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Abstract

In this paper we discuss the inverse problem of the identification of
mechanical stresses by measuring the deformation of an electric poten-
tial field in a so called differential strain gauge (D-DMS). We derive a
mathematical model, where the forward operator is given in terms of an
elliptic boundary value problem. Derivatives of the forward operator are
considered and the solution of the inverse problem via a least-squares
minimization is introduced. Here, the discretized problem is solved with
the Gauss-Newton method. Numerical studies of practical interest are
presented.



Contents

1 Introduction 1

2 Mechanical background 2
2.1 Geometry of the deformed strain gauge . . . . . . . . . . . . . . . 2
2.2 Basic equations for the electrical potential field . . . . . . . . . . 3

3 The forward operator 4
3.1 The boundary value problem and weak formulation . . . . . . . . 4
3.2 Derivatives of the forward operator . . . . . . . . . . . . . . . . . 8

4 Solution of the inverse problem 10
4.1 Finite elements discretization . . . . . . . . . . . . . . . . . . . . 10
4.2 The discrete inverse problem . . . . . . . . . . . . . . . . . . . . . 12
4.3 Least-squares minimization . . . . . . . . . . . . . . . . . . . . . . 13

5 Numerical studies 14
5.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Author’s addresses:

Marcus Meyer
Julia Müller
TU Chemnitz
Fakultät für Mathematik
Reichenhainer Str. 41
D-09107 Chemnitz

http://www.tu-chemnitz.de/mathematik/inverse probleme/

marcus.meyer@mathematik.tu-chemnitz.de

No. Exact strains p† δrel frel K0 Time in sec

εx = 0.01 0 0.00734 14 41.92

1 εy = −0.003

(
1.013039

0.005

)

0.001 0.03965 20 129.11

γ = 0.005 0.01 0.3309 20 142.06

εx = 0.005 0 0.0457 14 41.80

2 εy = 0.003

(
1.001994

0.001

)

0.0001 0.0654 14 42.17

γ = 0.001 0.001 0.2465 20 103.84

εx = 0.05 0 0.0047 13 39.44

3 εy = 0.03

(
1.01942

0.01

)

0.001 0.0251 20 108.38

γ = 0.01 0.01 0.2098 20 113.61

εx = 0.01 0 0.0102 18 52.14

4 εy = 0.01

(
1

0.01

)

0.001 0.0547 18 52.27

γ = 0.01 0.01 0.4571 20 103.75

εx = 0.01 0 0.0078 14 42.39

5 εy = −0.003

(
1.013039

0

)

0.001 0.0468 20 129.06

γ = 0 0.01 0.3558 20 141.78

Table 1: Results for varying deformation states and noise levels

level) of the measurements has to be scaled depending on the dimension of the
identified parameters.

Vice versa it is natural, that a given measuring tolerance of the technical equip-
ment limits the attainable accuracy of the identified parameters. Let us consider
a realistic setting with deformations εx = 0 and εy = γ = 0.001 and a supplied
voltage of UB = 0.1V . Then the variation of the potential field is of order 10−5V .
We find out by numerical tests that in this case the identification error is smaller
than 10%, if the accuracy of the measurements is more precisely than 10−6V
(what here corresponds to a relative error δrel ≤ 10−5, which means in this case,
that the absolute measuring error is smaller then 10% of the potential variation).
Note, that effective instruments reach an absolute accuracy of 10−8V what would
be sufficient for the above example. We refer to [11, Section 4] for details on
practical questions.
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which seems to be a proper choice due to the fact, that the deformations are
assumed to be small. Hence, γ ≈ 0 and κ0 = 1+εx0

1+εy0
≈ 1 is plausible. The stopping

criterion for the iteration process is defined as follows. Either the iteration stops
at k = K0 if the residual norm is small enough

||Fm(pK0)− yδdata||2 ≤ 10−6

or if the norm of the search step falls below some tolerance

||dK0||2 ≤ 10−6 .

