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Abstract

In this paper two basic SQP-approaches for solving implicitly defined
inverse problems are presented. Such problems often arises in parameter
identification for differential equations. We also include regularization
strategies which differ from similar problems in Optimal control. The
main focus is on formulating saddle point problems for calculating the
next iterate. Conditions for the unique and stable solvability of these
problems are presented. The analytical considerations are illustrated by
two examples including their discretizations and a numerical case study.
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1 Introduction

Let Q, U , Y and Z be Hilbert spaces. For given (exact) data y ∈ Y we consider
the implicit defined inverse problem

{
P u = y

E(q, u) = 0, (q, u) ∈ D(E).
(1)

For given noisy data yδ ∈ Y with bound ‖y−yδ‖Y ≤ δ we deal with the perturbed
problem {

P u = yδ

E(q, u) = 0, (q, u) ∈ D(E).
(2)

Thereby E : D(E) ⊆ Q × U −→ Z∗ defines a nonlinear operator with domain
D(E). Moreover, P : U −→ Y denotes an additional linear operator. In many
applications P can be considered as projection operator. If, for example, U is a
space of functions on a domain Ω and u ∈ U , then P u might be the restriction
of u to a subdomain Ω1 ⊂ Ω, where the additional observation y or yδ is given
or/and the embedding of U into the space Y with weaker norm.

There are two possibilities for treating such problems. Following the standard
approach for identification problems, we replace the system (2) by a nonlinear
equation

F (q) = yδ, q ∈ D(F ),

where the nonlinear operator F : D(F ) ⊆ Q −→ Y with domain D(F ) is given
by F = P ◦G and G : D(F ) ⊆ Q −→ U is defined implicitly by the equation

E (q,G(q)) = 0, ∀q ∈ D(F ).

Alternatively we can deal with the constrained minimization problem

{
J(u) :=

1

2
‖P u− yδ‖2

Y → min

subject to E(q, u) = 0, (q, u) ∈ D(E),
(3)

which is common practice in control problems for (partial) differential equations,
see e.g. [12] and the references therein. Here, often a penalty term α f(q) to the
objective functional J(u) is added, i.e. J(u) is replaced by

Jα(q, u) :=
1

2
‖P u− yδ‖2

Y + α f(q).

The additional penalty can be considered as regularization term. As well-known
from Tikhonov regularization this term provides (under some conditions to f)
existence of a solution (qδα, u

δ
α) of (3) depending stable on the given data yδ. But

there is an important difference in identification and control problems. In order
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to get an approximate solution of (2) in identification problems the regularization
parameter α depending on the noise level δ is usually small. In control problems
a parameter α is chosen a-priori, which is normally larger than in identification
problems. So, algorithms used for control problems where the inverse of the
parameter α is applied could cause numerical difficulties for small regularization
parameters in identification problems.

Therefore we present some general regularization ideas for identification problems
of the form (2) as it was recently done in [4], see also [5] for some numerical
considerations. The analytical considerations are illustrated by two examples
which deal with the identification of coefficients in an elliptic differential equation.

The paper is organized as follows: in section 2 we present some basic assump-
tions which we will later need in the further considerations. The third and forth
section deal with two (regularized) approaches for formulating SQP-algorithms
to find approximative solutions of (2). In section 5 we apply this theoretical
considerations to two parameter identification problems for an elliptic differen-
tial equation. Some remarks concerning the numerical implementation of these
examples are given in section 6. The paper closes with some numerical examples.

2 Basic Notations and Assumptions

Let X and Y denote Hilbert spaces with scalar products 〈·, ·〉X and 〈·, ·〉Y . More-
over, X ∗ and Y∗ are the dual spaces. Then we denote with 〈·, ·〉X ∗,X the duality
product on X ∗ × X . Let A : X −→ Y be a linear operator. With A∗ : Y −→ X
we denote the Hilbert space adjoint operator of A which is defined by

〈Ax, y〉Y = 〈x,A∗y〉X ∀x ∈ X , ∀ y ∈ Y .

The dual operator A? : Y∗ −→ X ∗ of A is given by the relation

〈y, Ax〉Y∗,Y = 〈A?y, x〉X ∗,X ∀x ∈ X , ∀ y ∈ Y∗.

Remark 2.1 Let RX : X ∗ −→ X and RY : Y∗ −→ Y denote the Riesz-
Isomorphisms which identify elements of the dual spaces X ∗ and Y∗ with elements
of the spaces X and Y itself, i.e.

〈x̃, x〉X ∗,X = 〈RX x̃, x〉X , ∀ x̃ ∈ X ∗, ∀x ∈ X and

〈ỹ, y〉Y∗,Y = 〈RY ỹ, y〉Y , ∀ ỹ ∈ Y∗, ∀ y ∈ Y .

Then we have obviously
A? = R−1

X A
∗RY .

This relation will be used later frequently.

2

implicit ill-posed inverse problems. In: Vogel, A. ed. Theory and Practice of
Geophysical Data Inversion. 3-19, Vieweg, Braunschweig (1992).

[12] Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg
(2005).

23



δ α rel.err.

