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Abstract

In this document we review the status of existing techniques for non-
linear model order reduction by investigating how well these techniques
perform for typical industrial needs. In particular the TPWL-method
(Trajectory Piecewise Linear-method) and the POD-approach (Proper
Orthogonal Decomposion) is taken under consideration. We address
several questions that are (closely) related to both the theory and ap-
plication of nonlinear model order reduction techniques. The goal of
this document is to provide an overview of available methods together
with a classification of nonlinear problems that in principle could be
handled by these methods.



The work presented is financed by the Marie Curie Host Fellowships for Transfer
of Knowledge project O-MOORE-NICE! (Call identifier: FP6-2005-Mobility-3).

MOORE

N I C E!      

http://www.tu-chemnitz.de/mathematik/industrie technik/

projekte/omoorenice/

Author’s addresses:

Michael Striebel
Professur Mathematik in Industrie und Technik
Fakultät für Mathematik
TU Chemnitz
D-09107 Chemnitz
michael.striebel@mathematik.tu-chemnitz.de

Joost Rommes
NXP Semiconductors
Corporate I&T / Design Technology & Flows
High Tech Campus 37, PostBox WY4-01
NL-5656 AE Eindhoven
The Netherlands
joost.rommes@nxp.com



[36] L. Sirovich. Turbulence and the dynamics of coherent structures part i-iii.
Quarterly of App. Math., 45(3):561–571, 573–582, 583–590, 1987.

[37] Michael Striebel. Hierarchical Mixed Multirating for Distributed Integration
of DAE Network Equations in Chip Design. Number 404 in Fortschritt-
Berichte VDI Reihe 20. VDI, 2006.
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1 Introduction

In this document we review the status of existing techniques for nonlinear model
order reduction by investigating how well these techniques perform for typical
industrial needs. We address several questions that are (closely) related to both
the theory and application of nonlinear model order reduction techniques. The
goal of this document is to provide an overview of available methods together
with a classification of nonlinear problems that in principle could be handled by
these methods.

Two well-known techniques for nonlinear model order reduction, Proper Orthog-
onal Decomposition [36, 6, 18, 24, 44, 30, 2, 19] or Karhunen-Loève expansion
[25] and trajectory piecewise-linear (TPWL) methods [31, 32], have been stud-
ied extensively in the literature, but to less extent in the context of industrial
applications [43, 39]. In this document we will address the latter point, i.e., ap-
plication to industrial examples. In particular, we will investigate the nonlinear
model order reduction problem and existing techniques by using the following
questions as guidelines:

• What are the typical applications and problems of interest, i.e., what are the
candidates for application of nonlinear model order reduction techniques?

• Where is reduction of nonlinear systems needed? Is the main need in speed
up of simulations and/or is there a big need for reusable models of nonlinear
systems?

• What type of reduction is needed? Is it, like for linear systems, mainly a re-
duction in the number of states and elements, or is a reduction/simplification
of the nonlinearity of the system required?

• How well do existing techniques perform and which improvements are needed?

• Can multirate time integration techniques [39, 34, 37] be of use for nonlinear
model order reduction?

• A reduced order model that is only accurate for a few inputs is of little
practical value. How can reduced order models of nonlinear systems be
made reusable? How do the training inputs need to be chosen in order to
produce reusable models?

Most of the questions are discussed in detail in sections 4 – 7. For a summary
of the answers to these questions, the reader is referred to section 9. The rest of
this document is devoted to describing the theoretical and practical results that
are needed to answer these questions.

This document is organized as follows. The problem of reduction of nonlinear
system is formulated in section 2. In section 3 we give an overview of existing
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methods. Section 4 discusses the current status of these methods by identify-
ing advantages, disadvantages, and incapabilities. Open issues are addressed in
section 5. In section 6 we provide a classification of nonlinear problems and dis-
cuss which and how nonlinear model order reduction techniques can be applied.
Numerical experiments are reported in section 7. Section 8 comments on imple-
mentation of nonlinear MOR in a circuit simulator and design flow. Section 9
concludes.

2 Reduction of nonlinear systems

The problem of reducing a nonlinear system is described as follows: Given a, pos-
sibly large-scale, nonlinear time-invariant dynamical system Σ = (g, f ,h,x,u,y, t)

Σ =

{
dg(x(t))

dt
= f(x(t),u(t))

y(t) = h(x,u)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, f(x(t),u(t)),g(x(t)) ∈ Rn, h(x(t),u(t)) ∈
Rp, find a reduced model Σ̃ = (g̃, f̃ , h̃, x̃,u, ỹ, t)

Σ̃ =

{
dg̃(x̃(t))

dt
= f̃(x̃(t),u(t))

ỹ(t) = h̃(x̃,u)

where x̃(t) ∈ Rk, u(t) ∈ Rm, ỹ(t) ∈ Rp, f̃(x̃(t),u(t)), g̃(x̃(t)) ∈ Rk, h̃(x̃(t),u(t)) ∈
Rp, such that ỹ(t) can be computed in much less time than y(t) and the approx-
imation error y(t)− ỹ(t) is small.

Note that unlike for reduction of linear dynamical systems, there is here no ex-
plicit requirement k � n, since it is not clear whether such a requirement will
help in achieving reduced simulation times.

In the context of circuit simulation the dynamical systems we are dealing with
circuit blocks or subcircuits. Connection to and communication with a block’s
environment is done via its terminals, i.e. external nodes. Therefore, we can
assume that the currents or voltages are always injected linearly into the circuit
under consideration. A similar reasoning applies for the determination of the
output signal y(t), which is also assumed to be not explicitly dependent on the
input u(t). Hence, in the remainder of this document, we assume the dynamical
systems to be of the form

Σ =

{
dg(x(t))

dt
= f(x(t)) +Bu(t)

y(t) = CTx

where B ∈ Rn×m and C ∈ Rn×p.
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also here one wants eventually to insert the reduced model back into the
original system, by connecting at the terminals. In principle, the projection-
splitting ideas of [45, 14] can be reused for POD and TPWL based ap-
proaches.

A more detailed issue related to the previous remark is whether structure
preserving methods should also be used during the reduction of the lin-
earized models that arise in TPWL.

Another question related to TPWL is how accurate the reduced models
for the linearized systems should be. How does the number of matched
moments/poles/Hankel singular values affect the accuracy of the reduced
nonlinear system?
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3 Methods for nonlinear model order reduction

The two best-known methods for reduction of nonlinear systems are Proper Or-
thogonal Decomposition (POD), also known as Karhunen-Loève expansion [25],
and trajectory piecewise-linear techniques (TPWL) [31, 32], which are discussed
in section 3.1 and section 3.2, respectively. In section 3.3 an overview of variants
and other methods is given.

3.1 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition extends the Petrov-Galerkin projection based
methods that are used for linear systems to nonlinear systems. By choosing a
suitable V ∈ Rn×k and a test matrix W ∈ Rn×k, where W and V are biorthonor-
mal, i.e., WTV = In×n, the reduced system is given by [1]

{
WT dg(Vx̃(t))

dt
= WT f(Vx̃(t)) + (WTB)u(t)

ỹ(t) = (CTV)x̃

Similar to linear model order reduction, the idea is that V captures the dominant
dynamics, i.e., the states of the original system are approximated well by Vx̃ ≈
x. The test matrix W is chosen such that the Petrov-Galerkin condition r =
dg(Vx̃(t))

dt
− f(x̃(t))−Bu(t) ⊥ W is met.

POD constructs the matrix V as follows. A time domain simulation of the
complete system is done and snapshots of the states at suitably chosen times ti
are collected in the state matrix X

X = [x(t0), x(t1), x(t2), · · ·x(tN−1)] ∈ Rn×N ,

where N is the number of time points ti. To extract the subspace that represents
that dominant dynamics, the singular value decomposition [16] of X is computed:

X = UΣT,

where U ∈ Rn×n, Σ = [diag(σ1, . . . , σn) 0n×(N−n)] ∈ Rn×N (if N > n), and
T ∈ RN×N . Let the singular values σ1 ≥ σ2 · · ·σk � σk+1 > · · · > σn ≥ 0
be ordered in decreasing magnitude. POD chooses the matrix V to have as its
columns the left singular vectors corresponding to the k � n largest singular
values:

V = [u1, u2, · · · ,uk] ∈ Rn×k.

