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Abstract
The hierarchical (H-) matrix format allows storing a variety of dense matrices
from certain applications in a special data-sparse way with linear-polylogarithmic
complexity. Many operations from linear algebra like matrix-matrix and matrix-
vector products, matrix inversion and LU decomposition can be implemented
efficiently using the H-matrix format. Due to its importance in solving many
problems in numerical linear algebra like least-squares problems, it is also de-
sirable to have an efficient QR decomposition of H-matrices. In the past, two
different approaches for this task have been suggested in [Lin02] and [Beb08].
We will review the resulting methods and suggest a new algorithm to compute
the QR decomposition of an H-matrix. Like other H-arithmetic operations the
HQR decomposition is of linear-polylogarithmic complexity. We will compare
our new algorithm with the older ones by using two series of test examples and
discuss benefits and drawbacks of the new approach.
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05-07 A. Meyer, P. Steinhorst. Überlegungen zur Parameterwahl im Bramble-Pasciak-CG für
gemischte FEM. April 2005.

05-08 T. Eibner, J. M. Melenk. Fast algorithms for setting up the stiffness matrix in hp-FEM: a
comparison. June 2005.

05-09 A. Meyer, P. Nestler. Mindlin-Reissner-Platte: Vergleich der Fehlerindikatoren in Bezug auf
die Netzsteuerung Teil I. June 2005.

05-10 A. Meyer, P. Nestler. Mindlin-Reissner-Platte: Vergleich der Fehlerindikatoren in Bezug auf
die Netzsteuerung Teil II. July 2005.

05-11 A. Meyer, R. Unger. Subspace-cg-techniques for clinch-problems. September 2005.

05-12 P. Ciarlet, Jr, B. Jung, S. Kaddouri, S. Labrunie, J. Zou. The Fourier Singular Complement
Method for the Poisson Problem. Part III: Implementation Issues. October 2005.

05-13 T. Eibner, J. M. Melenk. Multilevel preconditioning for the boundary concentrated hp-FEM.
December 2005.

05-14 M. Jung, A. M. Matsokin, S. V. Nepomnyaschikh, Yu. A. Tkachov. Multilevel precondi-
tioning operators on locally modified grids. December 2005.

05-15 S. Barrachina, P. Benner, E. S. Quintana-Ort́ı. Solving Large-Scale Generalized Algebraic
Bernoulli Equations via the Matrix Sign Function. December 2005.

05-16 B. Heinrich, B. Jung. Nitsche- and Fourier-finite-element method for the Poisson equation
in axisymmetric domains with re-entrant edges. December 2005.

05-17 M. Randrianarivony, G. Brunnett. C0-paving of closed meshes with quadrilateral patches.
December 2005.

05-18 M. Randrianarivony, G. Brunnett. Quadrilateral removal and 2-ear theorems. December
2005.

05-19 P. Benner, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı. Solving linear-quadratic optimal control
problems on parallel computers. December 2005.

06-01 T. Eibner, J. M. Melenk. p-FEM quadrature error analysis on tetrahedra. October 2006.

06-02 P. Benner, H. Faßbender. On the solution of the rational matrix equation X = Q+LX−1L>.
September 2006.

06-03 P. Benner, H. Mena, J. Saak. On the Parameter Selection Problem in the Newton-ADI
Iteration for Large Scale Riccati Equations. October 2006.

06-04 J. M. Bad́ıa, P. Benner, R. Mayo, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, A. Remón. Bal-
anced Truncation Model Reduction of Large and Sparse Generalized Linear Systems. Novem-
ber 2006.

07-01 U. Baur, P. Benner. Gramian-Based Model Reduction for Data-Sparse Systems. February
2007.



[Gra01] L. Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. PhD thesis,
Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität
zu Kiel, July 2001.

[GV96] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, third edition, 1996.

[Hac99] W. Hackbusch. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction
to H-Matrices. Computing, 62(2):89–108, 1999.

[Hac09] Wolfgang Hackbusch. Hierarchische Matrizen. Algorithmen und Analysis. Springer-
Verlag, Berlin, 2009.

[Hig86] N.J. Higham. Computing the polar decomposition with applications. SIAM J. Sci.
Stat. Computing, 7(4):1160–1174, 1986.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

[HK00] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. II. Application
to multi-dimensional problems. Computing, 64(1):21–47, 2000.

[Hli09] Hlib 1.3. http://www.hlib.org, 1999-2009.

[Lin02] M. Lintner. Lösung der 2D Wellengleichung mittels hierarchischer Matrizen. PhD
thesis, Fakultät für Mathematik, TU München, http://tumb1.biblio.tu-muenchen.
de/publ/diss/ma/2002/lintner.pdf, June 2002.