10−6 10−12 1.00 · 10−3

10−5 10−9 4.03 · 10−2

10−4 10−6 6.29 · 10−2

10−3 10−4 1.02 · 10−1

10−2 10−2 1.54 · 10−1

Table 6: Levenberg-Marquardt regularization for noisy data
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Example 2.1 We will consider a standard example in order to verify the Riesz
isomorphism. Let be X = H1

0 (0, 1), Then, as well-known, X ∗ = H−1(0, 1) and
for f ∈ X ∗ the duality product is given by

〈f, x〉X ∗,X :=

1∫

0

f x dξ.

How does y ∈ H1
0 (0, 1) with y = RXf look like? Therefore we have

〈f, x〉X ∗,X = 〈x, y〉X

:=

1∫

0

x y dξ +

1∫

0

x′ y′ dξ

=

1∫

0

(y − y′′)x dξ, ∀x ∈ X .

Hence RX : X ∗ −→ X is given by RXf =: y, where y ∈ H1
0 (0, 1) satisfies the

(ordinary) differential equation

y − y′′ = f (with y(0) = y(1) = 0)

a.e. on (0, 1).

Moreover we need some assumptions concerning the operator E. In order to
obtain a relation to classical inverse problems we assume that the condition
E(q, u) = 0 defines a nonlinear operator mapping from a domain of the space
Q into the space U .

Assumption 2.1 There exists a domain D and a nonlinear continuous operator
G : D ⊆ Q −→ U such that G is implicitly defined by

E(q,G(q)) = 0, ∀ q ∈ D.

Moreover, we suppose that E is Fréchet-differentiable with uniformly bounded
partial derivatives. Additionally the inverse E−1

u of the partial derivative Eu
should exist and be uniformly bounded.

Assumption 2.2 For each (q, u) ∈ D(E) the operator E is Fréchet-differentiable
with partial derivatives Eq = Eq(q, u) : Q −→ Z∗ and Eu = Eu(q, u) : U −→ Z∗.
They are uniformly bounded, i.e. there exist two constants Cu, Cq > 0 such that

‖Eu‖ ≤ Cu and ‖Eq‖ ≤ Cq ∀ (q, u) ∈ D(E).

The operator E−1
u = E−1

u (q, u) : Z∗ −→ U exists for all (q, u) ∈ D(E) and its
norm is uniformly bounded by some constant C̃u > 0.
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The latter assumption seems to be quite restrictive. On the other hand, this
condition allows us to apply the implicit function theorem, see e.g. [9, Satz
1.4.XVII], which provides Fréchet-differentiability of the operator G.

Corollary 2.1 The operator G : D ⊆ Q −→ U is Fréchet-differentiable for all
q ∈ D with derivative

G′(q) := −Eu(q,G(q))−1Eq(q,G(q)), q ∈ D.

For applying Newton-type methods for solving the problem (3) we have to assume
twice Fréchet-differentiability of the operator E.

Assumption 2.3 For each (q, u) ∈ D(E) the operator E is twice continuously
Fréchet differentiable with second Fréchet-derivative E ′′ = E ′′(q, u) : (Q×U)2 −→
Z∗ satisfying

‖E ′′[(q, u), (p, v)]‖Z∗ ≤ C(2)

√
‖q‖2

Q + ‖u‖2
U

√
‖p‖2

Q + ‖v‖2
U , ∀ (q, u), (p, v) ∈ Q×U ,

for some constant C(2) > 0.

Finally we can suppose that ‖P u‖Y is bounded from below.

Assumption 2.4 There exists a constant Cp ≥ 0 such that ‖P u‖Y ≥ Cp‖u‖U .

Note, that the trivial case Cp = 0 is included in this assumption.

3 Linearization of the constraints

Let the iterate (qk, uk) ∈ D(E) be given. We linearize the constraint

E(qk + ∆q, uk + ∆u) ≈ E(qk, uk) + Eq∆q + Eu∆u, ∆q ∈ Q, ∆u ∈ U

with derivatives Eq(qk, uk) =: Eq : Q −→ Z∗ and Eu(qk, uk) =: Eu : U −→ Z∗
by supposing (q + ∆q, u + ∆u) ∈ D(E). Moreover, we introduce an additional
regularization term to the functional J . In particular, we replace J by

Jk(∆q,∆u) :=
1

2
‖P (uk + ∆u)− yδ‖2

Y +
αk
2
‖∆q − q∗k‖2

Q

where αk > 0 denotes a regularization parameter. The element q∗k ∈ Q should be
of the form

q∗k := η(q∗ − qk)
with a-priori guess q∗ ∈ Q and η = 0 or η = 1. We consider different regulariza-
tion strategies:

(i) η = 0 coincides with the Levenberg-Marquardt algorithm,

4

c∗ ≡ 0 c∗ ≡ 1
δ α rel.err. α rel.err.

10−6 10−11 9.52 · 10−4 10−11 9.91 · 10−4

10−5 10−10 9.43 · 10−3 10−10 9.97 · 10−3

10−4 10−8 7.87 · 10−2 10−7 5.45 · 10−2

10−3 10−5 2.08 · 10−1 10−4 1.08 · 10−1

10−2 10−3 3.17 · 10−1 10−3 1.40 · 10−1

Table 5: Tikhonov regularization for noisy data, different a priori guesses c∗

tion strategies we first apply Tikhonov regularization. For different noise level δ
and regularization parameter α solutions cδα where calculated. The regularization
parameter α were chosen such that for a sequence {αj} with

α0 := 0.1, αj := 0.1αj−1, j ≥ 2,

and regularized solutions {cδαj
} we have α = αk with

∥∥cδα − c†
∥∥ = min

j

∥∥∥cδαj
− c†

∥∥∥ .

