=1

(
∂Ψ

∂ak

)
∂ak
∂G

.

Obviously, ∂ak
∂G

denotes a second order tensor with

ak(G+ ∆G) = ak(G) +

(
∂ak
∂G

)
: ∆G+O(‖∆G‖2) ,

which means in detail

ak(G+ ∆G) =
1

k
tr(G+ ∆G)k

=
1

k
tr(G)k +

1

k
tr(k Gk−1 ·∆G) +O(‖∆G‖2)

= ak(G) +Gk−1 : ∆G+O(‖∆G‖2) .

Here we used the fact, that the trace operator can be written as a tensor con-
traction. Consequently

∂ak
∂G

= Gk−1

holds and hence
2

T = 2
3∑

k=1

(
∂Ψ

∂ak

)
Gk−1 . (9)

Note, that in (9) for varying material laws only the derivatives ∂Ψ
∂ak

have to be
adapted with respect to the chosen energy density function Ψ.

Several functions Ψ can be found in literature. Well known is the linear material
law of linear elasticity.

5



Definition 2.3 (Linear elastic material). For linear elasticity the function Ψ is
defined as

Ψ =
µ

2

(
a2 − a1 +

3

2

)
+
λ

8

(
a2

1 − 6a1 + 9
)

(10)

with material parameters λ and µ (Lame’s constants).

The material law (10) is valid for small as well as for large deformations. The
formulation (10) is equivalent to

2

T = 2µE(U) + λ((tr E(U))I) = C : E(U) (11)

with a 4th-order material tensor C = C(λ, µ). Here, A : B denotes a double
contraction of tensors. Expanding the linear theory, for hyperelastic materials
exist also nonlinear material laws. The following two energy density functions
originally base on the papers [14] and [16] and are widely used in recent studies
on hyperelasticity.
Definition 2.4 (Neo-Hooke and Mooney-Rivlin material). The Neo-Hooke ma-
terial is defined via

Ψ = c10(a1 − ln(detG)− 3) +D2 ln2(detG) (12)

with parameters c10 and D2. This is a simplification of the more general energy
density function for Mooney-Rivlin material

Ψ = c10(a1 − 3) + c01

[
1

2
(a2

1 − 2a2)

]
− (c10 + 2c01) ln(detG) +D2 ln2(detG) (13)

with the additional parameter c01.

The last nonlinear material we want to mention here, is the so called Modified
Fung material [3].
Definition 2.5 (Modified Fung material). For the Modified Fung material law,
the function Ψ is defined as

Ψ =
c10

α

[
eα(a1−ln(detG)−3) − 1

]
+D2 ln2(detG) (14)

with parameters c10, α, and D2.

2.3 The 2nd Piola-Kirchhoff stress tensor for linear elasticity

In the following we give a detailed view on the explicit derivation of the 2nd
Piola-Kirchhoff stress tensor via formula (9). Hence, we have to calculate the

6

a1(U i
k; ξ

i
k, V

i|pk,∆p) + ωi bU(∆U i, V i) + a1(U i
k; ∆U i, ξik, V

i|pk) + a0(U i
k; ξ

i, V i|pk)
= ωi〈U i

data − P iU i
k,P iV i〉L2(Ω0)

∀V i ∈ Z, i = 1, . . . , ndata (42)

a0(U i
k;W

i|pk; ∆p) + a0(U i
k; ∆U i,W i|pk) = f(W i)− a(U i

k;W
i|pk)

∀W i ∈ Z, i = 1, . . . , ndata , (43)

which is a linear system of the dimension (2ndata + 1)× (2ndata + 1).

Concluding this section, we want to give a general scheme for the introduced
algorithm of solving [IP] via SQP methods.
Algorithm 3.1 (SQP identification algorithm for [IP]). The SQP iteration holds
the following scheme:

START set k := 0
choose initial guess U0, p0

set the Lagrange multiplier ξ0 = 0
choose regularization parameter α0

REPEAT

SQP ITERATION
a) calculate a solution ∆U,∆p, ξ of (34)
b) update Uk+1 := Uk + ∆U , pk+1 := pk + ∆p, ξk+1 := ξ
c) k := k + 1

UNTIL stopping rule fulfilled

In this context we discuss the choice of initial guesses and stopping rules for the
SQP iteration. The initial displacement field has to fulfill the given Dirichlet
boundary conditions. In particular, if the Dirichlet boundary conditions are
inhomogeneous, the initial value U0 has to be set appropriately. Thus it follows,
that all displacement updates ∆U can be restricted to homogenous Dirichlet
boundary, i. e. ∆U ∈ Z. Therefore all the equations derived in this section hold
for inhomogeneous Dirichlet boundary, too. An adequate choice for U0 is given
by calculating U0 := U(p0) as a solution of the forward problem (2) for an initial
material parameter p0.

The initial parameter p0 should be chosen as close as possible to the exact solution
p†. As shown in [2], under some conditions the SQP iteration converges locally in
a ball BρU (U †)×Bρp(p†) around the exact solution (U †, p†) with ρU , ρp being small
enough. We refer to [2] also for the question, which conditions have to be fulfilled
for the choice of the regularization parameter αk, such that well posedness of each
iteration step and convergence of the iteration is guaranteed.

