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Abstract

The SHIRA method of Mehrmann and Watkins belongs among
the structure preserving Krylov subspace methods for solving skew-
Hamiltonian eigenvalue problems. It can also be applied to Hamilto-
nian eigenproblems by considering a suitable transformation. Structure-
induced shift-and-invert techniques are employed to steer the algorithm
towards the interesting region of the spectrum. However, the shift can-
not be altered in the middle of the computation without discarding the
information that has been accumulated so far. This paper shows how
SHIRA can be combined with ideas from Ruhe’s Rational Krylov algo-
rithm to yield a method that permits an adjustment of shift after every
step of the computation, adding greatly to the flexibility of the algo-
rithm. We call this new method rational SHIRA. A numerical example
is presented to demonstrate its efficiency.
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1 Introduction

1.1 The Hamiltonian eigenvalue problem

We consider the standard eigenvalue problem

Hx = λx, (1.1)

for a Hamiltonian matrix H. Hamiltonian matrices H ∈ R2n×2n feature the explicit block
structure

H =

[
A B
C −AT

]
, B = BT , C = CT ,

where A, B, C are real n× n matrices.

Hamiltonian matrices and eigenproblems arise in a variety of applications. They are
ubiquitous in control theory, where they play an important role in various control design
procedures (linear-quadratic optimal control, Kalman filtering, H2- and H∞-control, etc.,
see, e.g., [2, 17, 24, 30] and most textbooks on control theory), system analysis problems
like stability radius, pseudo-spectra, and H∞-norm computations [8, 9, 10], and model
reduction [1, 5, 6, 14, 26, 29]. Another source of eigenproblems exhibiting Hamiltonian
structure is the linearization of certain quadratic eigenvalue problems [4, 18, 20, 28]. Fur-
ther applications can be found in computational physics and chemistry, e.g. symplectic
integrators for molecular dynamics [12, 16], methods for random phase approximation
(RPA) [19], etc.

Hamiltonian matrices may equivalently be characterized as those that are skew-adjoint
with respect to the bilinear form 〈x, y〉J := yTJx induced by the skew-symmetric matrix

J = Jn =

[
0 In

−In 0

]
,

where In denotes the n×n identity matrix. This definition is advantageous in that it leads
us directly to two other types of structured matrices, which play an important role when
dealing with Hamiltonian eigenvalue problems, namely skew-Hamiltonian and symplectic
matrices. Skew-Hamiltonian matrices are those that are self-adjoint with respect to 〈·, ·〉J
and symplectic matrices S ∈ R2n×2n fulfill the relation

STJS = J

which means they are orthogonal with respect to 〈·, ·〉J . Similarity transformations using
symplectic matrices can be shown to preserve all of these structures.

Hamiltonian matrices arising in the aforementioned applications are often large and
sparse and only a small portion of their spectrum is sought. Krylov subspace methods
have proven to be a viable tool for solving this kind of task. They extract certain spectral
information by projection of the original matrix onto a sequence of expanding Krylov
subspaces. Recall that the Krylov subspace of order m associated with the matrix H and
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the starting vector u is defined to be

Km(H, u) := span{u,Hu,H2u, . . . , Hm−1u}.

Note that the choice of the starting vector u may critically influence the outcome of the
method. In practice, the process is frequently restarted to gradually improve the quality
of the starting vector [3, 25].
The spectra of Hamiltonian matrices cannot be arbitrary. Real and purely imaginary

eigenvalues are bound to occur in pairs {λ,−λ}, while general complex eigenvalues always
occur in quadruples {λ,−λ, λ,−λ}. That is, the spectrum of a Hamiltonian matrix is sym-
metric with respect to both the real and the imaginary axis. We will refer to this property
as the Hamiltonian spectral symmetry. Numerical methods that take this symmetry into
account are capable of preserving the eigenvalue pairings despite the presence of roundoff
errors and thus return physically meaningful results. Moreover, exploiting the structure
usually leads to more efficient and sometimes more accurate algorithms.
Krylov subspace methods can be redesigned to preserve the Hamiltonian structure. This

is done by rearranging the computations such that J-orthogonal bases for the underlying
Krylov subspaces are produced. Projections of the original matrix onto these spaces will
then amount to partial symplectic similarity transformations and hence will inherit the
Hamiltonian structure.