As a quality criterion for the accuracy of the reached results we define the relative
error

frel :=

∣∣∣∣
∣∣∣∣
(
κδ − 1
γδ

)
−
(
κ† − 1
γ†

)∣∣∣∣
∣∣∣∣
2∣∣∣∣

∣∣∣∣
(
κ† − 1
γ†

)∣∣∣∣
∣∣∣∣
2

(29)

with κ†, γ† denoting the (known) exact parameters and κδ, γδ being the identified
parameters. Note, that due to the definition of κ this interpretation of the relative
error is natural, since frel measures the error in εx and not in 1 + εx.

5.2 Results

Concluding this paper we present some numerical results listed in table 1. Here,
the inverse problem was solved for some variations of κ and γ and the influence
of noise in the measured data was studied.

The results show, that the identification of the strain parameters is stable, i.e.
the results are quite exact even for noisy data as long as the noise level is not
too large. In this context we mention, that due to the small number of unknown
parameters the discretization of the problem has a regularizing character. Thus,
no additional regularization has to be introduced.

As one can see, the order of magnitude of the noise level δrel has a varying influ-
ence on the results quality depending on the order of magnitude of the identified
deformations. See e.g. cases no. 1 and no. 2 in table 1. Here, the identified
parameters are of order 10−2 and 10−3, and thus the relative measuring error has
to be smaller by the factor of 10 in case no. 2, while the solution errors are nearby
in the same region. The cases 3, 4, and 5 yield similar results. This behavior
can be explained by the fact, that small deformations of the D-DMS cause only
a small change in the potential field. Then, with a fixed supplied source voltage,
a fixed noise level much more falsifies the results for small deformations than for
larger deformations. As a consequence, the precision (i.e. the maximum noise

16

1 Introduction

For a lot of problems in experimental mechanics it is of interest to measure
the deformation of a body, i.e. to identify components of the strain tensor ε.
This can be done with strain gauges (DMS), which is a quite common and well
known technique. In recent times engineers try to develop improvements for such
measuring methods, driven by the quest for a high-level accuracy. In the focus
of such considerations there is a measuring principle called D-DMS (differential
strain gauge). Here, a sensor consisting of a small piece of foil is fixed at a body
and (in undeformed state) an electrical potential field is applied at this sensor. If
the underlying body is deformed, the potential field also changes, and from the
measured difference of the electric potential the deformation can be recovered.
See e.g. [4], [7] and [14] for details on DMS and D-DMS strain gauges.

From the mathematical point of view the indirect measurement of strains via
measured potentials of an electric field is modelled as an inverse parameter iden-
tification problem. In this context the components of the strain tensor denote
the parameters to be determined. In general, such identification problems may
be ill-posed, e.g. the unknown parameters must not depend continuously on the
measured data, which results in instability of the problem. Then regularization
methods have to be applied. See [3] or [8] for a survey on regularization and ill-
posed problems. We note, that for the identification problem we consider here,
no additional regularization has to be introduced, due to the discrete structure
of the problem with only a small number of unknown parameters.

In this paper we focus on the mathematical formulation and numerical solution of
the inverse problem. For a more detailed discussion of the application of D-DMS
strain gauges and more extensive numerical studies we refer to [11]. While solving
the above mentioned identification problem we follow the approaches introduced
in [6].

The mechanical background of the inverse problem is considered in section 2.
We describe the relation of strains and deformations of the D-DMS sensor. Basic
equations for the electric potential field are introduced. Section 3 is devoted to the
forward operator, which is defined via a boundary value problem, whose solution
is the electric potential q = q(ε) depending on the strain parameters. Derivatives
of the forward operator are introduced. Due to the fact, that the unknown strain
parameters are contained in the shape of the (deformed) domain of the boundary
value problem, the domain is transformed to the unity square. This results in
a modified boundary value problem and standard methods as explained in [6]
are applicable. In section 4 the discretization of the problem is considered and a
formulation of the inverse problem as a least-squares minimization is introduced.
For the numerical solution the Gauss-Newton method is applied. Additionally,
in the closing section 5 some results of numerical studies are presented.

1



2 Mechanical background

2.1 Geometry of the deformed strain gauge

Without loss of generality we describe the undeformed quadratic D-DMS sensor
as the unity square in the x-y-plane. Bearing in mind, that the sensor foil is thin,
deformations in z-direction can be neglected. Therefore the considered problem
is 2-dimensional. In the deformed state we assume, that the shape of the D-
DMS looks like a parallelogram as displayed in figure 1. Note, that translational
or rotational displacements of the underlying body do not influence the strain
gauge. Thus, the deformation can be described by the strain tensor ε, which is
introduced in the following sense (see e.g. [9]).