Another important question is, how to find a stopping index K0, such that the
SQP iteration can be terminated after the K0th iteration with adequate results.
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• introduce variables ξl, ξu ∈ Q and set

(ξl(X))j := 0 for (pk(X))j > (Cl)j (39)

(ξu(X))j := 0 for (pk(X))j < (Cu)j (40)

(minimization only over the active set)

• add in the first equation at the left hand side (⇒ ∂
∂∆p

Lbox((ξl, ξu)|pk + ∆p))

∫

Ω0

(−ξl + ξu)qdΩ0

• add an equation referring to the lower bound (⇒ ∂
∂ξl
Lbox((ξl, ξu)|pk + ∆p))

−
∫

Ω0

∆p qldΩ0 =

∫

Ω0

(pk − Cl)qldΩ0 ∀ql ∈ Q fulfilling (39)

• add an equation referring to the upper bound (⇒ ∂
∂ξu
Lbox((ξl, ξu)|pk + ∆p))

∫

Ω0

∆p qudΩ0 =

∫

Ω0

(Cu − pk)qudΩ0 ∀qu ∈ Q fulfilling (40) .

A solution (∆U,∆p, ξ, ξl, ξu) of (34) under the above modifications denotes the
SQP update for (25) with Lagrange multipliers ξl and ξu enforcing the bounds of
the box constraints.

As a last modification of (34) we assume, that multiple measured displacement
fields U i

data are available. Then the Lagrange functional is defined according to
JSQP in (25) as

Lmult(U ; ξ|p) :=
1

2

ndata∑

i=1

[
ωi‖P iU i − U i

data‖2
L2(Ω0) + a(U i; ξi|p)− f(ξi)

]

with 2ndata + 1 variables U = (U1, . . . , Undata), ξ = (ξ1, . . . , ξndata), and p (i =

1, . . . , ndata). For simplicity we omit the force measurements ~hidata, which can be
handled analogously.

Under the above assumptions, the adaption of the system (34) for Lmult is calcu-
lated as

αkbp(∆p, q) +
ndata∑
i=1

[
a1(U i

k; ξ
i
k|pk; ∆p, q) + a1(U i

k; ∆U i, ξik|pk; q) + a0(U i
k; ξ

i|pk; q)
]

= αkbp(q, p
∗
k)

∀q ∈ Q (41)
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derivatives ∂Ψ
∂a1

and ∂Ψ
∂a2

of the real function (10), which is not depending on a3.
We derive

∂Ψ

∂a1

= −µ
2

+
λ

4
(a1 − 3)

∂Ψ

∂a2

=
µ

2

and consequently

2

T =

[
−µ+

λ

2
(a1 − 3)

]
I + µG = µ(G− I) +

λ

2
(trG− 3)I .

Replacing G = I + 2E(U) and trG = tr (I + 2E(U)) = 3 + 2 trE(U) in the last
equation leads to

2

T = 2µE(U) + λ(trE(U)) I ,

which is exactly the well known formulation (11).

2.4 The 2nd Piola-Kirchhoff stress tensor for nonlinear
material laws

The definition of the 2nd Piola-Kirchhoff stress tensor via (9) can be applied in
an analogous way for all choices of energy density functions Ψ = Ψ(a1, a2, a3).
For the Neo-Hooke material law the function (12) is written as

Ψ = c10

(
a1 − ln

[
1

6
(a3

1 − 6a1a2 + 6a3)

]
− 3

)
+D2 ln2

[
1

6
(a3

1 − 6a1a2 + 6a3)

]

by using

detG =
1

6
(a3

1 − 6a1a2 + 6a3) .

Thus, the derivatives are

∂Ψ

∂a1

= c10

(
1− 3a2

1 − 6a2

6 detG

)
+ 2D2 ln(detG)

(
3a2

1 − 6a2

6 detG

)

∂Ψ

∂a2

= (c10 − 2D2 ln(detG))
( a1

detG

)

∂Ψ

∂a3

= (−c10 + 2D2 ln(detG))

(
1

detG

)
,

which completely defines
2

T . In the case of Mooney-Rivlin material the function
Ψ emerges from an extension of the Neo-Hook function (12) with the additional
term

Ψ2 = c01

[
1

2
(a2

1 − 2a2)− 2 ln(detG)

]
.
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Therefore, additional terms appear in the derivatives of Ψ and the calculation of
2

T is straight forward.

Remark 2.1. We mention, that alternative formulations of the Tensor
2

T exist,
which are equivalent to (9). E. g. for Neo-Hook material the 2nd Piola-Kirchhoff
stress tensor can be written as

2

T (G) := 2
[
c10(I −G−1) +D22 ln[detG]G−1

]
.

Note, that for the above result we have to guarantee the existence of G−1 and
that G−1 is bounded, i.e. ∥∥G−1

∥∥ ≤ C <∞ .

An alternative representation of the 2nd Piola-Kirchhoff stress tensor for Mooney-
Rivlin material is

2

T (G) := 2
[
c10(I −G−1) + c01((trG)I −G− 2G−1) +D22 ln[detG]G−1

]
.