The number k of vectors to choose can depend on a tolerance based criterion like
σk+1 < ε, or on the relative difference between σk and σk+1. The test matrix W
is taken as W = V, i.e., the residual is orthogonal to the reduced state space.
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The choice of the number of snapshots N depends on many factors. On the one
hand one desires N � n to limit the computational costs involved with the SVD,
on the other hand all the dominant states should be captured. Also the choice
of the snapshot times ti can be a challenging task [29].

We stress that the reduction obtained from POD and similar projection based
methods is solely in the number of states: k for the reduced systems vs. n for the
original system and k � n. As also clearly argued in [31, section 2.3], the costs
for evaluating nonlinear terms such as WT f̃(Vx̃(t)) will be larger than for the
original system because at each timepoint

1. the reduced state x̃ has to be projected back to the full state space, neces-
sitating a matrix-vector product,

2. the complete function f : Rn → Rn has to be evaluated,

3. the value obtained has to be projected back to the test space, and

4. the computation of the reduced system’s Jacobian necessitates to compute
the Jacobian of the full system.

Hence with respect to simulation times no reduction will be obtained (unless
additional measures are taken, see also section 4).

3.2 Trajectory piecewise-linear techniques (TPWL)

Trajectory piecewise linear techniques [31, 32, 43] linearize the nonlinear sys-
tem around suitably selected states and approximate the nonlinear system by a
piecewise linearization that is obtained from combining the (reduced) linearized
systems via a weighting procedure.

Having s states x0, . . . ,xs−1, obtained from simulation of the original system on
some finite time interval [tstart, tend], we linearize the original system around these
states:

d

dt
(g(xi) +Gi(x(t)− xi)) = f(xi) + Fi(x(t)− xi) +Bu(t) (1)

where x0 is the initial state of the system and Gi and Fi are the Jacobians of g
and f evaluated at xi. Since each of the linearizations approximates the nonlinear
system in the neighborhood of the expansion point xi, a model including all these
linearizations could approximate the original system over a larger time interval
and larger part of the state space. In [31] a weighting procedure is described to
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potential; in the next section we propose some points for further research.

Concerning implementation in a circuit simulator, the most impact will be in the
transient algorithm. For the reduction of linear models, one can rely on existing
linear model order reduction schemes, if already available.

Besides the TPWL method the adapted POD approach should be analyzed more
carefully. The obvious advantage of this approach is that nonlinearity is conserved
explicitly, leading to more accurate results, which can be seen in the less wiggling
trajectories. However, we stated many serious questions concerning especially
the region of trust of this method and the robustness of missing point estimation.

9.2 Further work

Topics for further work are:

• Test the piecewise-linear algorithms for other, industry relevant, examples,
with specific training inputs. The current implementation seems not robust
enough, but more examples are needed to get a definite insight and to find
improvements for the linearization point and weight determination. Also
include the output function in the linearization/reduction scheme.

• Decoupling of linear and nonlinear parts of large circuits: the effects of
reducing linear and/or nonlinear parts of large systems separately need to
be better understood.

• Reduction of parameterized nonlinear systems: in many real-life cases the
original nonlinear system has a (small or large) number of parameters that
can be changed in the design. For such a system, at least the presence of
the dominant parameters in a reduced order model is required. Starting
point for further research could be [7]. In [20] MOR techniques are used to
improve efficiency of the adjoint transient sensitivity analysis.

• Simulation and reduction of very large scale circuits: if systems are so
large that even simulation (which is required for construction of reduced
order models) is no longer feasible within reasonable time, there is need
for a different class of reduction methods. Combinations with multirate
time integration are an option. One could also consider replacing parts
of the system by reduced order models, or to use approximate simulation
algorithms as suggested in [31, Section 3.3].

• For linear systems, structure preserving projection methods IOPOR [45]
and SPRIM [14] have recently been developed to preserve especially the
input-to-state and state-to-output maps (the B and C matrices). This
might also be of interest for projection methods for nonlinear systems, since
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9 Conclusions and further work

9.1 Conclusions

Examples of nonlinear systems arise in almost all applications in electrical en-
gineering: the presence of a single transistor or diode already makes the circuit
behavior nonlinear. More concrete examples are phase locked loops (PLLs), that
usually contain voltage controlled oscillators (VCOs) and transmission lines with
nonlinear elements such as diodes. Especially the latter can be good candidates
for nonlinear model order reduction techniques: they usually have a limited num-
ber of inputs and outputs and show smooth behavior that is suitable for reduction.
Other systems, such as inverter chains, show more digital behavior and are much
more difficult for model reduction techniques, since the behavior cannot be de-
scribed by a few dominant states. Here other techniques such as multirate may
be better alternatives.

Like in the case of reduction of linear systems, it is for nonlinear systems not
only the goal to reduce the number of states. The main objective is to construct
a reduced model in the sense that it can be reused at much lower computational
costs. For example, one would like to have a decrease in the simulation time for
transient analysis.

Piecewise-linearization in combination with linear model order reduction tech-
niques in principle offers both reduction in number of states and in simulation
time. According to the experiments described in this report, however, trajectory
piecewise-linearization (TPWL [32]) is not robust enough, most likely because of
the procedure to determine the linearization points.

One clear result for TPWL is that it is (much) more accurate and robust to deter-
mine the weights using state vectors in the original state space, i.e., reduced state
vectors must be projected back to the original full state space before determining
the weights. Numerical experiments confirmed that this leads to more accurate
results.

Another important issue is related to the reuse of piecewise-linear models. Since
the piecewise-linear model is constructed using a single training input, this train-
ing input needs to chosen with care. Our experiments, however, indicate that
even with an input close to the training input, simulation of the piecewise-linear
models may become inaccurate. This also puts doubts on the robustness of cur-
rent linearization schemes. For both TPWL and POD based approaches, already
a change in amplitude of the input signal (compared to the training input) may
result in an inaccurate resimulation.

We stress that from a theoretical viewpoint, piecewise-linearization clearly shows
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combine the models. The piecewise linear model becomes1

d

dt

[
s−1∑

i=0

wi(x)Gix

]
=

s−1∑

i=0

wi(x)
(
f(xi) + Fi(x− xi)

)
+Bu(t), (2)

where wi(x) are state-dependent weights. A typical choice is to let wi(x) be
large for x = x(t) close to xi, and small otherwise, but other and more advanced
schemes are also available [31]. Including time t in the process of calculating
distances to linearisation tuples (xi, ti) (i = 0, · · · , s − 1) can have distatrous
effects. Resimulation with the same but time shifted input signal might already
break down.

Simulation of a piecewise linearized system may already be faster than simulation
of the original nonlinear system. However, the linearized system can be reduced
by using model order techniques for linear systems.

The main difference between linear MOR and the nonlinear MOR-approach
TPWL is that the latter introduces in addition to the application of a linear
MOR technique the selection of linearization points (to get a linear problem) and
the weighting of the linear submodels (to recover the global nonlinear behavior).

Selection of linearization points. The model extraction basically needs the
solution of the full nonlinear system. In [31] a fast extraction method is proposed,
but we will not give details here.

The TPWL-scheme is based on deciding when to add a linear substitute for the
nonlinear problem automatically during simulation of the latter. Again there are
several alternatives. Rewieński [31] proposes to check at each accepted timepoint
t during simulation for the relative distance of the current state x of the nonlinear
problem to all yet existing i linearization states x0, . . . ,xi−1. If the minimum is
equal to or greater than some parameter δ > 0, i.e.

min
0≤j≤i−1

(‖x− xj‖∞
‖xj‖∞

)
≥ δ, (3)

x becomes the (i + 1)st linearization point. Accordingly, a new linear model,
arising from linearizing around x is added to the collection. To our experience as
we will show later, the choice of δ already marks a critical point in the process.
Here, Rewieński suggests to first calculate the steady state xT of the linear system
that arises from linearizing the nonlinear system at the DC-solution x0 and then
setting δ = d

10
where

d =
‖xT − x0‖∞

‖x0‖∞
(d = ‖xT‖∞ if x0 = 0). (4)

1Note that d
dt (g(xi)−Gixi) ≡ 0.
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Choosing linearization points according to the criterion (3) essentially bases the
decision on the slope of the trajectory the training is done on and not on the
quality of the linear substitute model w.r.t. the nonlinear system. In Voß [43]
the mismatch of nonlinear and linear system motivates the creation of a new
linearization point and an additional linear model: as at each timepoint during
training both the nonlinear and a currently active system are available, the latter
one is computed in parallel to the former one. If the difference of the two approx-
imations to the true solution at a timepoint tn produced by the different models
becomes too large, a new linear model is created from linearizing the nonlinear
system around the state the system was in at the previous timepoint tn−1.