Figure 1: Geometry of the deformed D-DMS strain gauge referring to the strain
components εx, εy and γ

Let (x0, y0) denote the position vector of a material point in the undeformed state.
The position vector of the same point in the deformed state is named (x, y). Then,
with the displacement vector u(x, y) = (ux(x, y), uy(x, y)) the relation

(x, y) = (x0, y0) + u(x0, y0)

holds. Assuming small deformations and small deformation gradients

∂ui
∂j
� 1 ∀ i, j = x, y

the 2-dimensional symmetric strain tensor is defined as

ε(u) =

(
εx εxy
εyx εy

)

2

part of the Dirichlet boundary the potential is q = 1 and at the second part the
potential is q = −1. The difference of two potentials then results in a voltage. In
practice, the voltage is supplied with two voltage source points (SP-) and (SP+)
(see figure 4) representing small circles. The border of these circles denotes the
two parts of Dirichlet boundary mentioned above.

MP1
MP2

MP3

MP4
MP5

MP6

y

x

Lage der Messpunkte bezogen
auf das Einheitsquadrat:

MP1 0.1,0.1

MP2 0.6,0.05

MP3 0.95,0.4

MP4 0.9,0.9

MP5 0.4,0.95

MP6 0.05,0.6

Lage der Punkte zum 
Anlegen der Spannung:

SP+

SP-

SP0.9,0.1

SP−0.1,0.9

Measuring points:

Voltage supply source:

Figure 4: Arrangement of measuring points (MP) and voltage supplying points
(SP) at the D-DMS (coordinates relating to the unity square)

For the sake of completeness in figure 4 the arrangement of the data measuring
points (MP) is shown. We here use 6 measuring points, thus y

data
∈ R6.

5.1 Numerical implementation

We solve the inverse problem with simulated data, i.e. at first y
data

is computed as
the solution of a forward problem with a discretization of n = 151295 nodes. Then
vice versa the identification problem is solved on a coarser mesh with n = 37951
nodes and perturbed data. Therefore, for a given relative noise level δrel ≥ 0 we
define the noisy data vector

yδ
data

:= y
data

+ δrel
||y

data
||2

||e||2
e

with a Gaussian random vector e ∈ R6. The initial value of the Gauss-Newton
iteration is set as

p0 = (κ0, γ0)T = (1, 0)T ,

15



We refer to [12, Chapter 10] for details concerning the Gauss-Newton iteration.

5 Numerical studies

In the last section we present some numerical results. Therefore the discretized
identification problem was implemented and solved in MATLAB R2008 including
the Partial-Differential-Equation-Toolbox [10]. For a more detailed view on the
numerical implementation and an extensive survey on the results we additionally
refer to [11].
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Figure 3: Variation of the potential field in mV for εx = 0, εy = 0, γ = 0.005
compared with the potential for undeformed state εx = εy = γ = 0
(supply voltage of UB = 2V )

A simulation of the potential field at a deformed D-DMS strain gauge compared
with the potential at an undeformed D-DMS makes the effect of a potential field
deformation visible, which will later be used for the strain identification. In figure
3 the difference of the potential fields for a deformed (εx = 0, εy = 0, γ = 0.005)
and undeformed (εx = εy = γ = 0) state is visualized. In this case we find
out, that for a supplied voltage of 2V the variation of potentials has an order of
magnitude of ±1.5mV = ±1.5 · 10−3V .

Note, that the supplied source voltage is identical in both cases. In particular
the numerical results involve a source voltage of 2V , i.e. for the boundary value
problem (4) we have two different Dirichlet boundary conditions, where at one

14

with

εx :=
∂ux
∂x

, εy :=
∂uy
∂y

, and εxy = εyx :=
1

2

(
∂ux
∂y

+
∂uy
∂x

)
.

We set γ := 2εxy, i.e. γ describes the change of angles caused by the deformation.
The numbers εx and εy represent changes of length in x-direction and y-direction.