2.5 Solution of the direct problem

We are interested in finding a solution U of the variational problem (2), which
denotes a weak solution of the corresponding PDE (1). In the following we
reformulate (2) as

a(U ;V |p) = f(V ) ∀V ∈ (H1
0 (Ω0))3 (15)

with the functionals

a(U ;V |p) :=

∫

Ω0

2

T : E(U ;V )dΩ0 (16)

and

f(V ) =

∫

Ω0

ρ0
~f · V dΩ0 +

∫

ΓN0

~g · V dS0 . (17)

Solving (15) leads in general to a nonlinear system, due to the fact, that a(U ;V |p)
is only a semilinear functional, being nonlinear in U and linear in V . The func-
tional a(U ;V |p) additionally depends on the material parameter vector p via the
definition of the 2nd Piola-Kirchhoff stress tensor. In the case of linear elastic
material, we set e. g.

p =

(
λ
µ

)
.

Note, that the dependence of a(U ;V |p) from p is also nonlinear for nonlinear
material laws.
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• 2nd equation, right hand side

∑

W∈W

{
−
[
a(Uk;W |pk)− fG(W )

]
a0(Uk;V,W |pk)

}

Remark 3.5. If G is considered implicitly in (25) via the added constraint (27),
we have to introduce a Lagrange multiplier ξG referring to this constraint. Then
the linear system (34) is extended by a fourth equation, which results from the
linearization with respect to ξG.

Now we discuss the implementation of box conditions (26). The idea (see e.
g. [19]) is the following: in the Lagrange functional (28) for the minimization
problem (25) with box constraints (26) we add the term

Lbox((ξl, ξu)|p) :=

∫

Ω0

ξl(Cl − p) + ξu(p− Cu)dΩ0 ,

with Lagrange multipliers ξl and ξu referring to the lower and the upper bounds
Cl and Cu. Note, that for the components ξ∗l , ξ

∗
u, p
∗
box of an optimal solution of

(25) with box conditions the complementary slackness conditions

(ξ∗l )j(p
∗
box − Cl)j = 0, j = 1, . . . , npar

(ξ∗u)j(Cu − p∗box)j = 0, j = 1, . . . , npar

have to be fulfilled, i.e. for the lower bound constraint

• the lower bound for the jth component of p is active:

(p∗box)j = (Cl)j ⇒ (ξ∗l )j variable

• the lower bound for the jth component of p is inactive:

(p∗box)j > (Cl)j ⇒ (ξ∗l )j := 0

(if the box constraint is inactive, it can be omitted).

The distinction between active and inactive upper bounds is analogously. Thus,
the box constraints have only to be taken into account, if they are active and
therefore the Lagrange functional Lbox((ξ

∗
l , ξ
∗
u)|p∗box) is only defined over the so

called active set.

We calculate derivatives of Lbox with respect to ξl, ξu, and p (all other derivatives
and second order derivatives are zero) and modify the linear system (34) for a
given iterate (Uk, pk, ξk) in the following way:
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Due to the definition of JG(∆U,∆p) we replace U := Uk + ∆U and p := pk + ∆p
in the above equations and get

∂JG
∂∆U

⇒
[
a(Uk + ∆U ;W |pk + ∆p)− fG(W )

]
a0(Uk + ∆U ;V,W |pk + ∆p)

∂JG
∂∆p

⇒
[
a(Uk + ∆U ;W |pk + ∆p)− fG(W )

]
a0(Uk + ∆U ;W |pk + ∆p; q)

As mentioned in remark 3.3, these terms are still nonlinear in ∆U and ∆p. We
continue for the derivative with respect to ∆U
[
a(Uk + ∆U ;W |pk + ∆p)− fG(W )

]
a0(Uk + ∆U ;V,W |pk + ∆p)

≈
([
a(Uk;W |pk) + a0(Uk; ∆U,W |pk) + a0(Uk;W |pk; ∆p)− fG(W )

]
[
a0(Uk;V,W |pk) + a1(Uk; ∆U, V,W |pk) + a1(Uk;V,W |pk; ∆p)

])

≈
[
a(Uk;W |pk) + a0(Uk; ∆U,W |pk) + a0(Uk;W |pk; ∆p)− fG(W )

]
a0(Uk;V,W |pk)

+
[
a(Uk;W |pk)− fG(W )

][
a1(Uk; ∆U, V,W |pk) + a1(Uk;V,W |pk; ∆p)

]

(37)
and analogously for the derivative with respect to ∆p
[
a(Uk + ∆U ;W |pk + ∆p)− fG(W )

]
a0(Uk + ∆U ;W |pk + ∆p; q)

≈
[
a(Uk;W |pk) + a0(Uk; ∆U,W |pk) + a0(Uk;W |pk; ∆p)− fG(W )

]
a0(Uk;W |pk; q)

+
[
a(Uk;W |pk)− fG(W )

][
a1(Uk; ∆U,W |pk, q) + a1(Uk;W |pk; ∆p, q)

]
.