[Lin04] M. Lintner. The Eigenvalue Problem for the 2D Laplacian in H-Matrix Arithmetic
and Application to the Heat and Wave Equation. Computing, 72:293–323, 2004.

[Ste05] Olaf Steinbach. Lösungsverfahren für lineare Gleichungssysteme. Algorithmen und
Anwendungen. Mathematik für Ingenieure und Naturwissenschaftler. Teubner, Wies-
baden, 2005.

16

1 Introduction

Given a real or complex m× n-matrix M , the factorization

M = QR (1)

is called the QR decomposition of M if Q is an m ×m orthogonal (or unitary) matrix and R is
an m × n upper triangular (or trapezoidal if m < n) matrix. The QR decomposition is used to
solve a variety of matrix algebra problems, in particular least squares problems and linear systems
of equations. It is also used in the archetype of the QR algorithm. See, e.g., [Dem97, GV96] for
properties and applications of the QR decomposition, as well as algorithms for its computation.
If M is a structured matrix and one is to define a set of functions for handling linear algebra
problems involving such a structured matrix, it is thus desirable to have a QR decomposition in
the portfolio due do its wide applicability,

The matrix structure we are interested in here is the hierarchical (short: H-) matrix format.
This allows a data-sparse representation for several types of matrices arising in various applica-
tions. Matrices that belong to this class result, for instance, from the discretization of partial
differential or integral equations using the finite element or boundary element methods. Exploit-
ing the special structure of these matrices in computational methods yields significantly reduced
computing time and memory requirements. The H-matrix format and the associated arithmetic
are derived in [Gra01, GH03, Hac99, HK00] and are now also described in various textbooks and
monographs, see [Beb08, Hac09, Ste05]. Regarding the above remarks on the importance of the
QR decomposition, it will certainly be useful to have one for H-matrices, too. We will call a QR
decomposition an HQR decomposition if the result is a pair of two hierarchical matrices.

In the last years many algorithms for H-matrices were invented, e.g., the H-LU factorisation
[Beb05, BG06], the H-Cholesky factorisation [Lin02, GKB08] and H-inversion [Gra01]. Both
factorisations are used to precondition or to solve linear systems of equations with a hierarchi-
cal coefficient matrix. Many arithmetic operations for H-matrices have a linear-polylogarithmic
complexity. An HQR decomposition should also have such a complexity.

Beside having a complexity as expected for formatted arithmetic operations, the HQR decom-
position should be a good orthogonal decomposition, too. This means first that

rQR := ‖QR−M‖2 (2)

should be small, and second the matrix Q should be orthogonal. We will call Q a nearly orthogonal
matrix if

rorth(Q) :=
∥∥QTQ− I

∥∥
2

(3)

is small. Let
∥∥QTQ− I

∥∥
2
≤ ε� 1.

Then the norm of Q is

‖Q‖2 ≤
√

1 + ε

and the condition number of Q is

κ2(Q) = ‖Q‖2
∥∥Q−1

∥∥
2
≤
√

1 + ε

1− ε ≈ 1 + ε.

Two HQR decompositions have so far been suggested in the literature, see [Beb08, Lin02]. Both
have deficiencies in one of the above requirements as we will see later in Section 4. Therefore,
we suggest an alternative approach that does not yet overcome all difficulties, but offers some
advantages over the existing methods to compute the HQR decomposition.

The outline of the paper is as follows. In the next section we will briefly explain the class of
hierarchical matrices. The following section first provides a review of the two known methods to
compute an HQR decomposition and finally suggests an alternative approach. In Section 4 we
compare the three methods using some numerical tests. Some concluding remarks will be given
in the end.



2 Hierarchical Matrices

Hierarchical (H-) matrices were introduced by W. Hackbusch in 1998 [Hac99]. Some matrices like
BEM or FEM matrices have submatrices that admit low-rank approximations. The basic idea
of the H-matrix format is using a hierarchical structure to find and access such submatrices and
to use good low rank approximations to reduce the storage amount and the computation time.
This low rank approximations makes the H-matrix format data-sparse. The need for truncation
in order to close the class of H-matrices under addition, multiplication and inversion makes formal
H-arithmetic an approximative arithmetic.

We will need a few definitions first, for details see [Gra01] or [GH03]. A hierarchical tree, short
H-tree, TI of an index set I is a tree with the special conditions:

• the index set I is the root of TI and

• a vertex v ∈ TI is either the disjoint union of its sons w ∈ S(v) or a leaf of TI .

The set of sons of a vertex v ∈ TI is called S(v). We define the descendants S∗(v) of a vertex
v ∈ TI by

S∗(v) =

{
{v} if S(v) = ∅,
{v} ∪⋃w∈S(v) S

∗(w) otherwise.