The above mentioned strain tensor ε is well known from linear theory, holding
for small deformations. For our purpose of describing a (small) D-DMS sensor,
we are able to suppose, that ε is constant all over the sensor domain. Thus, the
strains εx, εy, and γ are real numbers, which simplifies the problem considerably.

2.2 Basic equations for the electrical potential field

As explained in the introduction, the D-DMS strain gauge is the domain of an
electrical potential field. For a detailed view on the mathematical description of
electric fields and related Maxwell equations see e.g. [13].

Let q = q(x, y) denote the electric potential. Then for the considered situation
of a source free, irrotational, and static field the Laplace equation

div grad q(x, y) = ∆q(x, y) = 0 (1)

holds. Note, that the difference U12 of potentials q(x1, y1) and q(x2, y2) with
(x1, y1) 6= (x2, y2) denotes a voltage.

The static electric field is induced by a connected voltage, which has to be formu-
lated as a Dirichlet boundary condition. Namely, at the boundary of an electrode
we set the potential

q = g on ΓD . (2)

Then at the boundary of each electrode we have an equipotential line with a
known potential g ∈ R. The potential difference between two electrodes results
in the connected voltage.

At the free boundary of the D-DMS sensor the equipotential lines are perpendic-
ular to the boundary, such that the Neumann boundary condition

∂q

∂ν
= 0 on ΓN (3)

holds. Here, ν defines the outer normal vector of the boundary ΓN .

3



3 The forward operator

3.1 The boundary value problem and weak formulation

Let Ω̂ ⊂ R2 be a domain with boundary ∂Ω̂ = Γ̂D∪Γ̂N , representing the deformed
D-DMS as displayed in figure 1. Analogously, the undeformed unity square is
denoted as domain Ω ⊂ R2 with boundary ∂Ω = ΓD ∪ ΓN . See figure 2 for an
illustration of Ω̂ and Ω.

Resulting from formulae (1), (2), and (3), the potential field q(x, y) in the de-
formed D-DMS strain gauge is derived as the solution of the elliptic boundary
value problem 




∆q = 0 in Ω̂ ,

q = g on Γ̂D ,
∂q
∂ν

= 0 on Γ̂N .

(4)

Remark 3.1 The solution of (4) corresponds to the solution of the direct prob-
lem. Here, the parameters εx, εy, and γ are given and therewith the shape of

the deformed domain Ω̂ is known. Thus, the potential q has to be computed.
Vice versa for the inverse problem the potential q is given (on some measuring
points) and the parameter p = (εx, εy, γ)T has to be estimated. Since all strains
are assumed to be constant, p ∈ R3 holds.

We solve the BVP (4) by introducing a weak formulation. Let

V̂D := {q ∈ H1(Ω̂) : u|Γ̂D = g}
be the space of Ansatz functions and

V̂0 := {v ∈ H1(Ω̂) : v|Γ̂D = 0}
denote the space of test functions. Here, H1 is the Sobolov space H1(Ω) with
standard inner product. See e.g. [5] for details on Sobolev spaces and weak
formulation of the Laplace equation.

Multiplying the Laplace equation with a test function v ∈ V̂0 and subsequently
integrating gives

∆q(x, y) = 0 ⇒ ∆q(x, y) · v(x, y) = 0

⇒
∫

Ω̂

∆q(x, y) · v(x, y)dΩ̂ = 0 .

With Green’s first identity we derive

∫

Ω̂

∆q v dΩ̂ = −
∫

Ω̂

∇q · ∇v dΩ̂ +

∫

∂Ω̂

∂q

∂ν
v ds

4

these measuring points lying in the domain of the strain gauge. For simplicity
we assume that the measuring points coincide with nodes of the finite elements
mesh.

The discrete operator Fm : D(Fm) ⊂ R2 → Rm now describes a map of the
parameters κ and γ onto the projection of the solution of (23) to the m measuring
points. With an additional projection matrix Q ∈ Rm×n, this reads as

Fm(p) = Q q .

Eventually, we end up in the following definition.

Definition 4.1 (Discrete identification problem) For given measuring points
ζ1, ..., ζm ∈ Ω and corresponding measuring data y

data
:= (y1, ..., ym)T ∈ Rm with

yi := y(ζi), i = 1, ...,m, the parameter p = (κ, γ)T ∈ D(Fm) ⊂ R2 has to be
estimated, such that

Fm(p) = y
data

(25)

holds.