(38)
Finally, we have to add terms referring to (37) and (38) in the first (⇒ ∂/∂∆p)
and in the second (⇒ ∂/∂∆U) equation of the linear system (34):

• 1st equation, left hand side

∑

W∈W

{
[a0(Uk; ∆U,W |pk) + a0(Uk;W |pk; ∆p)

]
a0(Uk;W |pk; q)

+
[
a(Uk;W |pk)− fG(W )

][
a1(Uk; ∆U,W |pk, q) + a1(Uk;W |pk; ∆p, q)

]}

• 1st equation, right hand side

∑

W∈W

{
− [a(Uk;W |pk)− fG(W )

]
a0(Uk;W |pk; q)

}

• 2nd equation, left hand side

∑

W∈W

{[
a0(Uk; ∆U,W |pk) + a0(Uk;W |pk; ∆p)

]
a0(Uk;V,W |pk)

+
[
a(Uk;W |pk)− fG(W )

][
a1(Uk; ∆U, V,W |pk) + a1(Uk;V,W |pk; ∆p)

]}
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In order to overcome the nonlinearity of (15), a Newton iteration with incremental
applying of loads is adapted (see e. g. [5] or [11]). We introduce a linearization
a0(U ;V,W |p) of a(U ;V |p) such that

a(U +W ;V |p) = a(U ;V |p) + a0(U ;V,W |p) +O(‖W‖2) . (18)

The idea presented in [11] is, to solve for t ∈ [0, 1] the auxiliary problem

a(Ut;V |p) = tf(V ) ∀V

via a Newton iteration with initial guess Ut−∆t and appropriately defined time
step ∆t� 1. This means, that instead the full load (referring to f(V ) or t = 1,
resp.), only a load step is applied as a boundary condition of the PDE. Then
continue with setting t := t + ∆t and repeating the Newton iteration. This
iteration process is done until t = 1, such that in the last load step the original
equation (15) is solved.
Algorithm 2.1 (Newton linearization with stepwise applied loads). The algo-
rithm for solving the variational problem (15) holds the following scheme:

START define ∆t� 1 and ε� 1

set t = ∆t and U = ~0

DO WHILE t ≤ 1

NEWTON ITERATION
a) calculate a solution ∆U of

a0(U ; ∆U, V |p) = tf(V )− a(U ;V |p) ∀V
b) set U := U + ∆U
c) if ‖∆U‖/‖U‖ < ε: set t = t+ ∆t
d) go to a)

END WHILE

Note, that for t = 0 we choose U0 = ~0 and thus E(~0, V ) = ε(V ) denotes the
strain tensor for linear elastic small deformations, i.e. the Newton iteration starts
with linear elastic small deformations. The algorithm described above is used in
the nonlinear PDE solver of the MATLAB PDE toolbox [18]. The authors of [5]
mention, that in their study approximately 80 load steps with 6 Newton iterations
for each step were necessary for obtaining convergence of the algorithm. At one
hand, if ∆t is chosen too large, the iteration process may diverge, but on the
other hand a considerable amount of numerical costs results from the repeated
call of the forward problem solver.
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3 Identification of material parameters

3.1 Discussion of identification problems

For an application of the material laws (10)–(14) the parameters λ, µ, c01, c10,
D2, and α need to be known. Due to the fact, that these parameters cannot be
measured directly, we have to solve an appropriate inverse identification problem,
where the material parameters are identified from given data. In particular for
mechanical inverse problems, the measurement data will denote given displace-
ments or forces at some measuring points.

In literature a wide range of studies on the identification of material parameters
can be found. In this context the full linear theory for small deformations and
linear elastic material behavior is well known even for the identification of param-
eter functions. We refer to the extensive survey [1] and the references therein and
additionally to the numerical study [8]. For large deformation material parameter
identification we mention e. g. the paper [6], where the identification of the scalar
parameters c10, c01, D2, α for the material laws (12)–(14) was considered. In this
study a least square minimization with Gauss-Newton (Levenberg-Marquardt)
and without any regularization was used (multi parameter regularization was
mentioned as option). The identification based on simulated data with and with-
out noise and single as well as simultaneous identification of parameters is dis-
cussed. The examined model situations (compressible material) were a cylindric
tie bar and the 2D Cook membrane. Several measurement situations, e. g. single
measurements and measured stress-strain curves were presented. For the numer-
ical solution of the forward PDE the FE-code SPC-PM2AdNlMix was applied.
The results of the study were, that identification was possible and exact in the
noiseless and in the noisy case. Best results were reached for Neo-Hook and some
small problems arose for Mooney-Rivlin due to the increasing nonlinearity. The
recent paper [5] is devoted to the identification of parameter functions for a mod-
ified Neo-Hook material law with large deformations. The authors describe an
algorithm using Quasi-Newton methods with BFGS. Here, the objective func-
tional is defined as a residual norm with special weights. Additionally, methods
for improving the efficiency of the minimization algorithm are suggested. An
adaptive FE method is not used.

Up to now, only less studies on the identification of parameter functions for
nonlinear material and large deformations can be found in literature. One reason
may be, that despite the fact, that almost all presented results were obtained in
a simplified 2D framework, the computational cost turn out to be considerable.
This results from the nonlinearity of the PDE, which has to be eliminated by
an additional Newton linearization. Besides questions concerning the efficiency
of solution methods, it is a quite hard and currently not solved question, under
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For calculating the SQP iteration update via (30) we have to find derivatives of

JG(Uk + ∆U, pk + ∆p) :=
1

2
‖G(Uk + ∆U |pk + ∆p)− ~hdata‖2

L2(Γ̃D0
)

with respect to ∆U and ∆p. These derivatives can be deduced from linearizing

1

2
‖G(U |p)− ~hdata‖2

L2(Γ̃D0
)

=
1

2

∑

W∈W
〈G(U |p)− ~hdata,W 〉2L2(Γ̃D0

)
(36)

=
1

2

∑

W∈W

[
a(U ;W |p)− f(W )− 〈~hdata,W 〉L2(Γ̃D0

)

]2

where the set W has to fulfill

W =

{
Wi ∈ (H1(Ω0))3 : Wi|ΓD0

\Γ̃D0
= 0,

{Wi|Γ̃D0
}i∈N is an orthonormal basis of L2(Γ̃D0)

}
.