In Table 5 the relative errors with corresponding regularization parameter α were
presented for both a-priori guesses c∗ ≡ 0 and c∗ ≡ 1. By applying Tikhonov
regularization we could reduce the approximation errors caused by the use of
noisy data yδ. As in the noiseless case in the case c∗ ≡ 1 we obtained better

approximations of the unknown parameter c†. Using the Levenberg-Marquardt
algorithm as regularization method we have to introduce a stopping criterion
depending on the noise-level δ. We apply the discrepancy principle by Morozov
which stops the iteration as soon as

‖P yδ
k
− yδ‖ ≤ δ‖yδ‖.

where cδk denotes the actual iterate and yδ
k

is the corresponding (numerical) so-

lution of the differential equation (13), i.e. yδ
k

satisfies

A(cδk) y
δ

k
= f.

Hence, for verifying the stopping criterion we have to solve an additional differ-
ential equation in each iteration step. The results were given in Table 7. Again
the calculations were performed for different parameters α. Choosing the param-
eter α too small the stopping criterion becomes active after one or two iterations
which gives worse approximations than for a slower convergence with a larger
parameter α. Again the parameter α is specified with yields the smallest relative
approximation error. Comparing the results of Table 5 for c∗ ≡ 1 and Table 7 the
obtained approximation errors are nearly the same for the different noise levels
in both regularization methods.
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α #iter. time (sec.) rel.err.

10−12 3 14.6 1.52 · 10−7

10−11 3 14.5 1.51 · 10−6

10−10 3 14.5 1.57 · 10−5

10−9 5 23.6 1.80 · 10−5

10−8 23 106.3 3.42 · 10−5

10−7 198 ¿1000 4.12 · 10−5

Table 1: Levenberg-Marquardt method for exact data and different α

α #iter. time (sec.) rel.err.

10−12 3 14.6 1.81 · 10−5

10−10 4 19.0 1.83 · 10−3

10−8 4 19.2 5.22 · 10−2

10−6 5 23.1 1.48 · 10−1

10−4 4 5.6 2.59 · 10−1

10−2 5 4.7 3.92 · 10−1

Table 2: Tikhonov regularization for exact data and different α, c∗ ≡ 0

α #iter. time (sec.) rel.err.

10−12 3 14.6 7.12 · 10−6

10−10 4 19.1 6.94 · 10−4

10−8 4 19.2 2.27 · 10−2

10−6 5 22.0 5.93 · 10−2

10−4 4 5.8 1.10 · 10−1

10−2 5 4.7 1.65 · 10−1

Table 3: Tikhonov regularization for exact data and different α, c∗ ≡ 1

δ rel.err.

10−6 1.03 · 10−3

10−5 1.07 · 10−2

10−4 1.02 · 10−1

10−3 1.01
10−2 10.6

Table 4: unregularized solutions depending on the noise level

20

(ii) η = 1 and αk = α = const. is the classical Tikhonov regularization and

(iii) η = 1 and αk ≤ αk−1 corresponds with an iterative regularized Gauss-
Newton scheme.

For the application of (i) and (iii) as regularization methods we need an additional
criterion for stopping the iteration, see e.g. [4] for the Levenberg-Marquardt
approach and [2] for the iterative regularized Gauss-Newton algorithm. Then we
replace (3) by the linear-quadratic problem

{
Jk(∆q,∆u)→ min
subject to E(qk, uk) + Eq∆q + Eu∆u = 0.

(4)

The iteration is given now as follows: find a solution (∆q,∆u) ∈ Q×U of (4) with
corresponding Lagrangian multiplier λ ∈ Z and calculate the next iterate

qk+1 := qk + ∆q and uk+1 := uk + ∆u.

A modification is presented in [11]. Here, for given qk+1, the next iterate uk+1 is
estimated by the equation

E(qk+1, uk+1) = 0.

Hence, all iterates (qk, uk) satisfy the equation E(q, u) = 0, which means that
this modifaction can be considered as corrector step for a predictor-corrector
algorithm following a path of feasible solutions.

The corresponding Lagrangian functional L : Q× U × Z −→ R is given by

L(∆q,∆u, λ) := Jk(∆q,∆u) + 〈E(qk, uk) + Eq∆q + Eu∆u, λ〉Z∗,Z .

In order to solve (4) we introduce the following bilinear forms

aq(·, ·) : Q×Q −→ R : aq(q, p) := 〈q, p〉Q, q, p ∈ Q,
au(·, ·) : U × U −→ R : au(u, v) := 〈P u, P v〉Y , u, v ∈ U ,
bq(·, ·) : Q×Z −→ R : bq(q, z) := 〈Eqq, z〉Z∗,Z , q ∈ Q, z ∈ Z and
bu(·, ·) : U × Z −→ R : bu(u, z) := 〈Euu, z〉Z∗,Z , u ∈ U , z ∈ Z.