4.3 Least-squares minimization

The inverse problem or the equation (25), resp., is in the following solved with a
least-squares minimization. In particular, we consider the functional

J(p) :=
1

2
||Fm(p)− y

data
||2 → min

p∈D(Fm)
. (26)

By minimizing J(p), a parameter p = (κ, γ)T is found, which fits the given
measuring data best.

The minimization (26) denotes a nonlinear optimization problem, which we solve
iteratively with a sequence of parameter updates

pk+1 := pk + βk dk, k = 0, 1, . . . , (27)

for a given initial value p0. The search direction dk and the step size parameter
βk are chosen, such that the iteration process follows a descent direction, i.e.
J(pk+1) < J(pk).

Various algorithms for the appropriate calculation of dk and βk exist. For sim-
plicity we use βk ≡ 1 or, alternatively, βk is decreased with a simple bisection
algorithm if necessary.

For the calculation of dk the Gauss-Newton algorithm is used. Here, for given
iterate pk the search direction is found as a solution of the corresponding normal
equation

F ′m(pk)
TF ′m(pk)dk = F ′m(pk)

T (y
data
− Fm(pk)) . (28)

13



F (p) := q, p ∈ D(F )

with q ∈ Rn being the solution of (23) for given parameter p. For details on the
solution of such constrained minimization problems (23) with multiplier methods
we refer to [1]. See [12] for a general survey on numerical optimization.

Derivatives of the discrete operator F are derived as solutions of appropriately
chosen linear systems. Therefor we introduce an alternative formulation of the
stiffness matrix K. Namely, with the matrices K(k) = (k

(k)
ij ) ∈ Rn×n, 1 ≤ k ≤ 3,

which are defined as

k
(1)
ij : =

∫

Ω

∂ψi
∂ξ

∂ψj
∂ξ

dΩ ,

k
(2)
ij : =

∫

Ω

∂ψi
∂η

∂ψj
∂η

dΩ ,

k
(3)
ij : =

∫

Ω

(
∂ψi
∂ξ

∂ψj
∂η

+
∂ψi
∂η

∂ψj
∂ξ

)
dΩ, 1 ≤ i, j ≤ n ,

obviously, the relation

K(p) = K(1) + κ2K(2) − κ sin γK(3)

holds. Thus, for given p0 the derivatives are calculated corresponding to formula
(22) as solutions of

K(p0)z = f
deriv

(24)

with

f
deriv

:= hκ

(
−2κ0K

(2)q
0

+ sin γ0K
(3)q

0

)
+ hγκ0 cos γ0K

(3)q
0
.

Here, the solution z := F ′(p0)h of (24) denotes the discrete directional derivative
for a given direction h = (hκ, hγ)

T ∈ R2.

4.2 The discrete inverse problem

For the solution of the inverse problem we have to respect, that only the informa-
tion of a finite number of measuring points is available. Let ζ1, ..., ζm ∈ Ω denote

12

where the integral on the boundary ∂Ω̂ vanishes due to

∫

∂Ω̂

∂q

∂n
v ds =

∫

Γ̂D

∂q

∂ν
v ds

︸ ︷︷ ︸
=0 (v∈V̂0)

+

∫

Γ̂N

∂q

∂ν
v ds

︸ ︷︷ ︸
=0 ( ∂q

∂n
=0 on Γ̂N )

.

Thus we have

∫

Ω̂

∆q v dΩ̂ = −
∫

Ω̂

∇q · ∇v dΩ̂ = 0 . (5)

In formula (5) the unknown parameter p = (εx, εy, γ)T is implicitly contained in

the domain Ω̂. For the identification problem we prefer a formulation, where p is
explicitly visible. This can be enforced by a slight modification as follows.