1.2 The isotropic Arnoldi process

Skew-Hamiltonian matrices are somewhat easier to handle in this context as we can take
advantage of the following result.

Lemma 1.1. Let L ∈ R2n×2n be skew-Hamiltonian, then for every starting vector u ∈ R2n

the Krylov subspace K = Km(L, u) of order m ∈ N, m ≤ n, is isotropic, i. e., yTJx = 0
for all x, y ∈ K.

Proof. See [18, Prop. 3.3].

Hence, at least in theory, there is no need for J-orthogonalization and we are free to
orthogonalize the basis vectors with respect to the standard inner product instead, i. e., we
can apply the Arnoldi algorithm. In practice, however, this isotropy is distorted by roundoff
error and has to be enforced numerically. This gives rise to the isotropic Arnoldi process of
Mehrmann and Watkins [18], where each new basis vector uj+1 is orthogonalized not only
against the previously computed basis vectors u1, . . . , uj, but also against Ju1, . . . , Juj to
yield the augmented Arnoldi relation

LUj = UjTj + JUjSj + uj+1tj+1,je
T
j . (1.2)

As was already mentioned, Sj would vanish in exact arithmetic. In finite precision it may
happen to deviate from zero, but can still be assumed to be tiny and therefore neglected
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Figure 3.4: Ritz values for the test problem computed by rational SHIRA

4 Conclusions

We have presented a detailed derivation of an algorithm for solving Hamiltonian eigenprob-
lems, which combines the SHIRA method of Mehrmann and Watkins with Ruhe’s Rational
Krylov algorithm in pursuit of equipping the former with the possibility of changing the
shifts at runtime. We, therefore, call this new method rational SHIRA. Preliminary nu-
merical results confirm the efficiency of the method, although the need for more numerical
experience persists at the time of writing this paper.
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Figure 3.3: Convergence history of the rational SHIRA method for the test matrix

steps of rational SHIRA and then repeat this strategy of selecting another shift from the
Ritz values. Continuing this scheme, where every shift is kept for two iterations and then
replaced, yields the convergence history depicted in figure 3.3. A Ritz value whose residual
becomes less than 10−9 is considered converged and deflated from the active part of the
computation as explained in 2.4. As doing so inhibits our residual estimate (2.20) (causing
it to be zero), the residuals of deflated (locked) eigenvalues are always listed to be machine
precision u ≈ 2.22 · 10−16.

The plot in figure 3.3 indicates that the residuals of a total of 18 real Ritz values or
pairs of complex conjugate Ritz values could be driven below the threshold of 10−9 within
40 steps of the iteration. Bear in mind, however, that the Krylov sequence has been
extended by two vectors in those steps where complex shifts were used. Figure 3.4 shows
the computed Ritz values in the first quadrant in comparison to the eigenvalues determined
by eig. Because of the Hamiltonian spectral symmetry we also have corresponding Ritz
values within the other three quadrants.

Even though the computed Krylov basis is all real, Matlab’s complex arithmetic has
been taken advantage of when solving linear systems for operators with complex shifts.
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in our considerations. Moreover, since Uj is orthogonal and isotropic the extended matrix
[U, JTU ] is orthogonal and J-orthogonal. By projection we find

[Uj, J
TUj]

TL[Uj, J
TUj] =

[
Tj ∗
−Sj T T

j

]
≈

[
Tj ∗
0 T T

j

]

meaning that the eigenvalues of Tj are approximations to double eigenvalues of the pro-
jected matrix.
The use of this procedure is not restricted to skew-Hamiltonian eigenproblems though.

It is valuable in the Hamiltonian case as well if applied to an appropriate modification of
the original matrix. For example, one might think of employing H2, whose eigensystem is
the same as H’s except that eigenvalues have been squared and which is skew-Hamiltonian
whenever H is Hamiltonian. This is a proper choice as long as extremal eigenvalues of
H are required, but might be rather slow when it comes to interior eigenvalues. In [18]
Mehrmann and Watkins propose the use of the compound shift-and-invert operators

L1(µ) = (H − µI)−1(H + µI)−1

for real and purely imaginary target shifts µ and

L2(µ) = (H − µI)−1(H + µI)−1(H − µI)−1(H + µI)−1

for general complex target shifts. Both of these operators are skew-Hamiltonian for any
Hamiltonian matrix H and accelerate the convergence of eigenvalues near the pair {µ,−µ}
or the quadruple {µ,−µ, µ,−µ}, respectively, by simultaneously mapping them to eigen-
values of large modulus.
If the isotropic Arnoldi algorithm applied to either L1(µ) or L2(µ) is complemented with

implicit restarts [25], we obtain the SHIRA method [18].