Note, that the Wi are not an elements of the space of test functions Z =
(H1

0 (Ω0))3. We set

fG(W ) := f(W ) + 〈~hdata,W 〉L2(Γ̃D0
)

and consequently for all V ∈ Z and q ∈ Q a linearization of each summand in
(36) holds

1

2

[
a(U + V ;W |p)− fG(W )

]2 ≈ 1

2

[
a(U ;W |p) + a0(U ;V,W |p)− fG(W )

]2

=
1

2

[(
a(U ;W |p)− fG(W )

)2
+ a0(U ;V,W |p)2

]

+
[
a(U ;W |p)− fG(W )

]
a0(U ;V,W |p)

1

2

[
a(U ;W |p+ q)− fG(W )

]2 ≈ 1

2

[
a(U ;W |p) + a0(U ;W |p; q)− fG(W )

]2

=
1

2

[(
a(U ;W |p)− fG(W )

)2
+ a0(U ;W |p; q)2

]

+
[
a(U ;W |p)− fG(W )

]
a0(U ;W |p; q) ,

with

a0(U ;V,W |p)2 = O(‖V ‖2) and a0(U ;W |p; q)2 = O(‖q‖2) .
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the linear system (31) is finally formulated as

αkbp(∆p, q) + a1(Uk; ξk|pk; ∆p, q) ∀q ∈ Q
+a1(Uk; ∆U, ξk|pk; q) + a0(Uk; ξ|pk; q) = αkbp(q, p

∗
k)

a1(Uk; ξk, V |pk,∆p) + bU(∆U, V ) ∀V ∈ Z
+a1(Uk; ∆U, ξk, V |pk) + a0(Uk; ξ, V |pk) = 〈Udata − PUk,PV 〉L2(Ω0) (34)

a0(Uk;W |pk; ∆p) + a0(Uk; ∆U,W |pk) = f(W )− a(Uk;W |pk) ∀W ∈ Z

Remark 3.2. For a linear material law the functional a(U ;V |p) is linear in p
and thereby the derivatives of A with respect to p can be simplified to

〈Apq, V 〉Z∗,Z = a(Uk;V |q)
〈App(q, r), V 〉Z∗,Z = 0

〈ApU(W, q), V 〉Z∗,Z = a0(Uk;W,V |q)
〈AUp(q,W ), V 〉Z∗,Z = a0(Uk;W,V |q) .

Remark 3.3. The calculation of a(Uk;V |pk) is equivalent to the solution of
a nonlinear PDE. According to the linearization (18), a stepwise updating of
a(Uk;V |pk) could be introduced, where we assume, that a(Uk;V |pk) is known (e.
g. U0 = 0 ⇒ a(0;V |p0) = 0) and

a(Uk + ∆U ;V |pk + ∆p) = a(Uk;V |pk) + a0(Uk; ∆U, V |pk) + a0(Uk;V |pk; ∆p)

+ a1(Uk; ∆U, V |pk; ∆p) +O(‖∆U‖2) +O(‖∆p‖2) .

Consequently, we set the update formula

a(Uk+∆U ;V |pk+∆p) ≈ a(Uk;V |pk)+a0(Uk; ∆U, V |pk)+a0(Uk;V |pk; ∆p) . (35)

Thus, by this linearization strategy, the additional explicit calculation of the
functional a(Uk;V |pk) may be omitted. Note, that this improves efficiency, but
an additional error arises as well, because formula (35) denotes an approximation.
For the forward operator calculation it works well, if the stepsize parameter ∆t
is chosen appropriately. For the inverse problem this might be realized by using
a stepsize control in the SQP iteration, such that ∆U and ∆p are small enough.
Remark 3.4. Often, the linear system (31) or (34), resp., is simplified by remov-
ing all the second order derivative terms.

In (28) we ignored additional force measurements, multiple measurements and
box constraints. Now we consider, how the systems (31) and (34) have to be
completed referring to these extensions. Let us first assume, that an additional
force measurement is introduced and thus the Lagrange function (28) is extended
by the term

LG(U |p) :=
1

2
‖G(U |p)− ~hdata‖2

L2(Γ̃D0
)
.
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what circumstances the large deformation identification problems can be solved
uniquely.

3.2 The inverse problem as a minimization problem

Let p = p(X) denote a spatially varying vector of npar material parameters

p(X) :=




p1(X)
...

pnpar(X)


 , X ∈ Ω0 ,

with bounded parameter functions pi ∈ L∞(Ω0), i = 1, . . . , npar. For estimating
an unknown parameter p, we have to solve the following inverse problem.
Definition 3.1 (Inverse parameter identification problem (IP)). Find for given
displacement data Udata a parameter p(X) referring to the chosen material law,
such that Udata and p(X) fulfill the direct problem (15).