Note that in both strategies a linear model around a linearization state x(tn−1)
is constructed when the linear model arising from linearization around a former
state does not extend to x(tn−1). However, it is not guaranteed that this new
model extends backward, i.e., is able to reproduce the situation encountered be-
fore tn−1. This circumstance could have a negative effect in resimulation where
linear combinations of linear substitute systems are used to replace the full non-
linear system. That means during model extraction one deals with just one linear
system in each situation but with combinations during resimulation.

Determination of the weights. During the training the nonlinear functions
have been fragmented into linear ones, each part reflecting certain aspects of
the “parent function”. When using the substitute collection for simulation, one
will naturally aim at having to deal with a combination of just a small number
of linear submodels. Hence, the weighting function has to have steep gradients
to determine a few (in the ideal case just one) dominant linear models. As in
Rewieński’s work we implemented a scheme that is depending on the absolute
distance of a state to the linearization points. The importance of each single
model is defined by

wi(x) = e−
β
m
·‖x−xi‖2 , with m = min

i
‖x− xi‖2. (5)

With the constant β we can steer how abrupt the change of models is. In
Rewieński [31] β = 25 is chosen. To guarantee a convex combination, the weights
are normalized such that

∑
iwi(x) = 1.

Reduction of linear submodels. Basically, any MOR-technique for linear prob-
lems can be applied to the linear submodels. In [31] Rewieński proposes the us-
age of Krylov-based reduction using the Arnoldi-method, Vasilyev, Rewieński and
White [38] introduce balanced truncation to TPWL and Voß [43] uses Poor Man’s
TBR as linear MOR kernel. For comparison of different linear MOR strategies
when applied to problems in circuit simulation we refer to [41, 22, 42].
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Selection of linearization points. The procedure described in section 3.2 for
determining the linearization points can be implemented in the transient algo-
rithm without many changes. The states and Jacobians are usually available at
every time point and if a linearization point is selected, the corresponding states
and undecomposed Jacobians need to be stored.

Reduction of linear submodels. If an algorithm for reduction of linear systems
is already available in the implementation, it can be used for reducing the linear
submodels as well. If not available, algorithms for linear model order reduction
can be implemented as a new functionality, and should be implemented in such
a way that they can be used for other MOR purposes as well.

Simulation of piecewise-linear models. This part will probably have the most
impact on the existing transient implementation. Although all information for the
weighting procedure is available (current state and linearization points), accurate
determination and combination of the linear models may influence big parts of
the code. Also combinations with other time integration schemes like multirate
may introduce additional difficulties. Special care must be taken if the piecewise-
linear model is just a submodel of a bigger circuit. In a hierarchical simulator
(Pstar), the linearized model is ideally treated as a submodel.

Storage and reuse of linearized models. As also discussed in section 5.4 it
is not possible to synthesize the piecewise-linear model as a netlist, like in the
realization of reduced order models of linear circuits. Although one can think
of a piecewise-linear netlist (a netlist for every linear model), it is still not clear
how the circuit simulator would deal with this. The most pragmatic option is
probably to store the piecewise-linear model in binary format, i.e., just store the
system matrices of the linear (and reduced) models and the linearization points.
This new type of circuit block can then be regarded as a black-box submodel
and reused in the design flow as any other circuit block. The simulator must
be adapted to be able to deal with such blocks. This idea can also be used for
reduced order models of linear circuits (synthesis is then no longer necessary).

Netlist grammar. The grammar of the netlist language needs to be adapted
to enable nonlinear model order reduction. A change parameter, or maybe a
new type of simulation, can be defined to enable construction of reduced order
models (including parameters for the linearization and reduction process). To
enable resimulation, the language must be extended with support for piecewise-
linear circuit blocks.
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Figure 30: Inverter chain: adapted POD-resimulation, r = 30, g = 35, inverter 6.

Figure 31: Inverter chain: adapted POD-resimulation, r = 50, g = 55, inverter 6.

Not taking into account the biasing source Uop, the matrix B in fact is the vector
(0, . . . , 0, 1)T ∈ Rn. The transistor models do not allow for a current through
gate. Therefore the current through the voltage source is constantly zero. This
leads to a projection matrix V where the last column is constant zero. Finally,
projection yields VTB ≡ 0. This means, that the reduced model will ignore the
input u(t).

The application of POD to DAE systems is addressed in [13]. In [3] the applica-
tion of least-squares techniques instead of Galerkin projection is proposed. The
most promising technique to overcome the problem of eliminating input signals
is to adapt structure preserving techniques like SPRIM [14] and IOPOR [45].

8 Implementation in a circuit simulator

In this section we give an outline of requirements and ideas for implementing
nonlinear MOR techniques in a circuit simulator (e.g., Pstar) and introducing it
in the design flow. We give some details for every phase of the process and focus
mainly on trajectory piecewise-linearization techniques.

In most of the cases at least for a certain time interval a transient simulation
of the original system is needed, given a training input. Hence, the transient
implementation needs to be adapted to provide the data for construction of the
linearized models.
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The common basis of all these methods is that one restricts to a dominant sub-
space of the state-space. Suppose that the columns of V ∈ Rn×k span this dom-
inant subspace of the state-spaces of the linearized systems, and that W ∈ Rn×k

is the corresponding test matrix. Then a reduced order model for the piecewise-
linearized system can be obtained as

d

dt

[
s−1∑

i=0

wi(Vx̃)
(
WTg(xi) +WTGiV(Vx̃− xi)

)]

=
s−1∑

i=0

wi(Vx̃)
(
WT f(xi) +WTFiV(Vx̃− xi)

)
+WTBu. (6)

Here, all linear submodels are reduced by projection with the overall matrices
V and W. Besides the choice of the reduction scheme, as mentioned above, the
construction of these matrices is a further degree of freedom. In [31] two different
strategies are presented. A simple approach is to regard only the linear model
that arises from linearizing around the starting value x0, construct a reduced
basis V0 and an according test space W0 for this linear model and set V = V0

and W = W0. Hereby one assumes that the characterization dominant vs.
not dominant does not change dynamically. In a more sophisticated manner,
one derives reduced bases and test spaces Vi, Wi, respectively, for each linear
submodel i = 0, . . . , s − 1 and constructs V and W from {V0, . . . ,Vs−1} and
{W1, . . . ,Ws−1}. For more details we refer to [31, 43].

Construction of reduced order basis. For constructing a reduced order basis
we have to take into account the linear submodels.

The simplest approach bases the reduction on the linear model that arises from
linearization around the DC solution x0 only. From the corresponding sys-
tem’s matrices G0,F0,B (cf. (1)) a basis {v1, . . . ,vl} for the lth order Krylov
subspace using the Arnoldi algorithm might be constructed. Then the matrix
V = [v1, . . . ,vl, ṽ0] ∈ RN×(l+1), where ṽ0 arises from orthonormalization of x0

versus v1, . . . ,vl can be taken as the projection matrix for Galerkin projection
of the linear combination of the linear submodels.

A second, extended, approach might take into account all linear submodels.
Here in a first step reduced order models for each single linear subsystem are
constructed, which yields local reduced subspaces spanned by the columns of
V0, . . . ,Vs−1. In a second step an SVD is done on the aggregated matrix Vagg =
[V0,x0; . . . ;Vs−1,xs−1]. The final reduced subspace is then spanned by the domi-
nating left singular vectors. Note that by this truncation it can not be guaranteed
that the linearization points are in the reduced space.
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Determination of the weights for reduced linearized models. Note, that in
(5) the absolute distance ‖x − xi‖2 is taken in the full space Rn. When using
the reduced order model (6) for simulation one has to prolongate x̃ ∈ Rk to the
full space. Computational costs could be reduced if this reprojection was not
necessary, i.e. if we could measure the distances in the reduced space already. If
the linearization points x0, . . . ,xs−1 are in the space spanned by the columns of
V, it suffices to project them once to the reduced space and take the distances
there, i.e. calculate ‖x̃ − x̃i‖ instead (cf. [31]). In the cited reference, it is
not stated if extra steps are taken to guarantee that the linearization states
are contained in the reduced space. Adding the linearization states to V after
orthogonalizing them against the columns of V could be an appropriate activity,
probably increasing the dimension of the reduced space.

However, taking no extra steps and just projecting the linearisation points to the
reduced space to take the distances there can be very dangerous as we present in
Section 7.2.

Therefore, we strongly recommend to project the reduced space back to the full
space for measuring the distance to the linearisation points.