1.3 Contributions by this paper

With conventional SHIRA the target shift µ is chosen in the beginning of the computation
and maintained throughout an entire run of the algorithm. The only way to alter the
shift is to terminate the current run and start a new one, thereby discarding the Krylov
basis that has been assembled so far. However, if two consecutive shifts are not too far
apart from each other, the old Krylov subspace will also contain some approximations to
eigenvectors corresponding to eigenvalues in the vicinity of the new shift. Conversely, the
new Krylov subspace will develop unwanted components in the direction of eigenvectors
corresponding to eigenvalues near the old shift, which the old Krylov basis could help to
filter out. Sequences of close-by shifts occur, e. g., when the first shift is an initial guess,
which is successively being improved as Ritz values progress towards actual eigenvalues.
For these reasons it seems beneficial to circumvent sacrificing the Krylov subspace and the
information it includes.
The Rational Krylov Method of Ruhe [22, 23, 21] permits us to transform an Arnoldi
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relation for any shifted and inverted operator back to an Arnoldi relation for the original
matrix regardless of shift. Consequently, we may vary the shift at will without being forced
to rerun the algorithm. The Krylov subspace is retained and expanded at every step. The
price we have to pay is that the projected smaller eigenvalue problems are now generalized
upper Hessenberg / triangular instead of upper Hessenberg standard eigenvalue problems.

As the Rational Krylov Method is designed to work with the simple shift-and-invert
transformation H 7→ (H − µI)−1 it might seem inappropriate for the compound operators
L1(µ) and L2(µ) at first glance. But if we write L1(µ) as (H

2 − µ2I)−1, we observe that
it can equally well be understood as a simple shift-and-invert operator for the matrix H2

with the target shift µ2. Accordingly, we can apply Rational Krylov to obtain an Arnoldi
relation for H2. Based upon this idea, a rational SHIRA algorithm for the Hamiltonian
eigenvalue problem will be constructed in section 2. Numerical evidence for the efficiency
of this new method will be given in section 3. The paper concludes with a brief summary
and some remarks in section 4.

2 Rational SHIRA

Throughout this section, H will denote a Hamiltonian 2n × 2n matrix so that H2 is
skew-Hamiltonian. We will make use of the induced structural properties without always
reminding the reader of these.

2.1 Rational Krylov transformation for real or purely imaginary shifts

Assume we have a generalized Arnoldi recurrence of the form

H2Uj−1Tj−1 = UjKj,j−1,

where the columns u1, . . . , uj of Uj ∈ R2n×j constitute an orthonormal and isotropic
basis of the Krylov subspace Kj(H

2, u1), Tj−1 ∈ R(j−1)×(j−1) is upper triangular and
Kj,j−1 ∈ Rj×(j−1) is upper Hessenberg. The components resulting from the numerical
J-orthogonalization of the basis vectors in (1.2) have been neglected here as they are zero
in exact arithmetic. Note that in a standard Arnoldi recurrence, Tj−1 = Ij−1. Allowing
a more general matrix Tj−1 adds the flexibility necessary for deriving the rational Krylov
transformation in the following.

Given a shift µj, we calculate (H
2−µ2

jI)
−1uj and orthogonalize it against u1, . . . , uj and

Ju1, . . . , Juj to obtain

tj+1,juj+1 = (H2 − µ2
jI)

−1uj −
j∑

i=1

ti,jui −
j∑

i=1

si,jJui. (2.1)

Let us confine ourselves to real or purely imaginary shifts µj for now, so the computation
remains real. If we again neglect the components resulting from the J-orthogonalization,

4

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 3995

Figure 3.1: Sparsity pattern of test matrix

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real part

Im
ag

in
ar

y 
pa

rt

Figure 3.2: Spectrum of the test matrix

32: test every Ritz value for convergence by appropriately reordering the Schur form
33: lock converged Ritz values
34: transform active part back into an Arnoldi decomposition
35: optionally apply a filter polynomial
36: until p Ritz values have been locked
37: take positive and negative roots of locked Ritz values as eigenvalue estimates
38: determine corresponding eigenvectors by inverse iteration if requested