We denote the set of leaves, vertices without sons S(·) = ∅, of the H-tree TI with L(TI). The
H-tree T has a depth depth(T ), which is the maximum length of the paths from the root to each
leave. If cardinality or geometrically balanced clustering is used the depth of the tree is in O(log n)
[GH03, p. 320ff].

A hierarchical product tree, short H×-tree, TI×I is a special H-tree over the index set I× I and
can be regarded as the product of TI × TI . Every vertex of TI×I is the product of two vertices of
the same level of the H-tree TI . For simplification we assume that both H-trees, which form the
H×-tree, are identical.

Now we are able to define the set of H-matrices based on the H×-tree TI×I with maximum rank
k by

H(TI×I , k) :=

{
M ∈ RI×I

∣∣∣∣
∀v × w ∈ L(TI×I) : rank (Mv×w) ≤ k

or #v ≤ nmin or #w ≤ nmin

}
,

with the minimum block size nmin.
We divide the set of leaves in admissible leaves L+(T ) and non-admissible leaves L−(T ). The

submatrices corresponding to admissible leaves have at most rank k and will be stored as so called
Rk-matrices ABT , with k = rankABT . The submatrices corresponding to non-admissible leaves
will be stored in the standard way for dense matrices without any approximation.

If s× t is a vertex of the H×-tree, then Ms×t is the corresponding submatrix of the H-matrix.
If necessary we renumber the indices in order to achieve continuous vertices. The vertex t is
continuous if t = {tmin, tmin + 1, . . . , tmax}. This allows us to order the vertices. We say the vertex
t is smaller than s if and only if the largest index in t, tmax, is lower than the smallest index in s,
smin.

Our goal is to compute an HQR decomposition of an H-matrix. So we need to define: an upper
triangular H-matrix is an H-matrix, where all blocks t × s with s < t are zero and all diagonal
blocks are upper triangular matrices.

A hierarchical matrix M ∈ H(TI×I , k) requires a storage of

NH,st(TI×I , k) = O(kn log n),

where n is the size of I. Also a lot of formatted arithmetic needs only linear-polylogarithmic

2

4.3 The new HQR decomposition

Algorithm 4 performs best for the FEM example series. Only Lintner’s reorthogonalisation method
has a higher orthogonality, but is not as accurate and about three times slower.

The results for the BEM matrices are not that good. For the large matrices the time consumption
increases too fast. Using extrapolation tells us, that probably for such matrices with dimension
105−6 or larger this method is the most expensive one. The two other indicators are good. The
accuracy is as good as for the FEM matrices and the orthogonality is again the second best one.

Summarising the numerical tests there is no method dominating all others. Some methods
are good for special matrices, like Algorithm 2 for block Hessenberg matrices or Algorithm 4 for
matrices with many, large zero blocks. All but the Algorithm 1 are at least as expensive as the
H-inversion, so we must remark:

Remark 4.1. The HQR decomposition should not be used as a preconditioner or a solver for linear
systems of equations, since either Q is not orthogonal or the HLU / HCholesky factorisation or
even the H-inversion are faster.

5 Conclusions

We have discussed three different methods to compute an approximate QR decomposition of H-
matrices. Such HQR decompositions have been suggested previously in the literature. As the
known approaches have some deficiencies either in efficiency or orthogonality of the Q-factor, we
have derived a new method to compute an HQR decomposition. The new approach is not superior
in all aspects, but offers a good compromise of accuracy vs. efficiency. We have compared the three
methods for two typical sets of H-matrices and highlighted advantages and disadvantages of the
three approaches using these examples. We believe the experiments show that our approach to
compute HQR decompositions presents a viable alternative to the existing ones. As none of
the methods turns out to dominate the others w.r.t. overall performance, we hope the presented
examples help to choose the suitable HQR decomposition for concrete problems.
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4 Numerical Results

We use two test example series. Both series are generated using the examples in the Hlib [Hli09].
The first example is the Finite-Element-Method discretisation of the 2D-Laplacian. These matri-
ces have many and large rank-zero blocks. The second example is a Boundary-Element-Method
discretisation for the 3D-unit-sphere. These matrices have no rank-zero blocks. We vary the
dimension of the first example from 16 to 262,144 and of the second example from 66 to 65,538.

We will use the accuracy and the orthogonality of the HQR decompositions and the needed
CPU-time to compare the different algorithms. Some of our test matrices are too large to store
them in a dense matrix-format, so we will use

rHQR := ‖Q ∗H R−HM‖H2 and

rHorth(Q) :=
∥∥QT ∗H Q−H I

∥∥H
2

instead of the norms in (2) and (3) to measure orthogonality and accuracy of the HQR decomposi-
tions. If we compute norms using H-arithmetics the accuracy of the computation is determined by
the approximation error of theH-operations. If rHQR or rHorth is smaller than 10−5 theH-arithmetics
pretend us an accuracy which Q and R does not have. All we can say in this case is, that the
accuracy or the orthogonality is in the range of the approximation error or lower. In Figures 2
and 4 we draw max{rHQR, 10−5} and max{rHorth, 10−5}.