Figure 2: Transformation of unity square Ω to deformed domain Ω̂ by the use of
mapping Φ

The idea is, to transform the deformed domain Ω̂ to the undeformed unity square
Ω (see figure 2). Therefor a transformation mapping Φ : Ω→ Ω̂ is defined via

Φ

(
ξ
η

)
=

(
x
y

)
=

(
sin γ · η(1 + εy) + ξ(1 + εx)

cos γ · η(1 + εy)

)

=

(
1 + εx sin γ(1 + εy)

0 cos γ(1 + εy)

)(
ξ
η

)
. (6)

Note, that the x-y-coordinate system is used in the deformed domain Ω̂ and that
the ξ-η-coordinates are applied to the unity square Ω. In the following we need
the inverse transformation mapping Φ−1 : Ω̂→ Ω, defined as

5



Φ−1

(
x
y

)
=

(
ξ
η

)
=

(
1

1+εx
− sin γ

cos γ(1+εx)

0 1
cos γ(1+εy)

)(
x
y

)
. (7)

Additionally we calculate

det (Φ−1)
′
=

∣∣∣∣∣
1

1+εx
− sin γ

cos γ(1+εx)

0 1
cos γ(1+εy)

∣∣∣∣∣ =
1

(1 + εx)(1 + εy) cos γ
,

keeping in mind, that due to the smallness assumption on the deformations and
strains

∣∣∣∣
1

(1 + εx)(1 + εy) cos γ

∣∣∣∣ =
1

(1 + εx)(1 + εy) cos γ
(8)

holds. While using Nabla operators we have to respect the transformation map-
ping, i.e. we must differentiate, wether the Nabla operator refers to the x-y- or
the ξ-η-coordinates. According to the notation for Ω and Ω̂ we define

∇̂q(x, y) =

( ∂q
∂x
∂q
∂y

)
and ∇q(ξ, η) =

(
∂q
∂ξ
∂q
∂η

)
.

Applying the chain rule we derive

(
∂q(x,y)
∂x

∂q(x,y)
∂y

)
=

(
∂q(ξ,η)
∂ξ

∂ξ
∂x

+ ∂q(ξ,η)
∂η

∂η
∂x

∂q(ξ,η)
∂ξ

∂ξ
∂y

+ ∂q(ξ,η)
∂η

∂η
∂y

)

∇̂q(x, y) =

( ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

)( ∂q(ξ,η)
∂ξ

∂q(ξ,η)
∂η

)

⇒ ∇̂q = (Φ′)−T ∇q .

Then the scalar product of gradients ∇̂q · ∇̂v reads as

∇̂q · ∇̂v = (∇̂q)T (∇̂v)

= ((Φ′)−T ∇q)T ((Φ′)−T ∇v)

= (∇q)T ((Φ′)−1(Φ′)−T )∇v
with the matrix

(Φ′)−1(Φ′)−T =

(
1

1+εx
− sin γ

cos γ(1+εx)

0 1
cos γ(1+εy)

)(
1

1+εx
0

− sin γ
cos γ(1+εx)

1
cos γ(1+εy)

)
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Let T define a triangulation of the domain Ω with k elements and n nodes Pi,
1 ≤ i ≤ n. According to this assumption, we choose ansatz functions ψ1, . . . , ψn
with

ψi(Pj) = δij, 1 ≤ i, j ≤ n .

Here, δij denotes the Kronecker delta

δij =

{
0 for i 6= j ,
1 for i = j .

Then we search an approximate solution of the differential equation (13) in the
FE-space

V(n) := span {ψ1, . . . , ψn} .

Analogously to (15), subspaces of V(n) are defined, whose elements fulfill homoge-

nous (V(n)
0 ) and inhomogenous (V(n)

D ) boundary conditions, resp. Furthermore,

the mapping Ψ : Rn → V(n)
D is introduced, such that

q(n) := Ψq =
n∑

i=1

qi ψi ≈ q, q ∈ Rn

holds. Our aim is, to find an approximate solution q(n) of the differential equation
(13) in the finite dimensional subspace V(n)

D . Thus, q(n) ∈ V(n)
D denotes the

solution of the equation

a(q(n), v(n); p) = 0 ∀v(n) ∈ V(n)
0 .

As usual, the vector q := (q1, ..., qn)T ∈ Rn is interpreted as the discrete solution
of the forward problem (14). Finding the discrete solution corresponds to the
solution of the minimization problem

qTK(p)q → min for q ∈ Rn ⇔ q(n) ∈ V(n)
D (23)

with stiffness matrix K(p) := (kij) ∈ Rn×n defined as

kij : = a(ψj, ψi;κ, γ)

=

∫

Ω

(
1 −κ sin γ

−κ sin γ κ2

)
∇ψj · ∇ψi dΩ 1 ≤ i, j ≤ n .