Moreover, we define the functionals

fq ∈ Q∗ : 〈fq, q〉Q∗,Q := 〈q, q∗k〉Q, q ∈ Q,
fu ∈ U∗ : 〈fu, u〉U∗,U := 〈P u, yδ − P uk〉Y , u ∈ U ,

and g := −E(qk, uk) ∈ Z∗. Then we can write the weak formulation of the
KKT-system as

〈L∆q, p〉Q∗,Q = αkaq(∆q, p) + bq(p, λ)− αk〈fq, p〉Q∗,Q = 0, ∀ p ∈ Q,
〈L∆u, v〉U∗,U = au(∆u, v) + bu(v, λ)− 〈fu, v〉U∗,U = 0, ∀ v ∈ U ,
〈Lλ, z〉Z∗,Z = bq(∆q, z) + bu(∆u, z)− 〈g, z〉Z∗,Z = 0, ∀ z ∈ Z.

(5)
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Introducing the operators Au : U −→ U∗ and Aq : Q −→ Q∗ via

au(u, v) = 〈Auu, v〉U∗,U and aq(q, p) = 〈Aqq, p〉Q∗,Q,

we can rewrite (5) as operator equation




αkAq 0 E?
q

0 Au E?
u

Eq Eu 0






∆q
∆u
λ


 =




αkfq
fu
g


 . (6)

Remark 3.1 Using the corresponding Riesz-Isomorphisms we have Au = R−1
U P

∗P ,
Aq = R−1

Q , fq = R−1
Q q

∗
k and fu = R−1

U P
∗(yδ − P uk). Multiplying the first row

with RQ and second with RU we obtain with λ̃ := R−1
Z λ ∈ Z∗ the equation




αkIQ 0 E∗q
0 P ∗P E∗u
Eq Eu 0






∆q
∆u

λ̃


 =




αkq
∗
k

P ∗(yδ − P uk)
g


 (7)

By defining the bilinear forms a(·, ·) : (Q×U)2 −→ R, and b(·, ·) : (Q×U)×Z −→
R as

a((q, u), (p, v)) := αkaq(q, p) + au(u, v) and b((q, u), z) := bq(q, z) + bu(u, z)

for (q, u), (p, v) ∈ Q× U , z ∈ Z as well as

〈f, (q, u)〉 := 〈fq, q〉Q∗,Q + 〈fu, u〉U∗,U ,

we can formulate (5) also as classical saddle point problem

a((∆q,∆u), (p, v)) + b((p, v), λ) = 〈f, (p, v)〉, ∀ (p, v) ∈ Q× U ,
b((∆q,∆u), z) = 〈g, z〉Z∗,Z , ∀ z ∈ Z. (8)

We use this relation to show the unique solvability of the system (5).

Lemma 3.1 Suppose the assumptions 2.1, 2.2 and 2.4 to be hold. Then the
bilinear-form a(·, ·) is bounded and satisfies the kernel ellipticity with respect to
b(·, ·), i.e.

a ((q, u), (q, u)) ≥ c1

(
‖q‖2

Q + ‖u‖2
U
)
, ∀ (q, u) : b(q, u) = 0

for some constant c1 > 0 and

|a ((q, u), (p, v)) | ≤ c2

√
‖q‖2

Q + ‖u‖2
U

√
‖p‖2

Q + ‖v‖2
U , ∀(q, u), (p, v) ∈ Q× U ,

for another constant c2 > 0.

6

This function is continuously on each of these three sub-domains Ωj, j = 1, 2, 3,
but has jumps on the boundary. The discretization of this function is given by
c† = (c1, . . . , cm)T ∈ Rm, where the entries cj of the vector contain the values of
the function c† at the mid points of the corresponding triangles of the mesh T1.

The numerical realization was done with aid of the Partial-Differential-
Equation Toolbox in Matlab. The presented calculation times were ob-
tained on the CASE-computers at the Faculty of Mathematics at the Chemnitz
University of Technology.

For the numerical results presented below the mesh T2 for calculating the solutions
u of the differential equation (13) has n = 8433 nodes. The data y was given on
the nodes of a coarser mesh with N = 1928 nodes. The unknown parameter c is
discretized on the mesh T1 with m = 1032 triangles.

In a first example we assume exact data y to be given. We want to compare
the Levenberg-Marquardt method with the Tikhonov regularization approach
with respect to speed of convergence and regularization error depending on the
regularization parameter α. We apply the system (11) for calculating the next
iterates. The iteration was stopped, when the tolerance

‖y − P uk‖ ≤ TOL1 = 10−6 or ‖∆c‖ ≤ TOL2 = 10−6 (21)

was reached. The obtained solutions we denoted with cα. The corresponding
results were given below in Table 1 for the Levenberg-Marquardt scheme and in
Table 2 and 3 for Tikhonov regularization with different a-priori guess c∗. As we
can see the Levenberg-Marquardt algorithm provides better approximation cα of
the unknown function c† than Tikhonov regularization since no regularization
errors occur. On the other hand for choosing the the parameter α too large the
number of iterations grows rapidly. For Tikhonov regularization we can see the
increasing regularization error with respect to growing regularization parameter
α. Comparing the results in Table 2 where the a-priori guess c∗ ≡ 0 was chosen
with the results of Table 3 obtained with c∗ ≡ 1, we can see the dependence
of the regularization error on this function. So we can expect better results by
improving the a-priori guess c∗.