The computations were done on an Intel Xeon Dual Core CPU with 3.0 GHz. The RAM was
large enough to store all matrices in the H-matrix format. We used only one core.

4.1 Lintner’s HQR decomposition

The three different types of Lintner’s HQR decomposition show very different behaviour. The
type of Algorithm 1 is the fastest HQR decomposition in our test, but the matrices Q are far from
being orthogonal, especially for large matrices. This is the only method, which is faster than the
H-inversion for the FEM matrices. This method includes an H-Cholesky factorisation, so that it
is quite natural, that this method is not faster than an H-Cholesky factorisation. We should not
use this method if we are interested in a factorisation of our matrix. The H-LU or H-Cholesky
factorisation are better for this purposes. If we are interested in an orthogonal factorisation, this
method is also not the best one, since the Q is often far from being orthogonal.

The second type, which uses the same method to reorthogonalise the result, is good in the two
categories orthogonality and accuracy, as long as the reorthogonalisation process converges quick.
For the shown numerical tests we stop the reorthogonalisation after six steps, if not before a Q
with an orthogonality of at most 10−3 is computed. For both test matrices, with dimension 65,536
and 65,538, the reorthognalisation does not converge within this six steps. This is one of the
most expensive HQR decomposition, so increasing the number of reorthogonalisation steps will
probably make the method the most expensive one.

The third type of Lintner’s HQR decomposition is the most expensive HQR decomposition
in this test. The orthogonality and the accuracy is in the middle of the other algorithms. To
determine convergence in the polar decomposition we compare the norms of Di and Di+1. If the
difference is smaller than the approximation accuracy of the H-arithmetic, we stop the iteration.
We stop after 11 iteration steps, too.

4.2 Bebendorf’s HQR decomposition

Algorithm 2 is cheaper then the last two algorithms, but the results are not so accurate. Also the
orthogonality is not so good. We have not tested the algorithm with a block-Hessenberg matrix,
but we expect better results for this type of matrices, see remark 3.2.
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Algorithm 1: Lintner’s HQR Decomposition

Input: M
Output: Q,R, M = QR
B := MT ∗HM ;1

RT := HCholesky factorisation(B);2

Solve M = QR ; /* Hlib function SolveLeftCholesky */3

complexity (M1,M2 ∈ H(TI×I , k), v ∈ Rn):

M1 ∗H v : NH∗v(TI×I , k) = O(kn log n),

M1 +HM2 : NH+H(TI×I , k) = O(k2n log n),

M1 ∗HM2, (M1)
−1
H ,H-LU/Cholesky(M1) : NH∗H/NH−1/NLU(H) = O(k2n log2 n).

We will use this well known arithmetic operations ([Gra01, GH03, Lin02, Beb08]) in the HQR de-
composition. TheHQR decomposition is anotherH-arithmetic operation of linear-polylogarithmic
complexity. We will proof this in Section 3, using the following constant: the sparsity constant of
an H-matrix is defined as

Csp := max

{
max
r∈TI

{s ∈ Tj | r × s ∈ TI×I} ,max
s∈TI

{r ∈ Tj | r × s ∈ TI×I}
}
. (4)

For many problems the sparsity constant Csp is independent of the dimension n [Gra01]. We will
assume that Csp is constant.

In the next section we will discuss three different ways to compute a QR decomposition of an
H-matrix. In order to simplify this we will only investigate matrices on the product index set
I × I, which use the same H-tree for the row and column index sets.

3 Three HQR Decompositions

3.1 Lintner’s HQR Decomposition

Let M = QR be the QR decomposition of M . Obviously

MTM = RTQTQR
QTQ=I

= RTR (5)

holds. Michael Lintner described in his dissertation thesis [Lin02] and later in [Lin04] an HQR
decomposition, which first computes R by the Cholesky factorisation of MTM and later the Q
by solving an upper triangular system of equations. This leads to Algorithm 1, the first one for
computing an HQR decomposition.

This algorithm consists only of well known hierarchical operations of linear-polylogarithmic
complexity. The solution of a linear upper triangular system is a part of the Cholesky decomposi-
tion. This HQR decomposition can be implemented easily using the Hlib [Hli09], since the three
needed functions are included.