Hence, the discrete forward operator F : D(F ) ⊂ R2 → Rn is defined as
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Thus, we have to consider the limit

lim
τ→0

κ0 sin γ0 − κ0 sin(γ0 + τ)

τ
,

which is of type ’0
0
’. Applying l’Hospitals rule yields

lim
τ→0

(κ0 sin γ0 − κ0 sin(γ0 + τ))′

(τ)′
= lim

τ→0
−κ0 cos(γ0 + τ)

and finally

lim
τ→0

κ0 sin γ0 − κ0 sin(γ0 + τ)

τ
= −κ0 cos γ0 (18)

holds. Equation (18) implies for τ → 0, that the directional derivative ω(γ) ∈ V0

denotes the solution of the variational problem

a(ω(γ), v; p0) = κ0 cos γ0

∫

Ω

(
∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ

)
dΩ ∀ v ∈ V0 . (19)

Consequently, the gradient of the forward operator is defined as

∇F (p0) =

(
ω(κ)

ω(γ)

)
, (20)

and arbitrary directional derivatives can be computed with

z := F ′(p0)

(
hκ
hγ

)
= ∇F (p0) ·

(
hκ
hγ

)
for

(
hκ
hγ

)
∈ R2 . (21)

In other words, z fulfills

a(z, v; p0) = hκ


−2κ0

∫

Ω

∂q0

∂η

∂v

∂η
dΩ + sin γ0

∫

Ω

∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ
dΩ




+hγ · κ0 cos γ0

∫

Ω

(
∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ

)
dΩ ∀ v ∈ V0. (22)

4 Solution of the inverse problem

4.1 Finite elements discretization

In the following we introduce a common finite elements discretization of the
problem. See e.g. [2] for the implementation of such methods.
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=
1

cos2 γ

(
1

(1+εx)2
− sin γ

(1+εx)(1+εy)

− sin γ
(1+εx)(1+εy)

1
(1+εy)2

)
.

Exploiting the above results, we now transform the weak formulation (5) from
the x-y- to the ξ-η-coordinates. Thus, in the following the modified formula

∫

Ω̂

∇̂q · ∇̂v dΩ̂ =

∫

Ω

(∇q)T ((Φ′)−1(Φ′)−T )∇v| det(Φ−1)′| dΩ

=
1

(1 + εx)(1 + εy) cos γ

1

cos2 γ

∫

Ω

[
1

(1 + εx)2

∂q

∂ξ

∂v

∂ξ
+

+
1

(1 + εy)2

∂q

∂η

∂v

∂η
− sin γ

(1 + εx)(1 + εy)

(
∂q

∂ξ

∂v

∂η
+
∂q

∂η

∂v

∂ξ

)]
dΩ

= 0

is considered. Supposing p ∈ R3 being a constant, we simplify the results and get

0 =

1∫

0

1∫

0

[
1

(1 + εx)2

∂q

∂ξ

∂v

∂ξ
+

1

(1 + εy)2

∂q

∂η

∂v

∂η
−

− sin γ

(1 + εx)(1 + εy)

(
∂q

∂ξ

∂v

∂η
+
∂q

∂η

∂v

∂ξ

)]
dξ dη . (9)

By multiplying equation (9) with (1 + εx)
2 we derive

1∫

0

1∫

0

∂q

∂ξ

∂v

∂ξ
+

(1 + εx)
2

(1 + εy)2

∂q

∂η

∂v

∂η
− sin γ

(1 + εx)

(1 + εy)

(
∂q

∂ξ

∂v

∂η
+
∂q

∂η

∂v

∂ξ

)
dξ dη = 0.(10)

From the last equation we realize, that the independent identification of both
parameters εx and εy is not possible. By the considered approach merely the
ratio of strains is identifiable, which is defined as the parameter

κ =
1 + εx
1 + εy

. (11)

Note, that this observation coincides with experimental results presented in [15].