In further calculations we deal with noisy data. Here, we replace the exact data
y by noisy data yδ, where δ > 0 describes the relative size of the perturbation,
i.e.

‖y − yδ‖ ≤ δ ‖y‖.
In a first step we calculate an unregularized solution cδ with the Levenberg-
Marquardt algorithm. The (sufficiently small) chosen parameter α does not
influence the obtained results much. Table 4 shows the relative errors of the
obtained solutions cδ for different noise levels. The size of the errors shows the
ill-posedness of the problem under consideration. In order to introduce regulariza-

19



-

6

Ω1

Ω2Ω3

Figure 1: Domain Ω

Ω1

Ω2Ω3

ΓN (Neumann boundary)
ΓD (Dirichlet boundary)

Figure 2: Choice of the boundary conditions

The boundary Γ = ∂Ω of Ω is decomposed into a Neumann boundary ΓN and a
Dirichlet boundary ΓD as presented in Figure 2. For the choice of the function
c† which has to be identified we take

c†(x, y) :=





2− x, (x, y) ∈ Ω1,
1− x+ y (x, y) ∈ Ω2,

2 + x (x, y) ∈ Ω3.

18

Proof. First we note, that b(q, u) = 0 implies u = −E−1
u Eqq which gives

‖u‖U ≤ ‖E−1
u Eq‖ ‖q‖Q and hence ‖q‖Q ≥ ‖E−1

u Eq‖−1‖u‖U . Then we have

a ((q, u), (q, u)) = αk‖q‖2
Q + ‖P u‖2

Y

≥ αkγ‖q‖2
Q +

(
α(1− γ)

‖E−1
u Eq‖2

+ C2
p

)
‖u‖2

U

for all γ ∈ (0, 1). For αk > C2
p we choose γ such that

αkγ =
α(1− γ)

‖E−1
u Eq‖2

+ C2
p ⇔ γ =

αk + ‖E−1
u Eq‖2C2

p

αk(‖E−1
u Eq‖2 + 1)

< 1

and we obtain

a ((q, u), (q, u)) ≥ min

{
αk,

αk + ‖E−1
u Eq‖2C2

p

(‖E−1
u Eq‖2 + 1)

}(
‖q‖2

Q + ‖u‖2
U
)
.

Moreover

|a ((q, u), (p, v)) | ≤ αk‖q‖Q‖p‖Q + ‖P‖2‖u‖U‖v‖U
≤ max

{
αk, ‖P‖2

}
(‖q‖Q + ‖u‖U) (‖p‖Q + ‖v‖U)

≤ 2 max
{
αk, ‖P‖2

}√
‖q‖2

Q + ‖u‖2
U

√
‖p‖2

Q + ‖v‖2
U .

The proof is complete. �
For the proof of the LBB-condition we follow directly [4, Theorem 2.3].

Lemma 3.2 The bilinear form b(·, ·) satisfies the LBB-condition

inf
λ∈Z

sup
(q,u)∈Q×U

b ((q, u), λ)

‖(q, u)‖Q×U‖λ‖Z
≥ β > 0.

Proof. We set u := E−1
u λ and q = 0. Then

inf
λ∈Z

sup
(q,u)∈Q×U

b ((q, u), λ)

‖(q, u)‖Q×U‖λ‖Z
≥ inf

λ∈Z

b ((0, E−1
u λ), λ)

‖E−1
u λ‖U‖λ‖Z

= inf
λ∈Z

‖λ‖2
Z

‖E−1
u λ‖U‖λ‖Z

≥ 1

‖E−1
u ‖

=: β. �

Applying both lemmas we have the unique solvability of the KKT-system (5)
respectively the saddle-point problem (7), see e.g. [3].

Corollary 3.1 The system (5) admits a unique solution (∆q,∆u) ∈ Q × U with
corresponding Lagrange multiplier λ ∈ Z, which depend stable on (fq, fu, g) ∈
Q∗ × U∗ ×Z∗.
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In the present paper we do not deal with questions concerning the local conver-
gence of the iterates (qk, uk) ∈ Q×U to a solution of the problem (3). The local
convergence of Lagrange-Newton methods and possible ways of globalization of
the convergence is a topic of its own. We refer to [1] for further readings, see
also the books [12] and [10] for discussing the finite-dimensional case including
discussions of globalization strategies.

4 Direct Lagrange approach

In a second variant we apply the Lagrange method directly to the problem (3).
Then the Lagrangian functional is defined by

L(q, u, λ) :=
1

2
‖P u− yδ‖2

Y + 〈E(q, u), λ〉Z∗,Z

Again let the iterate (qk, uk, λk) ∈ Q×U×Z be given. Then the weak formulation
of the KKT-system reads as

〈Lq, p〉Q∗,Q = 〈Eqp, λk〉Z∗,Z = 0, ∀p ∈ Q,
〈Lu, v〉U∗,U = 〈P v, P uk − yδ〉Y + 〈Euv, λk〉Z∗,Z = 0, ∀v ∈ U ,
〈Lλ, µ〉Z∗,Z = 〈E(qk, uk), µ〉Z∗,Z = 0, ∀µ ∈ Z,

which is in general a nonlinear system. We also can write abstractly

Lq = E?
qλk ∈ Q∗,

Lu = R−1
U P

∗(P uk − yδ) + E?
uλk ∈ U∗,

Lλ = E(qk, uk) ∈ Z∗.