3 Numerical Experiments

In order to assess the numerical behavior of the rational SHIRA method as it is described
in section 2, we have applied it to the ”intelligent highway” problem taken from the bench-
mark collection [7, Ex. 15] using Matlab 6.1. We chose the number of vehicles to be 500
resulting in a Hamiltonian matrix H of dimension 1998 × 1998. The matrix itself is very
sparse as is shown in figure 3.1, which allows for cheap solutions of linear systems involv-
ing this matrix or shifted versions thereof. The spectrum of the matrix (as returned by
Matlab’s eig command) has the appearance of figure 3.2 featuring both real and general
complex, but no purely imaginary eigenvalues.

We start out performing two steps of rational SHIRA with shift µ1 = 0.7. We keep
track of the residuals of the individual Ritz values by means of (2.20) utilizing the Krylov-
Schur approach outlined in 2.4. We then choose the new shift to be the Ritz value with
smallest residual not less than 10−5 in order to speed up convergence for this Ritz value,
but prevent the shifted operator from becoming nearly singular. We carry out two more

13



2.6 Complete algorithm

Putting the pieces together, we obtain the following algorithm.

INPUT: Hamiltonian matrix H, starting vector u1, number of requested eigenvalue pairs
p.

OUTPUT: p eigenvalue pairs, optionally corresponding eigenvectors.
1: j := 1
2: normalize u1 :=

1
‖u1‖u1

3: T0 := []
4: K1,0 := []
5: repeat
6: pick a shift µj

7: compute w := (H − µjI)
−1(H + µjI)

−1uj (as described in 2.3)
8: if µ2

j is real then
9: orthogonalize ũj+1 := w − Ujtj, where tj := UT

j w (Gram-Schmidt)
10: repeat orthogonalization as necessary
11: normalize uj+1 :=

1
tj+1,j

ũj+1, where tj+1,j := ‖ũj+1‖
12: form T̃j+1,j and K̃j+1,j as in (2.4)
13: determine orthogonal matrices Q ∈ R(j+1)×(j+1), Z ∈ Rj×j, such that

Tj+1,j := QT T̃j+1,jZ is upper triangular and
Kj+1,j := QT K̃j+1,jZ is upper Hessenberg

14: define Tj to be the first j rows of Tj+1,j

15: set Uj+1 := Uj+1Q
16: j := j + 1
17: else
18: orthogonalize ũj+1 := <(w)− Ujtj, where tj := UT

j <(w) (Gram-Schmidt)
19: repeat orthogonalization as necessary
20: normalize uj+1 :=

1
tj+1,j

ũj+1, where tj+1,j := ‖ũj+1‖
21: orthogonalize ũj+2 := =(w)− Uj+1tj+1,

where tj+1 := UT
j+1=(w) (Gram-Schmidt)

22: repeat orthogonalization as necessary
23: normalize uj+2 :=

1
tj+2,j+1

ũj+2, where tj+2,j+1 := ‖ũj+2‖
24: split µ2

j =: ρj + iθj
25: form T̃j+2,j+1 as in (2.12) and K̃j+2,j+1 as in (2.13)
26: determine orthogonal matrices Q ∈ R(j+2)×(j+2), Z ∈ R(j+1)×(j+1) such that,

Tj+2,j+1 := QT T̃j+2,j+1Z is upper triangular and
Kj+2,j+1 := QT K̃j+2,j+1Z is upper Hessenberg

27: define Tj+1 to be the first j + 1 rows of Tj+2,j+1

28: Uj+2 := Uj+2Q
29: j := j + 2
30: end if
31: reduce Tj−1 and Kj,j−1 to generalized Schur form using the QZ algorithm
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(2.1) can be rewritten as

(H2 − µ2
jI)

−1uj = Uj+1tj, tj = (ti,j)
j+1
i=1 .

Premultiplication by H2 − µ2
jI yields

(H2 − µ2
jI)Uj+1tj = uj,

which can be further rearranged into

H2Uj+1tj = Uj+1(ej + tjµ
2
j), (2.2)

where ej designates the j-th unit vector. Combining the previous Arnoldi relation with
(2.2) results in

H2Uj+1T̃j+1,j = Uj+1K̃j+1,j, (2.3)

where

T̃j+1,j =




t1,j

Tj−1
...

tj−1,j

0 · · · 0 tj,j
0 · · · 0 tj+1,j



, K̃j+1,j =




t1,jµ
2
j

Kj,j−1
...