As the matrix R is computed without any care to the orthogonality of Q, we can not expect a
nearly orthogonal matrix Q. And indeed in many examples, see section 4, the computed Q is not
orthogonal. M. Lintner suggests to compute the HQR decomposition of Q

M = QR = Q′R′R = Q′(R′R)

and to use Q′ times R′R as QR decomposition. We can hope that rorth(Q′) < rorth(Q). If Q′ is
still not orthogonal enough we can repeat this reorthogonalisation process as often as necessary.
But each reorthogonalisation reduces the accuracy of the decomposition and increases the costs.

3



The condition number of MTM is

κ(MTM) ≈ κ(M)2.

For badly conditioned problems squaring the condition number increases the error-sensitivity
dramatically and causes the low orthogonality.

M. Lintner uses the polar decomposition to reduce the condition number to the square root of
κ(M). The polar decomposition can be computed by the following iterative method [Hig86]:

D0 =M

Di+1 =
1

2

(
γiDi +H

1

γi
(Di)

−T
H

)
, i = 0, 1, 2, . . .

γi+1 =
√∥∥D−1i

∥∥
2

/√∥∥D−1i+1

∥∥
2

Di
i→∞−−−−→ D∗

M =D∗
(

(D∗)T M
)

︸ ︷︷ ︸
=M ′

.

D∗ is orthogonal and M ′ is symmetric positive definite, for details see [Lin02]. This method of
polar decomposition is similar to the sign-function iteration. Each iteration step has a complexity
of O(k2n log2 n), since an H-matrix inversion is involved. The H-inversion has an extra large
constant in front of the complexity estimate. We will see this in the numerical results in section 4.

Often five or six iteration steps are sufficient to achieve convergence. But one can show that the
polar decomposition of the Finite-Element-Method discretisation of the Laplacian needs O(log n)
steps, so we have a total complexity of O(k2n log3 n) in this case.

M. Lintner suggested the following steps: First do the polar decomposition

M = QM ′,

then compute the Cholesky factorisation of M ′

M ′ = RTR

and finally use Algorithm 1 to decompose RT

RT = Q′R′.

If we insert these equations, we get

M = QM ′ = QRTR = QQ′R′R.

Multiplying Q ∗H Q′ gives the orthogonal and R′ ∗H R the upper triangular factor of the HQR
decomposition of M . M. Lintner shows that the condition of the last step is

κ
(
RT
)

=
√
κ (M).

So the biggest disadvantage, the squaring of the condition, is more than made up. In the next
subsection we will see a second possibility to avoid squaring the condition, but first a remark on
the solution of the linear least squares problem:

Remark 3.1. If we are interested in the solution of the linear least squares problem, then this
method is not the best one. This method computes the Cholesky factorisation RTR of MTM . The
later computed Q is not necessary to solve the normal equation RTRx = MTMx = Mb. But
solving the normal equations directly is dangerous for ill conditioned matrices M , see [Hig02, p.
386ff].
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Algorithm 2: Bebendorf’s HQR Decomposition

Input: M =

[
M11 M12

M21 M22

]

Output: Q,R, M = QR

Function [Q,R] =HQR(M) begin1

if M /∈ L(T ) then2

X := M21 ∗H (M11)
−1
H ;3

L1L
T
1 := HCholesky factorisation(I +XTX);4

L2L
T
2 := HCholesky factorisation(I +XXT );5

R :=

[
LT
1M11 L−11

(
M12 +XTM22

)

0 L−12 (M22 −XM12)

]
;

6

[Q1, R11] :=HQR(R11);7

R12 := QT
1 R12;8

[Q2, R22] :=HQR(R22);9

Q :=

[
I XT

−X I

]T
∗H
[
L−11 0

0 L−12

]T
∗H
[
Q1 0
0 Q2

]
;

10

else11

[Q,R] =QR(A); /* standard QR decomposition */12

end13

end14

3.2 Bebendorf’s HQR Decomposition

Algorithm 2 is described in [Beb08, p. 87ff]. In contrast to the one in the previous subsection
this is a direct method. This algorithm computes a series of orthogonal transformations, which
triangularise M . On the first recursion level the matrix is transformed to block upper triangular
form. The two resulting diagonal blocks are triangularised by recursion. In line 10 of Algorithm
2 the orthogonal transformation of the current level is described by the product

[
L−11 0

0 L−12

] [
I XT

−X I

]
=

[
L−11 L−11 XT

−L−12 X L−12

]
.

This is a kind of block Givens rotation, because

det

[
L−11 L−11 XT

−L−12 X L−12

]
= detL−11 det

(
L−12

(
I +XXT

))
= 1.

On each recursion level the matrix M11 has to be inverted. Probably this makes the algorithm
expensive. Further, not even all matrices have an invertible first diagonal block, i.e.