3.3 Other techniques

Other techniques for reduction of nonlinear systems are Nonlinear Balanced Trun-
cation [35, 21], Empirical Balanced Truncation [24] and higher-order polynomial
expansion schemes [28].

Nonlinear Balancing. Nonlinear balancing extends Balanced Trunctation [27]
for linear systems to the nonlinear case. The main terms of linear balanced
truncation are the reachability and observability Gramians P and Q, respectively.
These can be computed from Lyapunov equations, involving the system matrices
A,B,C,D of the linear system. Knowing the Gramians, the energies connected
to reach and observe a state can be determined by means of algebraic calculations.
The full linear system is transformed to a balanced representation, i.e., to a form
where states that are hard to observe are also hard to reach. Truncation is
then done by eliminating these states. For this P and Q are simultaneously
diagonalised:

P = Q =



σ1

. . .

σn,




where the so called Hankel singular values σ1, . . . , σn are the square roots of the
eigenvalues of the product PQ. From the basis that arises from the transfor-
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Figure 29: Inverter chain: singular values.

Summary

Resuming the different approaches and examples, we record that we have to do
more tests with more realisitic problems. For the time being circuits like the
inverter chain, whose characteristic it is to buffer and transport information,
might not be a good example for where model order reduction can be applied.
The diode chain that was used to put the adapted POD to the test seems also not
be ideal because actually a large part of the system is not active at all during all
the time and basically what is done is just cutting off the parts of the nonlinear
functions that do not change at all.

Adapted POD and the inverter chain. We close this section with an inspection
on how the adapted POD approach [40] is behaving with the inverter chain from
Fig. 2. The singular values corresponding to the inverter chain are given in
Fig. 29. One can clearly see that they do not decrease rapidly. However, this is
one thing we expect as the signal is passing through all the stages with loosing just
a little bit energy. Therefore, we also expect that the (adapted) POD approach
does not yield very good results.

In a first trial we use the same reduction parameter r = 30 and g = 35 for the
dimension of the reduced state space and the dimension of the nonlinear element
functions, respectively. With this setup the reduced order model is not able to
substitute the full nonlinear system as we see in Fig. 30. However, also with
a higher dimension of both the reduced order model as well as the nonlinear
function, choosing r = 50 and g = 55 we do not arrive at a corresponding model
as can be seen in Fig. 31. In this case the special structure of the inverter chain
causes the extraction of an unreasonable model. In Fig. 30 the input source Uin

is connected to the gate of the very first transistor. As the input is given by a
voltage, the current through this source is introduced as an additional unknown.
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Figure 28: Diode chain: adapted POD-resimulation, reduction to dimesion 30
(g=35), differing input signals: 7.5 cos . . . (left), 9.5 cos . . . (right).

For extracting a reduced order model we start the algorithm with the parameters
r = 30 and g = 35, i.e., the state space is reduced to dimension 30 and the
nonlinear functions are downsized to dimension 35.

When the according reduced order model of the diode chain is used in a simulation
with an input signal that is different from the one the model was trained with,
but which still does not have larger signal, we get a very good match between
behaviour of the full system and the reduced one. However, a larger amplitude
of the input signal may produce inaccuracies. The two graphs in Fig. 28 show
this behaviour. In both cases a reduced order model that arose from a training
with the input signal Uin from Fig. 26 was used. A resimulation with the reduced
substitude model was done for the input signals

7.5 cos

(
2πt

60 · 10−9

)
+ 12.5 and 9.5 cos

(
2πt

60 · 10−9

)
+ 12.5.

The maximum of the first signal does not exceed the amplitude of the training
input signal. Hence, also in this case the signal dies out quite fast. In the second
case the input signal has a higher amplitude and we expect that this plus in
energy is enough to activate some more diodes.

One of the crucial points in applying this adapted POD approach is again the
choice of clever training signals.

However, table 1 is very appealing. We clearly see, that the adapted POD is
superior to the classical POD. Note that we are comparing cputimes of a matlab
implementation where the training was done with the mentioned stepfunction.

cputime [s]
input full classical POD adapted POD
like training 42.01 35.51 5.12
7.5 cos . . . 40.22 45.34 6.28

Table 1: Time consumption adapted POD and POD (matlab implementation).
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mation only those basis vectors that correspond to large Hankel singular values
are kept. The main advantage of this approach is that there exists an a priori
computable error bound for the truncated system.

In the nonlinear case there exist no constant Gramians that can be consulted
for measuring the degree of reachability and observability. The reachability and
observability functions Lc(x) and Lo(x), respectively, result from two differential
equations, namely a Hamiltonian-Jacobi equation and a nonlinear Lyapunov-type
equation.

A local coordinate transform x = Ψ(z) (with 0 = Ψ(0)) can be found such that
the system is in input normal representation:

Lc(Ψ(z)) =
1

2
zT z and Lo(Ψ(z)) =

1

2
zT



τ1(z)

. . .

τn(z)


 z,

where τ1, . . . , τn are smooth functions such that τ1(z) ≥ · · · ≥ τn(z). These
functions are called singular value functions.

Then another coordinate transformation z̄ = η(z) is necessary to arrive at a
balanced representation of the nonlinear system. This transformation is specified
by the singular value functions in a special way. For further details we refer to
[35].

The advantages of this approach are its stability and passivity preserving prop-
erties (cf. [21]). However, it is still not clear how this approach can be applied
by means of numerical computations. The small examples that are available are
treated analytically as the crucial points are the nonlinear basis transformations
and the calculation of the singular value functions. From a mathematical point
of view, nonlinear balanced truncation is interesting. However, there is no way
at the moment to apply it to problems from circuit simulation. Furthermore,
as with POD, one can not expect reduction in complexity as the full nonlinear
function still has to be evaluated to extract the information for the reduced one
from it.

Empirical Balanced Truncation. Empirical Balanced Truncation, like POD,
collects snapshots to construct empirical Gramians. These gramians are used in
a truncated balanced reduction method to construct projectors. The reduced
order model is computed using these projectors in a similar way as in POD, and
hence the disadvantage of EBT is that in terms of evaluation costs there is no
reduction.

11



Volterra series. Higher-order polynomial expansion schemes (or Volterra series)
aim at more accurate models by including also higher-order terms in the Taylor
expansion. The main drawback here is that the memory and computational costs
of these models grow exponentially with the number of nonlinear terms included.
Consequently, this method is not applicable for large or even moderately sized
nonlinear systems.

Inertial Manifolds and Nonlinear Galerkin Projections Motivated by the study
of the long-time dynamics or asymptotic behavior of dynamical systems d

dt
x =

g(x) inertial manifolds can be utilized for model order reduction, leading to non-
linear Galerking projections. We briefly describe the main ideas. Details about
intertial manifolds can be found in [9] and their application in model order re-
duction are described in e.g., [5, 26].

We consider a dynamical system of the form

d

dt
x = Ax+ f(x) (7)

with symmetric matrix A ∈ Rn×n, as it might arise from linearization of d
dt
x =

g(x) at x = 0.

A setM ⊂ Rn is called inertial manifold if it is invariant and attracts all solutions
of (7) exponentially in time.

Inertial manifolds are closely connected to a separation of the state x in “fast” and
“slow” modes. This identification in turn is based on a spectral decomposition
of A:

A [Y Z] = [Y Z] ·
( λ1

...
λn

)
, (8)

where Y ∈ Rn×r and Z ∈ Rn×(n−r) contain the eigenvectors corresponding to
the r smallest eigenvalues λ1, . . . , λr and the eigenvectors corresponding to the
remaining eigenvalues λr+1, . . . , λn, respectively. Accordingly we seperate the
state

x = YxS + ZxF, with YTZ = 0, xS ∈ Rr, xF ∈ Rn−r (9)

into a slow part YxS and a fast part ZxF. Projection of (7) onto the complemen-
tary spaces spanned by the columns of Y and Z, respectively, leads to coupled
dynamical systems

d

dt
xS = YTAYxS +YT f(YxS + ZxF), (10a)

d

dt
xF = ZTAZxF + ZT f(YxS + ZxF). (10b)
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Figure 25: Inverter chain: TPWL-resimulation, reduction to order 50, tighter
impulse, distance in full space, inverter 68.

Figure 26: Diode chain: training input.

The diode chain. The diode chain is used as testcase in Verhoeven [40] to show
the effectiveness of the adapted POD approach.

As training input the stepfunction Uin(t), depicted in Fig. 26 that stays on 20V
until t = 10ns and then degrades linearly to 5V at t = 11ns.