1 + tj,jµ
2
j

0 · · · 0 tj+1,jµ
2
j


 . (2.4)

Note that both T̃j+1,j ∈ R(j+1)×j and K̃j+1,j ∈ R(j+1)×j are rectangular upper Hessenberg
matrices. In order to regain a generalized Arnoldi recurrence from (2.3), we determine
orthogonal matrices Q ∈ R(j+1)×(j+1) and Z ∈ Rj×j, such that QT T̃j+1,jZ =: Tj+1,j is upper
triangular and QT K̃j+1,jZ =: Kj+1,j is again upper Hessenberg. This can be achieved by
the following bulge-chasing procedure, starting from the bottom and chasing the bulge off
the top: use a Givens rotation applied to rows j, j+1 from the left to eliminate tj+1,j. This
introduces a bulge in the (j+1, j−1) position in K̃j+1,j which in turn can be eliminated by
a Givens rotation in planes j − 1, j applied from the right. Now the Hessenberg structure
in K̃j+1,j is restored at the price of a bulge in the (j, j − 1) position of T̃j+1,j. Eliminating
this by a plane rotation applied to rows j−1, j again introduces a bulge in the Hessenberg
structure of K̃j+1,j, now in the (j, j−2) position. As before, this is eliminated by a rotation
from the right applied to the corresponding columns, i.e., to columns j− 2, j− 1 this time.
The process continues by alternately eliminating the introduced bulges in T̃j+1,j and K̃j+1,j,
respectively, in the same way as just described for the last two rows. In this way, the bulges
move up and to the left one position during each step until the bulge is chased off the top.
The accumulation of necessary rotations from the left yields Q while the rotations from
the right form Z.

Now postmultiplying (2.3) by Z and utilizing these transformed matrices, we achieve

H2Uj+1QTj+1,j = Uj+1,jQKj+1,j.
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Observe that its triangular shape causes the last row of Tj+1,j to be zero, so we can partition

Tj+1,j =

[
Tj

0 · · · 0

]
,

where Tj ∈ Rj×j is upper triangular and square. Lastly, we let Vj+1 := Uj+1Q and our
equation reduces to

H2VjTj = Vj+1Kj+1,j.

Since Q is orthogonal the columns of Vj+1 are orthonormal as were those of Uj+1. Thus,
we have restored a generalized Arnoldi relation. Because of

‖V T
j+1JVj+1‖2 = ‖QTUT

j+1JUj+1Q‖2 = ‖UT
j+1JUj+1‖2 = 0, (2.5)

Vj+1 also inherits numerical isotropy from Uj+1. So, the Rational Krylov transformation
does not interfere with the (generalized) isotropic Arnoldi process.

2.2 Rational Krylov transformation for general complex shifts

Let us now drop the assumption that µj be either real or purely imaginary and examine
what can be done to handle a general complex target shift. We start again with the Arnoldi
recurrence

H2Uj−1Tj−1 = UjKj,j−1,

where the columns u1, . . . , uj of Uj are orthonormal and isotropic, Tj−1 ∈ R(j−1)×(j−1) is
upper triangular and Kj,j−1 ∈ Rj×(j−1) is upper Hessenberg, once more ignoring compo-
nents coming from the J-orthogonalization. In the event that µj is neither real nor purely
imaginary the operation L1(µj)uj will fail to produce a real result. The classical SHIRA
method overcomes this difficulty by employing the operator L2(µj) instead, which is guar-
anteed to deliver a real vector regardless of the choice for µj. This strategy, however, is
not viable in our case due to the fact that the expansion of L2(µj) contains powers of H
higher than H2, which by far complicates the rational transformation. Preferably, we will
adopt the approach described by Ruhe in [21] and treat the real and imaginary parts of
L1(µj)uj separately.

First, we orthogonalize the real part <
[
L1(µj)uj

]
against u1, . . . , uj and Ju1, . . . , Juj

yielding

tj+1,juj+1 = <
[
L1(µj)uj

]
−

j∑

i=1

ti,jui −
j∑

i=1

si,jJui.