There are two possible ways to formulate the Newton iteration. First the next
iterate is given as

qk+1 := qk + ∆q, uk+1 := uk + ∆u and λk+1 := λk + ∆λ,

where (∆q,∆u,∆λ) solves the linear system




Lqq Lqu E?
q

Luq Luu E?
u

Eq Eu 0






∆q
∆u
∆λ


 = −




Lq
Lu

E(qk, uk)


 . (9)

Thereby the operators are defined as follows:

Lqq : Q −→ Q∗ : 〈Lqqq, p〉Q∗,Q = 〈Eqq(q, p), λk〉Z∗,Z , ∀ p, q ∈ Q,
Luu : U −→ U∗ : 〈Luuu, v〉U∗,U = 〈Euu(u, v), λk〉Z∗,Z + 〈P u, P v〉Y , ∀u, v ∈ U ,
Lqu : U −→ Q∗ : 〈Lquu, q〉Q∗,Q = 〈Equ(q, u), λk〉Z∗,Z , ∀ q ∈ Q,∀u ∈ U ,
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is constant on each triangle T
(2)
k by construction. Hence we multiply each M (k)

with cp(k) and add the entries of this 3 × 3-matrix on the corresponding entries

of the matrix M̂(c).

The matrices K(u) ∈ Rn×m and K̂(q) ∈ Rn×n for given u ∈ Rn and q ∈ Rm can
be treated similarly. Since the ansatz functions ϕj, 1 ≤ j ≤ m, are piecewise
linear their gradients ∇ϕj, 1 ≤ j ≤ m, are constant on each triangle. For the

triangle T
(2)
k with vertices Pki = (xki , yki)

T we have

∇ϕk1 ≡
1

2 meas(T
(2)
k )

(
yk2 − yk3
xk3 − xk2

)
, ∇ϕk2 ≡

1

2 meas(T
(2)
k )

(
yk3 − yk1
xk1 − xk3

)

and

∇ϕk3 ≡
1

2 meas(T
(2)
k )

(
yk1 − yk2
xk2 − xk1

)

on T
(2)
k . Hence for the element matrix Kk = (kij) we have

kij := meas(T
(2)
k ) (∇ϕki)T ∇ϕkj , 1 ≤ i, j ≤ 3.

Then the vectors

b̃k =




b̃k1
b̃k2
b̃k3


 := K(k)




uk1
uk2
uk3




are calculated and b̃kj , 1 ≤ j ≤ 3, is added on the element (p(k), kj) of K(u).

The construction of K̂(q) can be done analogously by using that the parameter

q is constant on each triangle T
(2)
k by construction. We multiply each K(k) with

qp(k) and add the entries of this 3× 3-matrix on the corresponding entries of the

matrix K̂(q).

7 Some numerical results

We present some numerical examples. In particular we deal with the situation
that the function c is unknown whereas the function q is given in (13). The
L-shaped domain Ω is given as in Figure 1, which is the same situation as in the
numerical case studies in [8]. Thereby Ω is decomposed into three disjoint sub-
domains Ωj j = 1, 2, 3. For the source function f in the differential equation (13)
we choose the constant function f(ξ) ≡ 50, ξ ∈ Ω. The function q is assumed to
be piecewise constant, i.e.

q(ξ) :=





1, ξ ∈ Ω1,
3, ξ ∈ Ω2,
4, ξ ∈ Ω3.
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or in terms of (∆q,∆u,∆λ)




αkQ K(λk)
T K(uk)

T

K(λk) M̃ A(q
k
)T

K(uk) A(q
k
) 0






∆q
∆u
∆λ


 =




αkQq
∗
k
−K(uk)

Tλk
M̃ P T

(
yδ − P uk

)
− A(q

k
)Tλk

f − A(q
k
)uk




(20)
Again we have to solve one of these equations in each iteration.

6 Aspects of the implementation

We assume a FE discretization of the problem (14). We have two triangular

meshes T1 := {T (1)
1 , . . . , T

(1)
m } and T2 := {T (2)

1 , . . . , T
(2)
m′ }, where T2 is a refinement

of T1. That means, that for each 1 ≤ k ≤ m′ exists an index 1 ≤ p(k) ≤ m′ such

that int(T
(2)
k ) ⊆ int(T

(1)
p(k)). The mesh T2 has nodes Pj, 1 ≤ j ≤ n.

As basis of Vn we choose the hat functions ϕj, 1 ≤ j ≤ n, which are piecewise

linear on each triangle T
(2)
j and

ϕi(Pj) = δij, 1 ≤ i, j ≤ n.

Moreover, as ansatz function for the space Qm we choose the characteristic func-
tions of the triangles of the mesh T1, i.e.

ψj := χ
T

(1)
j
, 1 ≤ j ≤ m.

Let u ∈ Rn and c ∈ Rm be given vectors. For an effective calculation of the
matrices M(u) = (M1u, . . . ,Mmu) ∈ Rn×m and M̂(c) =

∑
ciMi ∈ Rn×n an

element-wise consideration of the mesh can be used. Let M (k) denotes the element
matrix of the triangle T

(2)
k corresponding to the mass matrix of the triangulation

T2. Let meas(T
(2)
k ) be the area of T

(2)
k , then

M (k) =
meas(T

(2)
k )

12




2 1 1
1 2 1
1 1 2


 .