In Fig. 27 the response at all nodes is given (left) and the singular values from
the decomposition of the snapshot matrix. Like we expected, we see that the
signal dies out very quickly and just the first 30 diodes operate. This reflects also
in the singular values which drop very rapidly (see Fig. 27).

Figure 27: Diode chain: system’s response and singular values.
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Figure 22: Inverter chain: TPWL-resimulation, reduction to order 50, wider
pulse, distance in full space, inverter 18.

Figure 23: Inverter chain: TPWL-resimulation, reduction to order 50, wider
pulse, distance in full space, inverter 68.

Figure 24: Inverter chain: TPWL-resimulation, reduction to order 50, tighter
impulse, distance in full space, inverter 6.
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In the standard (linear) Galerkin method, we would neglect the fast part by
setting xF ≡ 0 in (10a). In this way the problem (7) of dimension n is reduced
to a problem

d

dt
xS = YTAYxS +YT f(YxS) (11)

of dimension r < n from whose solution the full space solution is reconstructed
as x ≈ YxS.

Nonlinear Galerkin projection does not neglect the fast part but its dynamic in
comparison to the slowly changing parts, i.e., we set d

dt
xF ≡ 0 and get

d

dt
xS = YTAYxS +YT f(YxS + ZxF), (12a)

0 = ZTAZxF + ZT f(YxS + ZxF). (12b)

By this a reduction is achieved in the sense that the full n-dimensional problem is
replaced by a dynamical system (12a) of dimension r on the inertial manifold, de-
fined by xF = Φ(xS) where (xS,xF) = (xS,Φ(xS)) solves the algebraic equation
12b. As the full space solution can be reconstructed by x ≈ Y xS+ZΦ(xs), more
accurate results than the classical Galerkin approach yields are expected. In [5]
it is pointed out that linear Galerkin projection applied to nonlinear problems
can change basic properties like stability of the system.

Usually the manifold is not known exactly. Therefore, one searches for an ap-
proximate inertial manifold (AIM), i.e.,

xF ≈ x̃F = Φapp(xS), (13)

which can be computed e.g., by discretising (10b) using implicit Euler, followed
by a simple fixed point iteration to solve the nonlinear equation. For details we
refer to [33].

Note that the AIM approach turns transforms the ODE (7) into a differential-
algebraic problem (12).

In [23] and [26] we find applications of this approach to control problems and in
analysis of wind power plants, respectively. To our knowledge it has not been
applied yet to problems in circuit simulations.

4 Current status of nonlinear model order
reduction methods

In this section we describe the status of POD and TPWL. We address the points
in this section and section 5 by numerical experiments in section 7 as well.
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4.1 Proper Orthogonal Decomposition (POD)

Although POD has been successfully used in many applications, in particular in
computational fluid dynamics [36, 6, 18, 24], it has some drawbacks that could
make it less applicable in circuit simulation [40, 39].

First, as also discussed in Section 3.1 and [31, Section 2.3], POD provides a
reduction in the number of states, but may even increase the evaluation and
simulation costs due to the way the reduced order model is constructed (via
projection). A possible way to decrease these evaluation costs is Missing Point
Estimation [2, 4, 3, 40].

Second, the choice of the snapshots, and the number of snapshots, is a challenging
task and may be hard to automate in a robust way [29]. A related problem is that
if the number of snapshots becomes too large, the computation of the SVD can
become infeasible (although iterative eigenvalue methods can be of help here).

Third, the influence of the training input may be very big, making the reduced
order models unsuitable for reuse in practice.

We discuss these points in more detail in Sec. 7. There we will present some
results computed with the Missing Point Analysis/Adapted POD approach de-
scribed in [40]. For details on the foundation of this approach we refer to the
cited paper. However, we reflect the basic idea with the case of a simple ODE

d

dt
x = f(x), (14)

of dimension n with nonlinear right hand side f : Rn → Rn. Like described in
Sec. 3.1 a singular value decomposition X = UΣV T of a matrix X ∈ Rn×N of
N ≥ n snapshots is computed, giving n singular values σ1 ≥ σ2 ≥ · · · ≥ σn.
The orthogonal matrix L = U · diag(σ1, . . . , σn) ∈ Rn×n is introduced, with its
columns l1, . . . , ln spanning the complete space Rn. Hence, one can change to
the new basis, i.e., x = Ly and apply a Galerkin-like projection to the system:

LT d

dt
(Ly) = LT f(Ly). (15)

Strictly speaking we do not apply Galerkin projection as the columns of L are
orthogonal, but not orthonormal.

Classical POD reduction acts on x = Ly in the sense that the expansion of x in
the basis l1, . . . , ln where (l1, . . . , ln) = L = (σ1·v1, . . . , σn·vn) with (v1, . . . ,vn) =

14

Figure 20: Inverter chain: TPWL-resimulation, reduction to order 50, repeated
pulse, distance in full space,inverter 92.

Figure 21: Inverter chain: TPWL-resimulation, reduction to order 50, wider
pulse, distance in full space, inverter 4.

are far away from the expected behaviour. However, there seems to be a trend
towards the situation that was encountered during the training. And indeed in
Fig. 23, at inverter 68 we find a time shifted version of the training signal instead
of the wide signal that has been applied.

Finally, in Figs. 24 and 25 the result of using the reduced model that arises from
training with the single input of given width with a slightly tighter input signal
is given for the inverters 6 and 68, respectively. In the former the characteristic
is reflected quite well. However, in the latter the output signal seems to be just
a time shifted version of the situation during the training.

For the time being also the ringing of the signal when the reduced model is
simulated, as seen e.g., in Fig. 17, remains an open question. Having a closer look
at how the inverter chain is modelled we see that the input voltage is applied at a
floating node. This could give reasoning for the behavior encountered. However,
also the backward and forward validity of the linear models (cp.Sec. 3.2) could
be candidates.
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Figure 17: Inverter chain: TPWL-resimulation, reduction to order 50, repeated
pulse, distance in full space, inverter 24.

Figure 18: Inverter chain: TPWL-resimulation, reduction to order 50 repeated
pulse, distance in reduced space, inverter 24.

Figure 19: Inverter chain: TPWL-resimulation, reduction to order 50, repeated
pulse, distance in full space, inverter 68.
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U is truncated with respect to the magnitude of the singular values σ1, . . . , σn:

x = Ly = (σ1v1) · y1 + · · ·+ (σrvr) · yr + (σr+1vr+1) · yr+1 + · · ·+ (σnvn) · yn
≈ (σ1v1) · y1 + · · ·+ (σrvr) · yr + 0 · yr+1 + 0 · yn
= (l1, . . . , lr, 0, . . . , 0) · y
= (LPr

TPr) · y, with Pr =
(
Ir×r 0r×(n−r)

)
∈ {0, 1}r×n

= (LPr
T ) · (Pry) = (LPr

T ) · zr with zr = (y1, . . . , yr)
T ∈ Rr

where r usually is chosen in such a way that σr+1 < tol or σr+1 � σr.

This procedure can also be interpreted as keeping the r most “dominant” columns
of L and zeroising the rest, where a column’s norm is taken as a criterion. That
means, L is approximated by

L ≈ LPr
TPr, with Pr ∈ {0, 1}r×n. (16)

where Pr =
(
Ir×r 0r×(n−r)

)
selects these columns. By construction of L =

U · diag(σ1, . . . , σn), where UTU = In×n, we have ‖vi‖2 = σi for i = 1, . . . , n. In
this respect the r most dominant columns are therefore l1, . . . , lr.

In the adapted POD presented in [40] this perception is carried over to the trans-
posed LT . That means, one selects, again based on the norms, the g ∈ N most
dominant columns {̃lµ1 , . . . , l̃µg} of LT = (̃l1, . . . , l̃n) and zeroizes the rest:

LT ≈ LTPg
TPg, with Pg ∈ {0, 1}g×n. (17)

First, these approximations to L and LT from (16) and (17), respectively, are
inserted into (15):

LTPg
TPg

d

dt
(LPr

TPry) = LTPg
TPgf(LPr

TPry) (18)

From (16) and (17) it also follows that

LT ≈ Pr
TPrL

TPg
TPg, (19)

and multiplying (18) with Pr (consider PrPr
T = Ir×r), the system (18) turns

into

PrL
TPg

TPg
d

dt
(LPr

TPry) = PrL
TPg

TPgf(LPr
TPry) (20)

As LPr
T = (σ1v1, . . . , σrvr) = UrΣr (forUr = (v1, . . . ,vr),Σr = diag(σ1, . . . , σr))

we get

ΣrUr
TPg

T d

dt
[PgUrΣrPry] = ΣrUr

TPg
TPgf(UrΣrPry), Ly = x.
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The above equation states a system of dimension r for y ∈ Rn. Therefore, we
introduce the reduced state vector yr ∈ Rr:

yr = ΣrPry,

from which we can approximately reconstruct the coefficients of the full state in
the basis spanned by the columns of L by:

y ≈ Pr
TΣ−1

r yr,

This in turn lets us approximate the full state in the original basis:

x ≈ Uryr,

because x = Ly ≈ LPr
TΣ−1

r yr = UrΣrΣ
−1
r yr. This part is consistent with the

classical POD.