Afterwards, we orthogonalize the imaginary part =
[
L1(µj)uj

]
against u1, . . . , uj+1 and

Ju1, . . ., Juj+1 to obtain

tj+2,j+1uj+2 = =
[
L1(µj)uj

]
−

j+1∑

i=1

ti,j+1ui −
j+1∑

i=1

si,j+1Jui.
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the generalized Schur decomposition and then truncating. Moreover, after rearranging and
taking norms, (2.19) provides us with a convergence criterion,

‖H2VkT̂1,1 − VkK̂1,1‖F = ‖uj+1b
T
1 ‖F ≤ ‖b1‖2, (2.20)

for the column space of Vk towards an invariant subspace under H2. Hence, we may
reorder (again using the procedure from [15]) every diagonal block of K̂j into the position
immediately following the leading block of previously locked eigenvalues while monitoring
the elements of b. Once the leading components b1 of b are found to be negligible, we
may consider the corresponding eigenvalue (in case the block is 1× 1) or pair of complex
conjugate eigenvalues (in case of a 2× 2-block) as converged. Subsequently, we may safely
set the already tiny elements of b1 to zero without sacrificing backward stability. Doing so
deflates the problem because it enables us to transform only the trailing part back into an
Arnoldi decomposition leaving the converged block as well as the associated H2-invariant
column space of Vk untouched and removing them from the active part of the computation.
This constitutes our locking procedure.

It should be highlighted that only orthogonal transformations are applied to the Krylov
basis Uj, and, therefore, all of the above techniques maintain its numerical isotropy, com-
pare (2.5).

2.5 Postprocessing

As our method assembles a sequence of generalized, isotropic Arnoldi decompositions of
H2, the Ritz values θi we calculate from the projected problems will, of course, be approxi-
mations to eigenvalues of H2. Taking into account the Hamiltonian structure and resulting
spectral symmetry of H, though, we can readily conclude that adequate Ritz values for H
are given by both

√
θi and −

√
θi. It is safe to use them simultaneously (thereby doubling

the number of Ritz values), because the enforced isotropy ensures only one Ritz value is
picked up by the Arnoldi process for every positive/negative pair ofH’s eigenvalues. Hence,
no spurious double eigenvalues of H can be forged this way. Note also that the different
manner in which rational SHIRA handles general complex shifts removes the ambiguity
occurring with the original method, see [18, sect. 5.1], when inferring the eigenvalues of H.

When it comes to eigenvectors more work has to be done. Since the eigenspaces cor-
responding to a pair {λ,−λ} of eigenvalues of H are merged into a single eigenspace
associated with the eigenvalue λ2 when H is squared, an eigenvector of H2 will, in general,
turn out to be a linear combination of several eigenvectors of H belonging to different
eigenvalues and, therefore, will fail to be invariant under H. The easiest way of acquiring
eigenvectors is probably to perform a few steps of inverse iteration with the computed
eigenvalue estimates. It might also be possible to derive a Hamiltonian Schur form from
the skew-Hamiltonian Krylov-Schur relation (2.18) using a variant of the algorithm pre-
sented in [11] provided none of the real Ritz values are negative, although this remains to
be further researched.
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(3, 1)-position. Eliminate it using a Givens rotation QT
1 from the left on both Tj and Kj.

Keep on applying Givens rotations Zi from the right and QT
i from the left to chase the

bulge out of these matrices. The resulting matrices T̂j and K̂j will again be of upper
triangular and upper Hessenberg form, respectively. If we accumulate the transformations
Q := Q0Q1 · · ·Qs and Z := Z1Z2 · · ·Zs+1, we can equate

T̂j = QTTjZ, K̂j = QTKjZ.

Postmultiply (2.15) by Z and utilize our newly acquired matrices T̂j and K̂j together with
Vj := UjQ to arrive at

H2VjT̂j = VjK̂j + uj+1kj+1,je
T
j Z.

Observe that eTj Zi = eTj for all Zi except the last one. Hence, eTj Z has nonzeros only in
its last two components. Observe furthermore that QT

1 , . . . , Q
T
s do not act upon the first

rows of Tj or Kj. Consequently, Q1, . . . , Qs do not touch the first column of Q0, which
means Qe1 = Q0e1. If we combine this with (2.17), we find that v1, i. e. the first column
of Vj, is a multiple of (H2 − ρI)u1. Thus, we have successfully applied a linear factor to
the starting vector. These steps may be repeated to process more linear factors until the
complete filter polynomial has been applied. Note, however, that the last vector of the
decomposition has to be truncated every time due to the fill-in in eTj .