[
0 I
I 0

]

has a QR decomposition, but 0 is not invertible.
Bebendorf shows that the complexity of Algorithm 2 is determined by the complexity of the

H-matrix multiplication, so this is an algorithm of linear-polylogarithmic complexity, too. He
further shows that increasing the H-arithmetics precision from level to level as ε/l ensures an
orthogonality of order ε log d, d being the depth of TI×I .

Remark 3.2. If we assume, that the block A21 has the structure

A21 =




0 · · · 0 ∗
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0


 ,

5



as may be the case in QR iterations, then inverting the last diagonal block of A11 is enough to zero
A21. The matrix Q then has the structure

Q =




I
. . .

I
L−11 L−11 XT

−L−12 X L−12

I
. . .

I




.

This leads to a considerable reduction of cost. For this Q it is easy to see, that we use a block
generalisation of Givens rotations.

3.3 A new Method for Computing the HQR Decomposition

In this section we present a new HQR decomposition. The main idea is to use the standard
QR algorithm for dense matrices as often as possible. In the numerical comparison we will use
the LAPACK [ABB+99] function dgeqrf for the QR decompositions of dense matrices. This new
algorithm works recursively block-columnwise.

First we will investigate what to do on the lowest level of the hierarchical structure. Later we
will describe the recursive computation for non-leave block-columns. On this higher levels we will
use a block modified Gram-Schmidt orthogonalisation. For this block-orthogonalisation we use
H-matrix-matrix multiplications and additions. We do not use the expensive H-inversion.

3.3.1 Leave Block-Column

Let M be an H-matrix and TI×I the corresponding H×-tree based on TI × TI . We will call a
block-column MI×s a leave block-column if s is a leave of TI , s ∈ L(TI). In this subsection we
will compute the QR decomposition of such a leave block-column.

Our leave block-column MI×s consists of blocks Mi. These blocks are elements of the block-
hierarchical tree H× of our H-matrix. In this subsection we will assume that the block ti × s
corresponding to Mi includes a leave ti of our H-tree. The other cases will be treated in the next
subsection.

The block ti × s is an admissible or a non-admissible block. If the block is non-admissible, we

will treat this block like an admissible one by substituting Mi with I
(
MT

i

)T
or MiI. So all blocks

of M have the structure AiB
T
i ,

M =




M1

M2

...
Mp


 =




A1B
T
1

A2B
T
2

...
APB

T
P


 .

We can now write M itself as a product of two matrices:

M = ABT =




A1 0 · · · 0

0 A2
. . . 0

...
. . .

. . .
...

0 0 · · · Ap



[
B1 B2 · · · Bp

]T
.

We notice, that B is a dense matrix.
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On the lowest level of the H-tree we use only the standard QR decomposition without any
truncation, so we can neglect the errors done on this level since the double-precision accuracy will
in general be much higher than the precision of the H-arithmetic approximations on the other
levels.

For a binary tree the computation on level l simplifies to

M = [M1,M2]

Q1, R11 = HQR(M1)

R12 := QT
1 ∗HM2

M̃2 := M2 −H Q1 ∗H R12

Q2, R22 = HQR(M̃2)

For Q = [Q1, Q2] we want to estimate the norm of

QTQ− I =

[
QT

1Q1 − I QT
1Q2(

QT
1Q2

)T
QT

2Q2 − I

]
.

From level l + 1 we already know that
∥∥QT

i Qi − I
∥∥
2
≤ δl+1, i = 1, 2. To compute M̃2 two H-

matrix-matrix-multiplications are necessary. From this it follows that there is a matrix F , with
‖F‖2 ≤ 2εl, εl is the H-arithmetic approximation error on level l , and

M̃2 = M2 −Q1Q
T
1M2 + F.

For QT
1Q2 we get

QT
1Q2 = QT

1

(
M2 −Q1Q

T
1M2 + F

)
R−122 = QT

1 FR
−1
22 ,

and the norm is

∥∥QT
1Q2

∥∥
2
≤ ‖F‖2

∥∥R−122

∥∥
2
≤ 2εl

∥∥R−122

∥∥
2
.

Now we can estimate, that

δl =
∥∥QTQ− I

∥∥
2

=

∥∥∥∥
[
QT

1Q1 − I QT
1Q2(

QT
1Q2

)T
QT

2Q2 − I

]∥∥∥∥
2

≤
√
δ2l+1 + 4ε2l

∥∥R−122

∥∥2
2
.

It follows, that

δ2l ≤ δ2l+1 + 2cε2l ,

if
∥∥R−122

∥∥
2
≤ c. For constant εl we get

δ21 ≤
L∑

i=1

2cε2l = 2cLε2l .

If we chose εl = ε
/√

L , rorth(Q) will be O(ε).