The triangle T
(2)
k has the vertices Pk1 , Pk2 and Pk3 . Then the vectors

bk =




bk1
bk2
bk3


 := M (k)




uk1
uk2
uk3


 =

meas(T
(2)
k )

12




2uk1 + uk2 + uk3
uk1 + 2uk2 + uk3
uk1 + uk2 + 2uk3




are calculated and bkj , 1 ≤ j ≤ 3, is added on the element (p(k), kj) of M(u).

The construction of M̂(c) can be described quite effective since the parameter c

16

and Luq := L?qu : Q −→ U∗. Moreover

E ′′(qk, uk)[(q, u), (p, v)] := Eqq(q, p) + Equ(q, v) + Equ(p, u) + Euu(u, v)

for q, p ∈ Q, u, v ∈ U denotes the second derivative of the operator E(q, u)
at the point (qk, uk). Here, Eqq : Q × Q −→ Z∗, Euu : U × U −→ Z∗ and
Equ = Euq : Q × U −→ Z∗. Then the Newton iteration can be alternatively
written as

qk+1 := qk + ∆q, uk+1 := uk + ∆u and λk+1 := λ

where (∆q,∆u) solves the linear-quadratic problem

{ 1

2
‖P (uk + ∆u)− yδ‖2

Y +
1

2
〈E ′′(qk, uk)[(∆q,∆u), (∆q,∆u)], λk〉Z∗,Z → min

subject to E(qk, uk) + Eq∆q + Eu∆u = 0.
(10)

with corresponding Lagrange multiplier λ ∈ Z. This approach allows us to add
the regularization term αk

2
‖∆q−q∗k‖2

Q again. Then the solution of (10) is equivalent
to the problem

αkaq(∆q, p) + 〈Eqq(∆q, p) + Equ(p,∆u), λk〉Z∗,Z + bq(p, λ)
= αk〈fq, p〉Q∗,Q, ∀ p ∈ Q,

au(∆u, v) + 〈Euu(∆u, v) + Euq(∆q, v), λk〉Z∗,Z + bu(v, λ)
= 〈fu, v〉U∗,U , ∀ v ∈ U ,

bq(∆q, z) + bu(∆u, z) = 〈g, z〉Z∗,Z , ∀ z ∈ Z,

(11)

or alternatively with λ := λk + ∆λ

αkaq(∆q, p) + 〈Eqq(∆q, p) + Equ(p,∆u), λk〉Z∗,Z + bq(p,∆λ)
= αk〈fq, p〉Q∗,Q − bq(p, λk), ∀ p ∈ Q,

au(∆u, v) + 〈Euu(∆u, v) + Euq(∆q, v), λk〉Z∗,Z + bu(v,∆λ)
= 〈fu, v〉U∗,U − bu(v, λk), ∀ v ∈ U ,

bq(∆q, z) + bu(∆u, z) = 〈g, z〉Z∗,Z , ∀ z ∈ Z,

(12)

Last equation is in fact the weak formulation of (9) with added regularization
term.

Comparing (11) with (5) we see, that we can also obtain (5) from (11) by ignoring
the second derivatives of the operator E.

Again we are interested in the kernel ellipticity of the bilinear form

α̃((q, u), (p, v)) := α((q, u), (p, v))+〈E ′′((q, u), (p, v)), λk〉Z∗,Z , (q, u), (p, v) ∈ Q×U ,

with respect to the bilinear form b(·, ·). In opposite to Lemma 3.1 we need now
a condition to the regularization parameter αk for proving the kernel ellipticity.

9



Lemma 4.1 Suppose the assumptions 2.1-2.4 to be hold. Then the bilinear-form
ã(·, ·) is bounded, i.e.

|ã ((q, u), (p, v)) | ≤ c4

√
‖q‖2

Q + ‖u‖2
U

√
‖p‖2

Q + ‖v‖2
U .

for some constant c4 > 0. Moreover, the kernel ellipticity

ã ((q, u), (q, u)) ≥ c3

(
‖q‖2

Q + ‖u‖2
U
)
, ∀ (q, u) : b(q, u) = 0

is satisfied, if

c3 := min

{
αk,

αk + ‖E−1
u Eq‖2C2

p

(‖E−1
u Eq‖2 + 1)

}
− ‖E ′′‖ ‖λk‖Z > 0.

Proof. We have by definition of ã(·, ·) and Lemma 3.1

ã ((q, u), (q, u)) ≥ (c1 − ‖E ′′‖ ‖λk‖Z)
(
‖q‖2

Q + ‖u‖2
U
)

and

|ã ((q, u), (p, v)) | ≤ (c2 + ‖E ′′‖ ‖λk‖Z)
√
‖q‖2

Q + ‖u‖2
U

√
‖p‖2

Q + ‖v‖2
U .

This proves the lemma. �
Again it follows now that the unique solutions (∆q,∆u,∆λ) ∈ Q× U ×Z of (11)
and (∆q,∆u, λ) ∈ Q × U × Z of (12) depend stable on the corresponding right
hand sides.