For the purposes of locking and purging we propose a slight modification of the Krylov-
Schur approach [27], which is capable of dealing with the expanded generalized Arnoldi
relation (2.15). First, Kj and Tj are reduced to generalized real Schur form by means of the
QZ-algorithm. Accordingly, orthogonal matrices, Q ∈ Rj×j and Z ∈ Rj×j, are determined,
such that QTTjZ =: T̂j is upper triangular and QTKjZ =: K̂j is upper quasi-triangular,
i. e. block upper triangular having only 1×1- or 2×2-blocks on its diagonal. If we multiply
(2.15) by Z from the right, let Vj = UjQ and deploy the transformed matrices T̂j and K̂j,
we obtain the generalized Krylov-Schur decomposition

H2VjT̂j = VjK̂j + uj+1b
T , (2.18)

where bT = kj+1,je
T
j Z is now, in general, a full vector. Partitioning

T̂j =

[
T̂1,1 T̂1,2

0 T̂2,2

]
, K̂j =

[
K̂1,1 K̂1,2

0 K̂2,2

]
, b =

[
b1
b2

]
,

where both, T̂1,1 and K̂1,1, are k × k and b1 ∈ Rk, we may infer

H2VkT̂1,1 = VkK̂1,1 + uj+1b
T
1 (2.19)

by looking only at the first k columns of (2.18). Since Vk has orthonormal columns and T̂1,1

and K̂1,1 are upper triangular and upper quasi-triangular, respectively, (2.19) itself poses
a generalized Krylov-Schur decomposition. This fact can be exploited for purging by using
the reordering procedure from [15] to move unwanted Ritz values into the trailing part of
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If we once again neglect expressions associated with the J-orthogonalization, these can be
rearranged into

<
[
(H2 − µ2

jI)
−1uj

]
= Uj+2tj, tj = [t1,j, . . . , tj+1,j, 0]

T , (2.6)

=
[
(H2 − µ2

jI)
−1uj

]
= Uj+2tj+1, tj+1 = [t1,j+1, . . . , tj+2,j+1]

T . (2.7)

Together, (2.6) and (2.7) imply

(H2 − µ2
j)

−1uj = Uj+2(tj + itj+1).

As with the simpler case above this can be converted into

H2Uj+2(tj + itj+1) = Uj+2(ej + tjµ
2
j + itj+1µ

2
j)

Splitting µ2
j = ρj + iθj into its real and imaginary parts, we obtain

H2Uj+2(tj + itj+1) = Uj+2

(
ej + tjρj − tj+1θj + i(tjθj + tj+1ρj)

)
. (2.8)

(2.8), too, is decomposed into its real and imaginary parts

H2Uj+2tj = Uj+2(ej + tjρj − tj+1θj), (2.9)

H2Uj+2tj+1 = Uj+2(tjθj + tj+1ρj), (2.10)

which can be combined with the initial Arnoldi relation to produce

H2Uj+2T̃j+2,j+1 = Uj+2K̃j+2,j+1, (2.11)

where

T̃j+2,j+1 =




t1,j t1,j+1

Tj−1
...

...
tj−1,j tj−1,j+1

0 · · · 0 tj,j tj,j+1

0 · · · 0 tj+1,j tj+1,j+1

0 · · · 0 0 tj+2,j+1



, (2.12)

and

K̃j+2,j+1 =




t1,jρj − t1,j+1θj t1,jθj + t1,j+1ρj

Kj,j−1
...

...
tj−1,jρj − tj−1,j+1θj tj−1,jθj + tj−1,j+1ρj
1 + tj,jρj − tj,j+1θj tj,jθj + tj,j+1ρj

0 · · · 0 tj+1,jρj − tj+1,j+1θj tj+1,jθj + tj+1,j+1ρj
0 · · · 0 −tj+2,j+1θj tj+2,j+1ρj



. (2.13)
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Using a similar bulge chasing procedure as before, orthogonal matrices Q ∈ R(j+2)×(j+2)

and Z ∈ R(j+1)×(j+1) can be found, such that QT T̃j+2,j+1Z =: Tj+2,j+1 is upper triangular
and QT K̃j+2,j+1Z =: Kj+2,j+1 is upper Hessenberg, again leaving the bottom row of Tj+2,j+1

to be zero. Note that this time, in order to chase the bulges which consist of two elements
each in T̃j+2,j+1, K̃j+2,j+1, we need two rotations from the left and two from the right in
order to chase the bulge up one row and one column to the left.
If we postmultiply (2.11) by Z, let Vj+2 := Uj+2Q and choose Tj+1 to be the leading j+1

rows of Tj+2,j+1, we obtain the generalized Arnoldi relation

H2Vj+1Tj+1 = Vj+2Kj+2,j+1.