We mention, that often the inverse problem (IP) is formulated as finding a solu-
tion of the operator equation

F(p) = U .

Here, F denotes the explicit form of the nonlinear forward operator, assigning
the corresponding weak solution U of (15) to a given parameter p.

Additionally, force measurements at a part of the Dirichlet boundary Γ̃D ⊂ ΓD
can be introduced. Thus, we assume the existence of a force density function ~h
and define the force measuring operator

G(U |p) = ~h = ~n0 ·
1

T (U)|Γ̃D0
, (19)

where U is the solution of (15). Note, that for the numerical solution of [IP] we

will not need the explicit existence of ~h, due to the fact, that in practice only
integrals over ~h at some part of the Dirichlet boundary are of interest.
Remark 3.1. The operator G is strongly related to the so called Dirichlet-
to-Neumann map, which assigns the corresponding boundary loads to a given
boundary displacement. In the paper [15] it is shown, that knowledge of the
Dirichlet-to-Neumann map is sufficient for the unique solvability of the inverse
problem (IP) in the case of linear elastic small deformations. See also [2] for
a survey on uniqueness results, derived by analyzing the Dirichlet-to-Neumann
map.

A weak formulation of G can be derived, if we interpret (19) as a Neumann
boundary condition, being equivalent to the given Dirichlet boundary condition

11



on Γ̃D. Thus, we find that a solution of

a(U ;V |p) = f(V ) +

∫

Γ̃D0

~h · V dS0 ∀V ∈ (H1(Ω0))3 with V |ΓD0
\Γ̃D0

= 0

will be equivalent to a solutuion of (15), if ~h is appropriately defined. Note the
crucial point in the last equation, that contrary to (15) the space of test functions
is slightly changed and consequently the Dirichlet boundary condition at Γ̃D0 is
removed.

In other words, for given U and p solving (15), ~h is defined as the solution of the
variational problem

∫

Γ̃D0

~h · V dS0 = a(U ;V |p)− f(V ) ∀V ∈ (H1(Ω0))3 with V |ΓD0
\Γ̃D0

= 0 . (20)

The numerical solution of (20) is easy, due to the fact, that for given U it denotes
a postprocessing calculation and in the discrete case the right hand side turns
out to be the difference of two already known vectors.

The displacement data may denote a single displacement field, but it is also
possible to measure multiple displacement data for differing boundary conditions.
Thus, in general we assume

Udata = (U1
data, . . . , U

ndata
data ) . (21)

While stepwise applying loads, one can e. g. derive stress-strain curve multiple
measurements. In the following, the use of multiple measurements will be indi-
cated by a superscript i and according to (21) we suppose for the displacement

U := (U1, . . . , Undata) .

Several strategies for solving (IP) may be of interest. Without claiming com-
pleteness we mention three different approaches:

• least squares minimization with Gauss-Newton (Levenberg-Marquardt), stud-
ied for the identification of scalar λ, µ in the case of linear elastic small
deformations in [8]

• multi parameter regularization strategies (theory [9], numerical studies [8])

• application of optimal control strategies [19], solving a constrained min-
imization problem with sequential quadratic programming and Lagrange
techniques as discussed in [2], [7]
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• p̂k := 0: Levenberg-Marquardt algorithm

• p̂k := p̂− pk, αk := α = const: classical Tikhonov regularization

• p̂k := p̂− pk, αk ≤ αk−1: iteratively regularized Gauss-Newton method .

Then the solution of (30) is found as a solution of the linear system

〈App(∆p, q) +ApU(∆U, q), ξk〉Z∗,Z
+αk〈∆p, q〉L2(Ω0) + 〈Apq, ξ〉Z∗,Z = αk〈p̂k, q〉L2(Ω0) ∀q ∈ Q

〈AUp(∆p, V ) +AUU(∆U, V ), ξk〉Z∗,Z
+〈P∆U,PV 〉L2(Ω0) + 〈AUV, ξ〉Z∗,Z = 〈Udata − PUk,PV 〉L2(Ω0) ∀V ∈ Z

〈Ap∆p+AU∆U,W 〉Z∗,Z = 〈A(Uk|pk),W 〉Z∗,Z ∀W ∈ Z
(31)

which denotes the first order optimality conditions for (30). We calculate deriva-
tives of the implicit forward operator by linearizing the weak formulation (24).
Analogously to the first order linearization a0(U ;W,V |p) of a(U ;V |p) (with re-
spect to U) we define the first order linearization (with respect to p) a0(U ;V |p; ∆p),
such that

a(U ;V |p+ ∆p) = a(U ;V |p) + a0(U ;V |p; ∆p) +O(‖∆p‖2) (32)

and the second order linearizations a1(U ; ∆U,W, V |p), a1(U ;W,V |p; ∆p), and
a1(U ;V |p; ∆p, q) via

a0(U + ∆U ;W,V |p) = a0(U ;W,V |p) + a1(U ; ∆U,W, V |p) +O(‖∆U‖2)

a0(U ;W,V |p+ ∆p) = a0(U ;W,V |p) + a1(U ;W,V |p; ∆p) +O(‖∆p‖2)

a0(U + ∆U ;V |p; q) = a0(U ;V |p; q) + a1(U ; ∆U, V |p; q) +O(‖∆U‖2)

a0(U ;V |p+ ∆p; q) = a0(U ;V |p; q) + a1(U ;V |p; ∆p, q) +O(‖∆p‖2) . (33)

Thus, the derivatives of A hold the weak formulation

〈Apq, V 〉Z∗,Z = a0(Uk;V |pk; q)
〈AUW,V 〉Z∗,Z = a0(Uk;W,V |pk)

〈App(q, r), V 〉Z∗,Z = a1(Uk;V |pk; q, r)
〈AUU(W1,W2), V 〉Z∗,Z = a1(Uk;W1,W2, V |pk)
〈ApU(W, q), V 〉Z∗,Z = a1(Uk;W,V |pk; q)
〈AUp(q,W ), V 〉Z∗,Z = a1(Uk;W,V |pk; q) .