Applying equations (9) and (11), a bilinear form referring to (4) is introduced as
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a(q, v; p) :=

∫

Ω

∂q

∂ξ

∂v

∂ξ
+ κ2 ∂q

∂η

∂v

∂η
− κ sin γ

(
∂q

∂ξ

∂v

∂η
+
∂q

∂η

∂v

∂ξ

)
dΩ (12)

with q ∈ VD, v ∈ V0. Thus the bilinear form a(., .; p) : VD × V0 → R depends
on the parameter p = (κ, γ)T instead of the initially defined p = (εx, εy, γ)T .
We point out, that the bilinear form (12) refers to the modified boundary value
problem





∇
((

1 −κ sin γ
−κ sin γ κ2

)
∇q
)

= 0 in Ω,

q = g on ΓD,
∂q

∂ν
= 0 on ΓN

, (13)

where the modified differential equation corresponds to the initial equation in
(4), iff γ = 0 and εx = εy. Hence, in the undeformed case as well as for uniform
expansion of the D-DMS, no change of the electric potential will come into effect.

Now, a weak solution q ∈ H1(Ω) of the boundary value problem (4) is found as
a solution of the variational problem

{
a(q, v; p) = 0 ∀ v ∈ V0

q ∈ VD
. (14)

Here, we use the redefined spaces

VD := {q ∈ H1(Ω) : q|ΓD = g}
V0 := {v ∈ H1(Ω) : v|ΓD = 0} . (15)

Eventually, the forward operator F : D(F ) ⊂ R2 → VD of the considered identi-
fication problem is defined as

F (p) = q

with q solving (14).

3.2 Derivatives of the forward operator

In the following section we consider derivatives of the nonlinear forward operator
F . Let q0 := F (p0) with p0 = (κ0, γ0)T ∈ D(F ) be given. We set ∆p := (τ, 0)T

and define pτ := p0 + ∆p as well as qτ := F (pτ ).

Then the formal definition of a directional derivative is

ω(κ) := lim
τ→0

1

τ
(F (pτ )− F (p0)).
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Clearly, ω(κ) ∈ V0 and the equation

a(qτ , v; pτ )− a(q0, v; p0) = 0

holds. The last fact means in detail

0 =
1

τ

∫

Ω

∂qτ
∂ξ

∂v

∂ξ
+ (κ0 + τ)2 ∂qτ

∂η

∂v

∂η
− (κ0 + τ) sin γ0

(
∂qτ
∂ξ

∂v

∂η
+
∂uτ
∂η

∂v

∂ξ

)
dΩ

−1

τ

∫

Ω

∂q0

∂ξ

∂v

∂ξ
+ κ0

2 ∂q0

∂η

∂v

∂η
− κ0 sin γ0

(
∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ

)
dΩ

=

∫

Ω

∂
(
qτ−q0
τ

)

∂ξ

∂v

∂ξ
+ (κ0 + τ)2 ∂

(
qτ−q0
τ

)

∂η

∂v

∂η

−(κ0 + τ) sin γ0

(
∂
(
qτ−q0
τ

)

∂ξ

∂v

∂η
+
∂
(
qτ−q0
τ

)

∂η

∂v

∂ξ

)
dΩ

+

∫

Ω

(2κ0 + τ)
∂q0

∂η

∂v

∂η
− sin γ0

(
∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ

)
dΩ . (16)

Obviously, the limit τ → 0 implies

a(ω(κ), v; p0) = −2κ0

∫

Ω

∂q0

∂η

∂v

∂η
dΩ + sin γ0

∫

Ω

∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ
dΩ ∀ v ∈ V0 .

(17)

Analogously we derive for pτ := p0 + ∆p, ∆p := (0, τ)T and

ω(γ) := lim
τ→0

1

τ
(F (pτ )− F (p0))

the equation

0 =

∫

Ω

∂
(
qτ−q0
τ

)

∂ξ

∂v

∂ξ
+ κ0

2 ∂
(
qτ−q0
τ

)

∂η

∂v

∂η

−κ0 sin(γ0 + τ)

(
∂
(
qτ−q0
τ

)

∂ξ

∂v

∂η
+
∂
(
qτ−q0
τ

)

∂η

∂v

∂ξ

)
dΩ

+

∫

Ω

κ0 sin γ0 − κ0 sin(γ0 + τ)

τ

(
∂q0

∂ξ

∂v

∂η
+
∂q0

∂η

∂v

∂ξ

)
dΩ .
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