In addition to the reduction in the state space the adapted POD downsizes f(·) by
observing that the term Pgf(·) corresponds to just the inclusion of g components
fµ1(·), . . . , fµg(·) of f(·) = (f1(·), . . . , fr(·))T . Hence, it suffices to evaluate the
g-dimensional function

f̄ : Rn → Rg : x 7→ (fµ1(x), . . . , fµg(x))
T .

After scaling with Σ−1
r the reduced system for the reduced state vector yr ∈ Rr

becomes

Ur
TPg

T d

dt
[PgUryr] = Ur

TPg
T f̄(Uryr), x = Uryr (21)

For the general case of having not an ODE (14) but a DAE

d

dt
g(x) = f(x) +Bv

to deal with, one gets a reduced problem

Ur
TPg

T d

dt
ḡ(Uryr) = Ur

TPg
T f̄(Uryr) +Ur

TBv. (22)

with ḡ : Rn → Rg : x 7→ (gµ1(x), . . . , gµg(x))
T .

Remarks. Although results from applying the adapted POD to a chain of diodes
as presented in [40] (see also Sec. 7) are promising, we also see severe drawbacks
that have to be analyzed in more detail.

16

Figure 15: Transmission line: TPWL-resimulation, PMTBR, reduction to order
k = 19, extended extraction of linear models and overall reduced sub-
space, distance in full space.

Figure 16: Inverter chain: training input (left) and state response (right, all
stages).

passes through, each element is active at some time and sleeping at some others.
As in [43], the training of the inverter chain during the TPWL model extraction
was done with a single piecewise linear voltage at Uin = u(t) (see also Fig. 16),
defined by

u(0) = 0, u(5ns) = 0, u(10ns) = 5, u(15ns) = 5, u(17ns) = 0

In Figs. 17 and 18 we see again the danger of taking distances to linearization
points not in the full space but in the reduced space. Both are showing the
signal at inverter 24. In Fig. 18 the second impulse is just not recognized where
this seems to be no problem in the first one. However, something else seems to
be missing, even if we take the distance in the full space. In Figs. 19 and 20
the voltage at inverters 68 and 92 is given. In both cases, the signal cannot be
recovered correctly. In the latter one it is even not recognized at all. At the
moment we cannot state reasons for that. Obviously this is not caused by the
reduction but by linearization or the weighting procedure as we get similar results
when turning off the reduction step.

The impact of broadening the signal can be seen in Figs. 21, 22 and 23, which
display the voltage at inverters 4, 18 and 68. In the first two figures the signals
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Figure 13: Transmission line: average activity of models, extended basis ap-
proach, δ = 0.00171, 82 linear models, distance in full space full space.

Figure 14: Transmission line: TPWL-resimulation, extended basis approach,
δ = 0.00171, 82 linear models, reduction to order k = 19, just 5
models allowed – chosen by hand, distance in full space.
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1. The downsizing of the nonlinear function f : Rn → Rn to f̄ : Rn → Rg

with g � n is based on the columns of LT . We recall that the matrix
L arises from scaling the orthonormal basis vectors v1, . . . ,vn with the
corresponding singular values. As there is no reasoning for this scaling
identifiable it is somehow arbitrary.

The decision about the importance of the items of f is based solely on
LT . It is questionable whether the magnitude of f can be neglected in this
way. Furthermore, also the differential operator d

dt
is reduced in the same

manner – which becomes even clearer when looking at the reduced DAE-
system (22). Hence, the same questions hold for the downsized differential
part of the system.

2. Combining the approximations to L and LT from (16) and (17) in (19)
corresponds to zeroising all but the g columns µ1, . . . , µg and all but the
first r rows of LT . It has to be studied carefully, which impact this has for
the structure and especially the DAE-index of the system.

3. The role of the leading matrix product Wr,g = Ur
TPg

T ∈ Rr×g in both
(21) and (22) has to be analyzed more precisely. It is not completely clear
if we can guarantee that Wr,g has full rank in general.

In [40] and in Sec. 7.2 the adapted POD is tested with a diode chain, showing
nice behaviour. However, it is questionable if one can make it standard practice.
In the following we present two small examples. The first shows that in general
we cannot deduce a statement on the columns of LT from decreasing singular
values. In the second the problem of scaling is treated.

Example 1. Assume that the singular value decomposition X = UΣVT of a
snapshot matrix X ∈ R5×5 yields:

U =




1√
2

0 1√
2

0 0

0 1√
3

0 1√
2

1√
6

1√
2

0 − 1√
2

0 0

0 1√
3

0 − 1√
2

1√
6

0 1√
3

0 0 − 2√
6




and Σ =




105

105

1
1

1




.

Then LT calculates to:

LT =




105√
2

0 105√
2

0 0

0 105√
3

0 105√
3

105√
3

1√
2

0 − 1√
2

0 0

0 1√
2

0 − 1√
2

0

0 1√
6

0 1√
6

− 2√
6
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The euclidian norm of the columns of LT are approximately

105√
2
,

105√
3
,

105√
2
,

105√
3
,

105√
3
.

In this example the singular values, i.e., the elements on the diagonal of Σ,
decrease rapidly. We clearly see that this does not allow to make a statement on
the columns of LT .

Obviously, it does not make sense here to approximate LT by some other LTPg
TPg.

However, if we determine Pr and Pg in a naive way by defining r = g = 2 and
just keeping the corresponding most dominant columns of L and LT this yields:

Pr =

(
1 0 0 0 0
0 1 0 0 0

)
and Pg =

(
1 0 0 0 0
0 0 1 0 0

)
,

such that

Ur
TPg

T = (PgUPr
T )T =

( 1√
2

1√
2

0 0

)
which only has rank 1.

Example 2. The reasoning for downsizing f is actually based on the Galerkin-
like projection of the system (see (15)) where LTL = Σ2 6= In×n holds. There is no
obvious reason why the special scaling should be used. This example shows what
can happen, when we apply Petrov-Galerkin projection with W = L̄ = UΣ−1

and V = L = UΣ (cp. Sec. 3.1):

L̄T d

dt
Ly = L̄Tf(Ly).

With the same line of argument that led from the full nonlinear problem (14)
to the reduced system (21) we can also downsize f to P̄gf where P̄g ∈ Rg×n is
determined such that L̄T ≈ L̄T P̄ T

g P̄g. In this way we get a leading matrix product

Ur
T P̄ T

g , whose rank has to be determined.

Assuming that a singular value decomposition now gives

U =




1√
2

1√
2

0 0 0

0 0 1√
3

1√
2

1√
6

1√
2

− 1√
2

0 0 0

0 0 1√
3

− 1√
2

1√
6

0 0 1√
3

0 − 2√
6




and Σ =




105

105

1
1

1




.
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Figure 11: Transmission line: TPWL-resimulation, δ = 0.01675, 6 linear models,
no reduction, distance in full space.

Figure 12: Transmission line: TPWL-resimulation, extended basis approach,
δ = 0.00171, 82 linear models, reduction to order k = 19, distance
in full space.
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Figure 10: Transmission line: TPWL-resimulation, simple basis, δ = 0.01675,
6 linear models, reduction to order k = 10, distance in full space.

In an automatic way just six nonlinear models where extracted only if we relaxed
the tolerance in (3) to δ = 0.01675. In this case however, the solution of the
reduced system shows some kinks as we can see in Fig. 10. The timepoints at
which the linearization points where chosen during simulation are

0 7.8691 8.3383 8.8075 9.2767 9.7459

We can see clearly that the model constructed in this way is not able to cope with
the chosen new input signal. However, this is not a matter of the reduction but of
the process choosing the linearization points. This observation can be made from
having a look at Fig. 11, which shows the result from replacing the full nonlinear
with a full linear model, i.e., using the TPWL-procedure without reducing the
linear submodels.