Referring to the above calculations and using the abbreviations

bp(q, r) := 〈q, r〉L2(Ω0) =

∫

Ω0

qr dΩ0 q, r ∈ Q

bU(V,W ) := 〈PV,PW 〉L2(Ω0) =

∫

Ω0

(PV )(PW )dΩ0 V,W ∈ Z ,
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The nonlinear system (29) is solved via a Newton iteration. Thus, the system
(29) is linearized for a given iterate (Uk, ξk, pk) and in each Newton step a result-
ing linear system is solved to calculate an iteration update (∆U,∆ξ,∆p). Due
to the Newton linearization, the second order directional derivatives of the La-
grange functional at the iterate (Uk, ξk, pk) have to be calculated. We define the
functionals

Lpp : Q→ Q∗

LUU : Z → Z∗

LpU : Z → Q∗

LUp : Q→ Z∗ ⇒ LUp = L?pU (dual operator)

which holds the weak formulation

〈Lppq, r〉Q∗,Q = 〈[App(Uk|pk)](q, r), ξk〉Z∗,Z ∀q, r ∈ Q
〈LUUV,W 〉Z∗,Z = 〈[AUU (Uk|pk)](V,W ), ξk〉Z∗,Z + 〈PV,PW 〉L2(Ω0) ∀V,W ∈ Z
〈LpUV, q〉Q∗,Q = 〈[ApU (Uk|pk)](V, q), ξk〉Z∗,Z ∀V ∈ Z,∀q ∈ Q
〈LUpq, V 〉Z∗,Z = 〈[AUp(Uk|pk)](q, V ), ξk〉Z∗,Z ∀V ∈ Z,∀q ∈ Q .

In the following we simplify the notation and use the abbreviation

A(.) := [A(.)(Uk|pk)]

for all derivatives. The second derivative of the operator A(U |p) at the point
(Uk, pk) is defined as

[A′′(Uk|pk)]((V, q), (W, r)) := App(q, r) +ApU(V, q) +AUp(q, V ) +AUU(V,W )

for q, r ∈ Q and V,W ∈ Z. As discussed e. g. in [2] and [7], the Newton iteration
for solving (29) can be written as

Uk+1 = Uk + ∆U, pk+1 = pk + ∆p, ξk+1 = ξ

with an iteration update (∆U,∆p) solving the quadratic minimization problem

Jiter(∆U,∆p) =
1

2
‖P(Uk + ∆U)− Udata‖2

L2(Ω0) (30)

+ 〈[A′′(Uk|pk)]((∆U,∆p), (∆U,∆p)), ξk〉Z∗,Z +Rαk
(pk)→ min

∆U,∆p

s.t. A(Uk|pk) +Ap∆p+AU∆U = 0

with the Lagrange multiplier ξ referring to the linearized constraint. In (30) the
regularization term

Rαk
(pk) =

αk
2
‖∆p− p̂k‖2

is added. Depending on the choice of the regularization parameter αk and the
initial guess p̂, several regularization methods may be implemented, e. g.
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Following the simple least squares minimization approach as discussed in [8], (IP)
can be formulated as an unconstrained minimization problem.
Definition 3.2 (Least squares minimization problem). The least squares mini-
mization problem referring to (IP) is defined as

Jls(p) :=
1

2

ndata∑

i=1

[
ωi‖P iF i(p)− U i

data‖2
L2(Ω0) + ϑi‖Gi(U |p)− ~hidata‖2

L2(Γ̃D0
)

]
→ min

p
.

(22)

Here, U is eliminated in the objective functional by using the explicit forward
operator F . The operator P denotes a linear projection operator. The weights ωi

and ϑi should be chosen, such that all measurements contribute to Jls in the same
order of magnitude. As mentioned in [5], additional measurement tensors could
be introduced in order to emphasize more accurate measurements over inaccurate
ones (if this is known). We omit such measurement tensors here.

The unregularized minimization problem (22) may have no stable solution in
the case of parameter function identification, due to an expected ill posedness of
the problem (IP). To overcome ill posedness, regularization terms can be added
to (22) (e. g. Tikhonov regularization). Another well known regularization
strategy in the case of multiple measurements is given by the multi parameter
regularization. See e. g. [9] for theory. A numerical study on multi parameter
regularization for (IP) with linear elastic small deformations is discussed in [8].
Definition 3.3 (Multi parameter regularization approach). For a multi param-
eter regularization approach the inverse problem (IP) is formulated as the con-
strained minimization problem

Jmp(p) :=
1

2
‖p− p̂‖2

L2(Ω0) → min
p

(23)

s.t.