Remark 3.3. During the testing of this algorithm we observed that especially the last (or the last
two) column(s) of Q are not orthogonal to the previous ones. A reorthogonalisation of the last
column helps to get a nearly orthogonal Q.
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Algorithm 4: HQR Decomposition of an H-Matrix

Input: MI×t, {s1, . . . , sq} ∈ S(t)

Output: Q ∈ RI×t, R ∈ Rt×t, M = QR
if t ∈ L(T ) then1

Compute the QR decomposition using algorithm 3;2

else3

for k = 1, . . . , p do4

If wk × t is admissible, then compute the QR factorisation of A = QR, store Q and5

form RBT ;
Split all dense matrix, which overlap more than one block-column;6

end7

for j = 1, . . . , q do8

for i = 1, . . . , j − 1 do /* modified Gram-Schmidt orthogonalisation */9

Rsi×sj := QT
I×siMI×sj ;10

MI×sj := MI×sj −QI×siRsi×sj ;11

end12

Compute the QR decomposition of MI×sj recursively.13

end14

for k = 1, . . . , p do15

If wk × t is admissible, use the stored Q and the computed rectangular matrix B′16

to form the Rk-matrix QB′T ;
Recombine overlapping matrices;17

end18

end19

si is a father or an ancestor of s. There is only one si on each level fulfiling this condition. The
definition of the sparsity constant Csp, see equation (4), gives

∑

ti×si∈L+(TI×I)
s∈S∗(si)

rankMti×si ≤ Cspdepth(TI×I)kmax.

So we can bound ρ by

ρ ≤ CspkmaxO(log n) + Cspnmin.

So this QR decompositions costs

NQR(B,one column) ≤ Csp (kmaxO(log n) + nmin) #snmin.

Summing over all columns gives

NQR(B,all) ≤ Csp (kmaxO(log n) + nmin)nminn = O(kmaxn log n).

We can summerise that the used standard QR decompositions needs only a linear-polylogarithmic
amount of work.

For the orthogonalisations of block-columns against the previous columns, we need in summation
not more H-operations than for two H-matrix-matrix multiplications. Hence the total complexity
is linear-polylogarithmic.

3.3.4 Orthogonality

In this subsection we investigate the dependency of the orthogonality on the H-arithmetic ap-
proximation error. We will use a recursive approach starting on the lowest level to estimate∥∥QTQ− I

∥∥
2
. For simplification we will assume, that the H-tree is a binary tree.
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We will compute the QR decomposition of this block-column in two steps. First we transform
A to an orthogonal matrix and after that we compute the QR decomposition of the resulting B′.

The matrix A can be orthogonalised block-by-block. Every Ai has to be factorised into QAiRi

using the standard QR decomposition, since Ai is dense. The matrices Ri will be multiplied from
the right hand side to Bi, B

′
i = BiR

T
i .

The second step is as simple as the first one. The matrix B′T is dense, so we can use the
standard QR decomposition for the decomposition of B′T = QT

BRB . We get an orthogonal matrix
QAQB and an upper triangular matrix RB :

M = ABT =




QA1
0 · · · 0

0 QA2

. . .
...

...
. . .

. . . 0
0 · · · 0 QAp







R1B
T
1

R2B
T
2

...
RpB

T
p


 =




QA1
0 · · · 0

0 QA2

. . .
...

...
. . .

. . . 0
0 · · · 0 QAp



QBRB .

The resulting matrix QT
B can be subdivided like BT into QT

Bi
. We can combine the matrices

QAiQ
T
Bi

again and get a block-column Q with the same structure as M ,

M = QAQBRB =




QA1
0 · · · 0

0 QA2

. . . 0
...

. . .
. . .

...
0 0 · · · QAp







QT
B1

QT
B2

...
QT

Bp


RB .

We have

QTQ = QT
B




QA1
0 · · · 0

0 QA2

. . .
...

...
. . .

. . . 0
0 · · · 0 QAp




T 


QA1
0 · · · 0

0 QA2

. . .
...

...
. . .

. . . 0
0 · · · 0 QAp



QB

= QT
B




QT
A1
QA1 0 · · · 0

0 QT
A2
QA2

. . .
...

...
. . .

. . . 0
0 · · · 0 QT

Ap
QAp



QB = QT

BIQB = I,

so that Q is orthogonal.
These steps are described in Algorithm 3. We only use matrix-matrix multiplications and QR

decompositions for standard matrices, so the accuracy of the computation can be regarded as
perfect compared with the approximation error of the H-arithmetic.

3.3.2 Non-Leave Block Column

In the last section we have factorised a leave block-column MI×s, s ∈ L(TI). In this section we will
use this to compute recursively the HQR decomposition of a hierarchical matrix. An H-matrix
M ∈ RI×I is in general a non-leave block-column.