The result of constructing the overall reduced space with the extended approach
is shown in Fig. 12, with Fig. 13 showing the average activity of each model.
Figure 14 shows the situation when allowing just a selection of models (in fact
the same we refered to before) to be involved in the usage of the TPWL-model
for simulation purposes.

Finally, Fig. 15 shows the result gained from extracting and resimulating with
the implementation according to the TPWL procedure described in [43]. Here,
37 linear models where created, the system was reduced to dimension 19 and the
resimulation again shows the edges we already seen before.

The inverter chain. The inverter chain constitutes a special class of circuit
problems. Here a signal passes through the system, activating at each timeslot
just a view elements and leaving the others untouched. However, as the signal
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And therefore

L̄T =




10−5√
2

0 10−5√
2

0 0
10−5√

2
0 −10−5√

2
0 0

0 1√
3

0 1√
3

1√
3

0 1√
2

0 − 1√
2

0

0 1√
6

0 1√
6

− 2√
6




≈




0 0 0 0 0
0 0 0 0 0
0 1√

3
0 1√

3
1√
3

0 1√
2

0 − 1√
2

0

0 1√
6

0 1√
6

− 2√
6




.

Hence, we might choose

Pr =

(
1 0 0 0 0
0 1 0 0 0

)
and P̄g =



0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


 ,

such that

Ur
T P̄ T

g = (P̄gUPr
T )T =

(
0 0
0 0

)
which even has rank 0.

Clearly both examples lead to problems of reduced rank. In [3] it is proposed to
solve these kind of problems with the least squares technique.

4.2 Trajectory piecewise-linear techniques (TPWL)

Trajectory piecewise-linear techniques deal better with reducing evaluation costs
of the reduced order model. Although construction of the model can be expensive
(depending on the number of linearization points), evaluation of the reduced order
models is usually (much) cheaper due to the fact that the models are linear and
smaller.

The choice of linearization points is automatic and there exist alternatives (see
Sec. 3.2 and [31, 43]). Nevertheless, the linearization points must be chosen
with care, since missing an important dynamic can make the linearization (and
reduced order model) much less accurate. Related to this is the determination of
the weight during simulation for different inputs.

With respect to training inputs, TWPL has the advantage that linear models are
valid for all inputs by default. However, for the nonlinear system, this holds only
in the neighborhood of the linearization point: if the system due to a different
input reaches a state that was not reached during the training phase (and not
covered by one of the linearized systems), the linearized model becomes of prac-
tically no value. In [31, 6.1.2] it is reported that big changes in amplitude of the
testing and training input can have a dramatic impact on the accuracy.
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Another point that is not much considered in the literature is the influence of
the observer function. Most of the focus is on the states, but it might be fruitful
to take the observer function y(t) = CTx into account as well, during both the
determination of the linearization points and the weights.

5 Open issues in nonlinear model order methods

The most important open issues in nonlinear MOR methods that block applica-
tion in practice are:

1. Determination of training inputs: how does the quality of the reduced model
depend on the training input used during construction and for which inputs
is the reduced model reusable? Can the range of inputs for which a model is
valid be identified a priori? What types of inputs are relevant in industrial
applications?

2. Identification and classification of nonlinear systems that are suitable for
reduction by currently available reduction techniques. Is there a way to
determine a priori if a system is suitable for reduction, or if other techniques
such as multirate time integration are needed?

3. Properties of linearized systems: since the snapshots are usually not equi-
librium points, except in the case of the DC state, the linearized systems
have an additional forcing term. What can be said about the structure,
index, stability and passivity of these systems?

4. Automatic construction of reusable reduced order models: practical (re)use
requires automatic construction of reduced order models. Furthermore, the
models must be available in such a way that they can be (re)used in other
designs just like any other building block, without additional work. Special
care has to be taken when choosing the correct time interval [tstart, tend]
because only those nonlinear effects that occured during the training can
be reconstructed by the model.

5.1 Issues related to the training input

The choice of training inputs might even lead to a paradox: on the one hand one
wants to obtain a reduced order model with much less states and hence only a
small part of the state space should be dominant in order to achieve that. On
the other hand, one wants an accurate model for possibly many different inputs
and consequently many states become dominant, preventing a big reduction. A
way out of this would be to define classes of inputs and construct a reduced order
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Figure 8: Transmission line: TPWL-resimulation, simple basis, δ = 0.00171,
82 linear models, reduction to order k = 10, distance in reduced space.

Figure 9: Transmission line: TPWL-resimulation, simple basis, δ = 0.00171,
82 linear models, reduction to order k = 10, just 5 models allowed
– chosen by hand.
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Figure 6: Transmission line: TPWL-resimulation, simple basis, δ = 0.00171,
82 linear models, reduction to order 10, distance in full space.

Figure 7: Transmission line: average activity of models, simple basis, δ = 0.00171,
82 linear models, distance in full space.

process in the reduced space without taking care, if the linearization points are
within the reduced space.

From Fig. 7 one can see, that some of the 82 linear submodels extracted with the
Heaviside step function seem to be far more important for resimulating with the
changed input signal than others. We chose five models and allowed only them to
be involved in the resimulation. However, also this was not done automatically
but by hand in several iterations. The models we used correspond to linearizations
around the states the system was in at the timepoints

0 3.0021 3.0075 3.0219 3.1487

Indeed, we have a good match as can be seen from Fig. 9 from only five models.
But, recall these were not chosen automatically.
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model for every class. In practice this is feasible provided the number of different
classes is limited for the application at hand.

One could also think of taking suitably selected (hierarchical) basis functions
as training functions. In real life applications, however, the choice of the train-
ing inputs must be based on the properties of the underlying system and the
expected input signals. Even then finding suitable training inputs, by hand or
automatically, can be challenging.

5.2 Classification of nonlinear systems

Systems showing digital behavior, i.e., having parts that switch on and off during
certain time intervals due to a clock signal passing through, may not be good
candidates for reduction by nonlinear model reduction techniques. Especially
if many parts switch at different time points, which will introduce many inde-
pendent states, piecewise linearization would require many linearization points.
Examples of such systems are inverter chains.

On the other hand, systems showing a more smooth nonlinear behavior, such
as transmission lines, may be potential candidates for reduction. If the system
states, for the input signals of interests, only span a small subspace of the com-
plete state space, the number of linearization points will be limited and hence
piecewise linearization, with or without additional reduction, can be effective.

5.3 Properties of the linearized systems

5.3.1 Stability and passivity

As also discussed in [31, Section 5.1.4], it is not possible to make statements
about the stability of the individual linearized systems, let alone about convex
combinations of these systems, without making strict assumptions on f and g
of the original system. If the original nonlinear system has an exponentially
stable equilibrium point x0, then x0 is also an exponentially stable equilibrium
point of the linearized system around x0. Exponential stability can be hard to
check in practice, and furthermore, it does not say anything about the stability
of the linearizations around non-equilibrium points. Also, the (convex) combina-
tion of stable linearizations is not guaranteed to be stable. Another artifact of
piecewise-linearization is the possible generation of additional equilibria that are
not equilibria of the original system, which is clearly an undesired feature. Since
stability is hard to guarantee, this by definition is also the case for passivity.
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In [31, Chapter 5] some techniques for computing stabilizing weights are de-
scribed. We refer to [8] for recent developments on stabilizing schemes for
piecewise-linearized models. Considerations on passivity and stability inforcing
algorithms can be found in [10].

5.3.2 Structure and index

Linearization around (arbitrary) states does not change the underlying physical
structure and index of the problem, since both properties are defined for all states
x(t) [17]. If the index is known beforehand, this observation may help in choosing
the model order reduction scheme for the linearized systems.

There is one structural property of the system that does change due to lineariza-
tion around non-equilibrium points: an additional nonzero forcing term is intro-
duced, cf. the term f(xi) in (1). We can regard this forcing term as an additional
constant input to the linearized system and hence we have to take this into
account when simulating the piecewise-linearized system and when computing
reduced order models.

5.4 Automatic construction of reusable models

In principle, piecewise-linearized models can be constructed in an automatic way,
provided that values for parameters such as β are given (see section 8 for some
comments on implementation in a circuit simulator). The numerical experiments
in section 7, however, show that the TPWL procedure in its current form is not
robust enough to allow automatic construction of accurate models. Especially
the strategy to choose linearization points and the determination of the weights
both need to be improved.