Thus, we have incremented the order of our Arnoldi decomposition by 2. As

<[L1(µj)uj] =
1

2

(
L1(µj)uj + L1(µj)uj

)
,

=[L1(µj)uj] =
1

2i

(
L1(µj)uj − L1(µj)uj

)
,

the above procedure can be viewed as taking both L1(µj)uj and L1(µj)uj and then adding
the space spanned by them to the Krylov subspace.

2.3 Applying the operators

In every step of the expansion phase, the operator (H − µjI)
−1(H + µjI)

−1 has to be
applied to a vector u. This can be accomplished by successively solving the linear systems

(H − µjI)y = u

and
(H + µjI)x = y.

Thanks to the Hamiltonian structure of H, only one LU -factorization is needed to solve
both linear systems for we have

H + µjI = J(H − µjI)
TJ ,

and (H − µjI)
T = UTLT is an LU -factorization of (H − µjI)

T whenever H − µjI = LU is
an LU -factorization of H − µjI. Bear in mind, though, that this LU -factorization has to
be redone whenever the shift changes. Therefore, we ought not to alter the shift too often
in order to save some factorizations.
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2.4 Implicit restarts, locking and purging

In practice, we cannot arbitrarily extend our Krylov sequences due to memory constraints.
The remedy is to frequently restart the computation using a better starting vector, which
is to be deduced from the precedent run. Polynomial filters have successfully been utilized
to purify the starting vector by de-emphasizing unwanted components. In [25] Sorensen
shows how to apply them implicitly through performing QR-iterations on the projected
problem. Additionally, locking and purging techniques can be pursued in order to reduce
the computational effort.

As was pointed out earlier, the Arnoldi recurrences generated by the Rational SHIRA
method are typically of the generalized form

H2UjTj = Uj+1Kj+1,j. (2.14)

Since Tj is always invertible unless u1, . . . , uj span an exact invariant subspace underH2, we
may turn this into an standard Arnoldi relation by multiplying T−1

j from the right. Doing
so, however, is strongly discouraged as especially smaller eigenvalues may be very sensitive
to the roundoff error incurred in forming the product Kj+1,jT

−1
j explicitly. Preferably,

we seek to adapt the restarting and deflation strategies to work directly with the pair
(Kj+1,j, Tj).

Hence, a QZ-like approach must be taken to effect an implicit restart. Assume we want
to apply the filter polynomial p(H2) = (H2 − ρ1I) · · · (H2 − ρdI) to the decomposition
(2.14). It suffices to investigate how a single linear factor (H2 − ρI) of the polynomial can
be applied. First, we split up the right hand side of (2.14) into

H2UjTj = UjKj + uj+1kj+1,je
T
j , Kj+1,j =

[
Kj

kj+1,je
T
j

]
, (2.15)

which is another common way of writing down an Arnoldi relation. Afterwards, the equa-
tion is shifted by −ρUjTj to give

(H2 − ρI)UjTj = Uj(Kj − ρTj) + uj+1kj+1,je
T
j . (2.16)

Postmultiply (2.16) by the first unit vector e1 and let Q0 be a Householder reflector, such
that QT

0 (Kj − ρTj)e1 = αe1, α ∈ R. Then, we have for j > 1

t1,1(H
2 − ρI)Uje1 = αUjQ0e1 (2.17)

since Tj is upper triangular. Thus, the first column of UjQ0 is some multiple of (H2−ρI)u1.
Now, apply QT

0 from the left to Tj and Kj. This will introduce a bulge in the (2, 1)-position
of Tj while leavingKj’s upper Hessenberg structure intact. Using the standard Hessenberg-
triangular bulge-chasing procedure employed in a QZ step [13], we can annihilate this bulge
by performing a Givens rotation Z1 from the right on both Tj and Kj. Tj is now again
in upper triangular form, but the Hessenberg form of Kj is disturbed by a bulge in the
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