‖P iF i(p)− U i
data‖L2(Ω0) ≤ δi1

‖Gi(U |p)− ~hidata‖L2(Γ̃D0
) ≤ δi2

i = 1, . . . , ndata

with an initial guess p̂ for the unknown material parameter.

In the following we will focus on a solution approach, which is widely used in
optimal control. We assume, that the explicit operator F is defined by the
implicit equation

A(U |p) = 0

with A(U |p) fulfilling

〈A(U |p), V 〉Z∗,Z = a(U ;V |p)− f(V ) . (24)

In this context, the notation 〈., .〉Z∗,Z stands for the duality product in the space
of test functions Z = (H1

0 (Ω0))3 and its dual space Z∗. Thus, A(U |p) ∈ Z∗ is
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a linear functional in Z. Note, that the definition (24) is natural, since F is
implicitly defined via the variational problem (15). Then we formulate (IP) as a
minimization problem with U and p denoting the variables to be optimized and
the state equation (1) is considered as a constraint.
Definition 3.4 (Optimal control constrained optimization problem). With the
objective functional

JSQP (U, p) :=
1

2

ndata∑

i=1

[
ωi‖P iU i − U i

data‖2
L2(Ω0) + ϑi‖Gi(U |p)− ~hidata‖2

L2(Γ̃D0
)

]
+Rα(p) ,

the inverse identification problem (IP) is formulated as the constrained minimiza-
tion problem

JSQP (U, p) → min
U i,p

s.t.

{
U i(p) fulfill (15) ⇔ A(U i|p) = 0
i = 1, . . . , ndata

. (25)

Optionally, we can add in (25) the quite natural box constraints

0 < Cl ≤ p(X) ≤ Cu <∞ , (26)

if a priori information about lower and upper bounds Cl, Cu ∈ Rnpar of the pa-
rameter p is known. Similar to the implicit forward operator A(U |p), the explicit

operator G can be replaced by setting ~h := G(U |p) as a variable and optimizing

U, p,~h under the additional constraint

H(U ;~h|p) = 0 (27)

with

〈H(U ;~h|p), V 〉Z̃∗,Z̃ =

∫

Γ̃D0

~h · V dS0 − a(U ;V |p) + f(V ) .

Note, that according to (20) here V refers to the space

Z̃ =
{
V ∈ (H1(Ω0))3 : V |ΓD0

\Γ̃D0
= 0
}
.

The term Rα(p) denotes a regularization term with corresponding regularization
parameter α. Specific choices of Rα(p) we will discuss later.

3.3 Solution of the constrained minimization problem

In this study we focus on the regularized solution of (IP) via the optimal control
minimization problem (25). Here, the idea is as follows: We apply a formal
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Lagrange principle for deriving the first order optimality conditions, which leads
to a nonlinear system. Then the resulting nonlinear system is solved iteratively
by using a Newton method and including regularization terms.

This method denotes a SQP method (sequential quadratic programming) as it is
well known in nonlinear optimization. See e. g. [10] for a convergence theory on
infinite dimensional optimization with SQP methods. The application of SQP
methods as a regularization method for identification problems was presented in
[2]. In [7] details on the implementation of SQP methods for implicitly defined
inverse problems can be found. Since (IP) can also be seen as an optimal control
problem for partial differential equations, we additionally refer to the book [19] for
details on optimal control and the formal Lagrange principle for such problems.

For simplicity we start with a single measurement (ndata = 1) and omit the force

measurements ~hdata (ϑ = 0). Then w. l. o. g. the weight ω my be assumed
as ω = 1. Following the direct Lagrange approach in [7] we define the Lagrange
function referring to (25) as

L(U ; ξ|p) :=
1

2
‖PU − Udata‖2

L2(Ω0) + 〈A(U |p), ξ〉Z∗,Z . (28)

Note, that in the formal Lagrange principle the Lagrange multiplier ξ ∈ Z is
identified with a test function V ∈ Z and thus

L(U ; ξ|p) =
1

2
‖PU − Udata‖2

L2(Ω0) + a(U ; ξ|p)− f(ξ) .

The first order optimality condition for a minimizer (U∗, ξ∗, p∗) of (25) corre-
sponds in weak formulation to the nonlinear system

〈Lp, q〉Q∗,Q = 0 ∀q ∈ Q
〈LU , V 〉Z∗,Z = 0 ∀V ∈ Z (29)

〈Lξ,W 〉Z∗,Z = 0 ∀W ∈ Z ,

where the space of parameters is set as Q = (L∞(Ω0))npar . In this context we
assumed, that all Dirichlet boundary conditions are homogenous and hence U ∈
Z. Consequently, the directional derivatives of the Lagrange function hold

〈Lp, q〉Q∗,Q = 〈[Ap(U∗|p∗)]q, ξ∗〉Z∗,Z
〈LU , V 〉Z∗,Z = 〈[AU(U∗|p∗)]V, ξ∗〉Z∗,Z + 〈PV,PU∗ − Udata〉L2(Ω0)

〈Lξ,W 〉Z∗,Z = 〈A(U∗|p∗),W 〉Z∗,Z

with the standard scalar product in L2(Ω0)

〈a, b〉L2(Ω0) =

∫

Ω0

ab dΩ0 .
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