Concerning the reuse of linearized models there is, apart from determining proper
training inputs (a prerequisite for producing a reusable model), an additional dif-
ficulty. Realization or synthesis of a single linear reduced order model as a circuit
is possible and allows for natural reuse in the design phase and simulations, with-
out making any changes to the simulation software. However, piecewise-linear
models, and especially the weighting procedure associated with resimulating such
models, cannot be (re)used without making changes to the simulation software
or adding additional functionality to the netlist language (to define, for instance,
piecewise-linear models). An option is to define a new circuit block for piecewise-
linear models, and to adapt the circuit simulator to deal with such blocks, see
also section 8.
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Figure 4: Transmission line: training input (left) and state response (right, all
stages).

Figure 5: Transmission line: long term simulation with training signal.

We try to reproduce these plots but arrive at different results. In the following
we give some details of the settings we used and the results we got.

• To get a guess for δ, which is used for the selection of the linearization
points, we run a simulation of an order reduced linear model that corre-
sponds to the linearization around x0 until tend = 300 as at t = 10 steady
state is not yet reached (cf. Fig. 5). As the starting value satisfies x0 = 0,
d and δ where chosen to be (cf. (4))

d = ‖xT‖∞ ≈ 0.0171 and δ = 0.00171 with T = 800.

• Both the simple and the extended approach for generating the reduced order
basis were tested. For the latter attempt, the magnitude of the smallest
singular value regarded meaningful was 1% of the magnitude of the largest
one.

Figures 6 and 7 show the situation that arises when we apply the above mentioned
settings, with the simple strategy for deriving the global reduced space, taking
the distances in the full space. Except of a delay in the phase where the signal
decreases, we see quite a good match in Fig. 6. But, automatically not 5 but
82 linear models are chosen. Fig. 7 shows the average activity of each of the
extracted models in the sense that we multiply for each model the weight with
the duration this weight is valid during integration, i.e, weight times timestep,
build the sum of these products and divide it by the total length of the time
interval. In Fig. 8 we see the impact of taking the distance in the weighting
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The diode chain (Fig. 3). The diode chain depicted in Fig. 3 is somewhat
similar to the nonlinear transmission line given in Fig. 1. Here we do not have a
resistive path in parallel to each diode. Therefore, we expect, that signals applied
to the diode chain via the voltage source Uin die out much faster than in the case
of the transmission line, i.e., we expect a much higher redundancy.

Clearly, the diodes are the nonlinear elements, described by the correlation of
terminal voltages and current traversing:

ıd(v) = ıd(va − vb) = g(va, vb) =




Is

(
e

va−vb
VT − 1

)
if va − vb > 0.5V ,

0 otherwise

Here, the treshold voltage Vt = 0.0256V and the static current Is = 10−14 are
chosen for all the diode models. The resistors and capacitors have uniform size
R = 10kΩ and C = 1pF .

7.2 Test runs

The nonlinear transmission line. Rewieński [31] uses this model to show the
behaviour of the automatic model extraction and the robustness of the TPLW-
model w.r.t. input signals that differ from the input signals. There, the simple
approach for constructing the overall reduced subspace, i.e. just taking the re-
duction coming from the linear model that arises from linearization around the
starting value is used. Additional linearization points are chosen according to the
relative distance (3) existing ones. No specification for δ therein is given. The
Arnoldi-process to match l = 10 moments is used for reduction. Furthermore, in
the weighting procedure (5) β = 25 is chosen.

With these settings, five models are extracted automatically and the resimulation
shows very good match even for differing input signals. With the same training-
and simulation-input we try to reproduce these results.

For the training the shifted Heaviside step function

ı(t) = H(t− 3) =

{
0, if t < 3

1, if t ≥ 3

is used. Figure 4 shows both the input signal (left) and the state response, i.e. the
node voltages (right). It can be seen, that with increasing number, the reaction
of the nodes becomes weaker.

For resimulation a different input signal ı(t) = 0.5 · (1 + cos(2πt/10)) was used.
Plots presented in the cited papers [31, 32] show almost perfect match with the
reference solutions.
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6 Applications of nonlinear model order reduction

In this section we describe applications in industrial practice that may take ad-
vantage of nonlinear model order reduction techniques. As far as possible, we
identify how much current nonlinear model order techniques are applicable and
where improvements or new developments are needed. Numerical results for a
selection of the examples will be discussed in section 7.

• Transmission lines: like linear RLC transmission lines are well known ex-
amples for linear MOR techniques, good candidates for nonlinear MOR
techniques are transmission lines with nonlinear elements (diodes).

• Inverter chains: due to the repetitive structure of the inverter chains, they
may be reducible. Their typical switching behavior, however, might com-
plicate reduction and could be handled better by multirate time integration
techniques (see section 7).

• Phase noise analysis of oscillators: simple oscillator models can be handled
with techniques based on Perturbation Projection Vectors [12]. Application
to full schematics of oscillator circuits may require reduction techniques.
Starting points for study can be [31, section 6.2],[15] and [17].

• Complete functional blocks on chip: large components such as radios, GPS,
bluetooth, are (re)used in different application. Availability of reduced
order models could help in the design and verification phase. There is no
present knowledge on the actual need for this.

• RF Building Blocks: design of RF systems requires optimization of several
performance parameters. This optimization process may involve thousands
of circuit simulations. Although the building blocks are usually relatively
small circuits, there is need for reduced or behavioral models that map
inputs (design parameters) to outputs (performance parameters) in a much
faster way. It is unclear whether nonlinear MOR techniques are of use here.
Probably, response surface modeling techniques are of more use.

7 Numerical experiments

In this section we present results of computations done with matlab implemen-
tations. Concerning TPWL we have two matlab-codes: one uses the strategy
presented by Rewieński [31], the second one the strategy used by Voß [43] to
select the linearizations points.

As mentioned in section 3.2 the TPWL method is based on linearizations around
properly chosen states the system reaches when a chosen time varying signal is
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applied at the input ports. As we are interested especially in the applicability of
model order reduction techniques in an industrial environment, we concentrate
on the observations presented in the following on the robustness of the models
w.r.t. varying input signals and the degree of automatism, offered by the corre-
sponding scheme.

7.1 Testcases

Testcases for the considerations are the nonlinear transmission line model from
Fig. 1 with N = 100 nodes, a problem of dimension n = 100, the chain of N = 300
inverters from Fig. 2, a problem of dimension n = 302 and the diode chain given
in Fig. 3, a problem of dimension n = 301.

1

ı(t)
R

ıd(e1) C

ıd(e1 − e2) ıd(e2 − e3) ıd(eN−1 − eN )

C C C

R R R

N32

Figure 1: Nonlinear transmission line [31, 32].

Uop

Uin

1 2 n

Figure 2: Inverter chain [43].

Uin

Figure 3: Diodechain [40].
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We present observations we made when trying to reproduce the results presented
in [31, 32] with the nonlinear transmission line and when changing the input
signals with the inverter chain model.

The nonlinear transmission line (Fig. 1). The diodes introduce the designated
nonlinearity to the circuit, as the current ıd traversing a diode is modeled by
ıd(v) = exp(40 · v)− 1 where v is the voltage drop between the diode’s terminals.
The resistors and capacitors contained in the model have unit resistance and
capacitance (R = C = 1), respectively. The current source between node 1 and
ground marks the input to the system u(t) = ı(t) and the output of the system
is chosen to be the voltage at node 1: y(t) = v1(t).

Introducing the state vector x = (v1, . . . , vN), where for i = 1, . . . , N vi describes
the node voltage at node i, modified nodal analysis leads to the network equations:

dx

dt
= f(x) +B · u,

y = CT · x,
where B = C = (1, 0, . . . , 0)T and f : RN → RN with

f(x) =




−2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −1




· x+

+




2− exp(40x1)− exp(40(x1 − x2))
exp(40(x1 − x2))− exp(40(x2 − x3))

...
exp(40(xN−2 − xN−1))− exp(40(xN−1 − xN))

exp(40(xN−1 − xN))− 1




The inverter chain (Fig. 2). The nonlinearity is introduced by the MOSFET-
transistors. Basically, in a MOSFET transistor the current from drain to source
is controlled by the gate-drain and gate-source voltage drops. Hence, the easiest
way to model this element is to regard it as a voltage controlled current source
and assume the leakage currents from gate to drain and gate to source to be zero:

ıds = k · f(ug, ud, us),

with f(ug, ud, us) = max(ug − us − Uthres, 0)
2 −max(ug − ud − Uthres, 0)

2, where
the threshold voltage Uthres = 1 and the constant k = 2 · 10−4 is chosen. For a
proper definition of the corresponding network equations we refer to [43].
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