Let MI×t be a non-leave block column of M , that means S(t) 6= ∅. We have chosen the
numbering of the indices, so that we can order the sons si ∈ S(t):

∀si ∈ S(t) \ {s1} : s1 < si

∀si ∈ S(t) \ {s1, s2} : s2 < si

...

⇒ s1 < s2 < s3 < · · ·

7



Algorithm 3: HQR Decomposition of a Block-Column

Input: MI×s =
[
AiB

T
i

]p
i=1

Output: Q,R, with MI×s = QR
for i = 1, . . . , p do1

if Mi is admissible then2

Compute the QR decomposition Ai = QAiRi;3

Ai := QAi
and BT

i := RiB
T
i ;4

else5

Mi ∈ Rri×ci ;6

if ri ≤ ci then7

BT
i = Mi (Ai := I); /* Ai is already orthogonal */8

else9

Compute the QR decomposition Mi = QAi
Ri;10

Ai := QAi
and BT

i := Ri;11

end12

end13

end14

Assemble BT = [B1B2 · · ·Bp]
T

;15

Compute the QR decomposition BT = QBRB ;16

Partition BT into BT
i ;17

for i = 1, . . . , p do18

if Mi is admissible then19

AiB
T
i is a block of Q;20

else21

if Ai = I then22

BT
i is a dense block of Q;23

else24

Compute AiB
T
i to get a dense block of Q;25

end26

end27

end28
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We get the QR decomposition of the first block-column MI×s1 by using this recursion. The
QR decomposition of the second block-column starts with the orthogonalisation w.r.t. the first
block-column by using a block modified Gram-Schmidt orthogonalisation. We compute

Rs1×s2 = QT
I×s1 ∗HMI×s2 and

M ′I×s2 := MI×s2 −H QI×s1 ∗H Rs1×s2 .

Now we apply again the recursion to compute the QR decomposition of M ′I×s2 . If t has more than
two sons, the other block-columns can be treated analogously. Algorithm 4 describes these steps
in algorithmic form.

We have chosen the hierarchical block-tree in order to find large admissible blocks. Let w × t
be an admissible block and C ∈ Rsi×t = ABT the corresponding Rk-matrix. We have to split
C in two submatrices before we continue with the steps above. We will do something similar to
Algorithm 3 to get a dense, easily partitionable matrix: computing the standard QR decomposition
of A = QARA, multiplying RAB

T and storing QA. Using QA we can factorise our block-column
in

MI×t =




I 0 · · · 0

0
. . .

. . .
...

...
. . . QA 0

0 · · · 0 I







Mw1×s1 Mw1×s2
Mw2×s1 Mw2×s2

...
...

RAB
T

...
...



.

The matrix RAB
T ∈ Rk×#t is a small rectangular dense matrix. Splitting a dense matrices into

two block-columns in a columnwise organised storage simply means setting a second pointer on
the first element of the second matrix. Note: on the next levels we have to split this dense matrix
again.

The matrix Q has the same structure as M , apart from the adaptive chosen ranks of the
admissible blocks. The matrix R is an H-matrix, too. In the next section we will investigate the
complexity of this algorithm.

3.3.3 Complexity

In order to simplify the complexity analysis, we assume the existence of a constant kmax, which
bounds the ranks k.

Each matrix Ai of every Rk-matrix AiB
T
i is decomposed using the standard QR decomposition.

The matrix Ai has the dimension m × k, with k the rank of the Rk-matrix. The standard QR
decomposition of a matrix F ∈ Re×f needs O(f2e) flops, so the QR decomposition of Ai needs
O(k2m) flops. The matrix Ai needs NAi,st = mk storage. If we sum over all Ai, we get

∑

i

NQR(Ai) ≤ O (kmaxNH,st) .

Analogously the number of flops for line 10 in Algorithm 3 is in O (nminNH,st).
For each block-column MI×s of the lowest level we compute another QR decomposition to treat

the remaining factor of compounded Bi. The vertex s has at most nmin indices, otherwise the
non-admissible diagonal block of M would be divided once more. It follows that such a block-
column has at most nmin columns, #s ≤ nmin. Further we need the number of rows ρ of BT . The
block-column is composed of matrix-blocks Mi (and parts of such blocks) of the form ti × si with
ti × si ∈ L(TI×I) and s ∈ S∗(si). The number of rows ρ is the sum of

ρ =
∑

ti×si∈L+(TI×I)
s∈S∗(si)

rankMti×si +
∑

ti×si∈L−(TI×I)
s∈S∗(si)

min {#si,#ti} .

In the non-admissible leaves we use the test in line 7 in Algorithm 3 to ensure that the number
of rows of the corresponding BT

i is min {#si,#ti} ≤ nmin. The condition s ∈ S∗(si) means, that
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