We also refer to [6] for numerical algorithms for solving the system (11) or (12)
efficiently and for the discussion of some modifications of the iteration proce-
dure. Furthermore, pre-conditioning strategies for the systems (11) and (12)
were discussed in [7] for solving these systems with Krylov methods. Note, that
the efficiency of the suggested pre-conditioner strongly depends on the choice of
the regularization parameter αk. In particular, the parameter αk should not be
chosen too small, which probably contradicts regularization strategies when the
noise-level δ is small.

5 Two Examples

Let Ω ⊂ R2 be a bounded domain with sufficiently smooth boundary ∂Ω. We
consider the elliptic equation





−div (q∇u) + c u = f, on Ω,

q
∂u

∂ν
= 0, on ΓN ,

u = 0, on ΓD,

(13)

10

Hence, for the iteration

qk+1 := qk + ∆q, uk+1 := uk + ∆u and λk+1 := λ

we have to find a solution (∆q,∆u, λ) of the problem

αk

∫

Ω

∆q p dξ +

∫

Ω

p∇(∆u)∇λk dξ +

∫

Ω

p∇uk∇λ dξ

= αk

∫

Ω

p q∗k dξ, ∀ p ∈ Q,

∫

Ω

∆q∇v∇λk dξ +

∫

Ω1

∆u v dξ + a(v, λ; c∗, qk)

=

∫

Ω1

v(yδ − uk) dξ, ∀ v ∈ V ,
∫

Ω

∆q∇uk∇z dξ + a(∆u, z; c∗, qk) = 〈f, z〉 − a(uk, z; c
∗, qk), ∀ z ∈ V .

(18)

By the same discretization approach as above we define

M = (mij) ∈ Rn×n : mij :=

∫

Ω

c∗ ϕi ϕj dξ,

Q = (qij) ∈ Rm×m : qij :=

∫

Ω

ψi ψj dξ,

Kk =
(
k

(k)
ij

)
∈ Rn×n : k

(k)
ij :=

∫

Ω

ψk∇ϕi∇ϕj dξ, 1 ≤ k ≤ m.

Moreover we have the matrices

K(u) := (K1u, . . . ,Kmu) ∈ Rn×m,

K̂(q) :=
m∑

i=1

qiKi ∈ Rn×n and

A(q) := M + K̂(q) ∈ Rn×n,

As well the matrices Q and M̃ as the vector f we can left unchanged. Then we
can write the problem (18) as equation system




αkQ K(λk)
T K(uk)

T

K(λk) M̃ A(q
k
)T

K(uk) A(q
k
) 0






∆q
∆u
λ


 =




αkQq
∗
k

M̃ P T
(
yδ − P uk

)

f − A(q
k
)uk


 (19)

15



Then we can write the problem (15) as equation system




αkQ M(λk)
T M(uk)

T

M(λk) M̃ A(ck)
T

M(uk) A(ck) 0






∆c
∆u
λ


 =




αkQc
∗
k

M̃ P T
(
yδ − P uk

)

f − A(ck)uk


 (16)

or in terms of (∆c,∆u,∆λ)




αkQ M(λk)
T M(uk)

T

M(λk) M̃ A(ck)
T

M(uk) A(ck) 0






∆c
∆u
∆λ


 =




αkQc
∗
k −M(uk)

Tλk
M̃ P T

(
yδ − P uk

)
− A(ck)

Tλk
f − A(ck)uk


 .

(17)
One of those equations has to be solved in each iteration step.

b) Determining the diffusion term

Now we assume that the function q ∈ D2 has to be identified, whereas c = c∗ ∈ D2

is the given function. We again set Q := H2(Ω), U = Z := V and Y := L2(Ω1).
The domain D2 ⊂ Q denotes now the set of admissible parameters. We can
define the Lagrangian functional as

L(q, u, λ) :=
1

2

∫

Ω1

(
u− yδ

)2
dξ + 〈Ẽ(q, u), λ〉

with
〈Ẽ(q, u), λ〉 := a(u, λ; c∗, q)− 〈f, λ〉.

We consider derivatives. Let the iterate (qk, uk, λk) be given. Again we formulate
the quadratic problem (10) and add the regularization term αk

2
‖∆q − q∗k‖2

L2 . We
have for the bilinear forms

aq(q, p) =

∫

Ω

q p dξ, q, p ∈ Q,

au(u, v) =

∫

Ω1

u v dξ, u, v ∈ V ,

bq(q, z) =

∫

Ω

q∇uk∇z dξ, c ∈ Q, z ∈ V , and

bu(u, z) = a(u, z; c∗, qk), u, v ∈ V .

For the second derivatives we derive Ẽqq = 0 = Ẽuu and

〈Ẽqu(q, u), λk〉 =

∫

Ω

q∇u∇λk dξ, q ∈ Q, u ∈ V .

14

with ∂Ω = ΓN ∪ΓD and f ∈ L2(Ω) is a given source. Moreover, q, c ∈ H2(Ω) are
two additional parameters. Thereby we use, that the space H2(Ω) is continuously
embedded in the space L∞(Ω) for two-dimensional domains Ω ⊂ R2. Here, we
assume

c ∈ D1 :=
{
c ∈ H2(Ω) : 0 < C1 ≤ c ≤ C2 <∞ a.e. on Ω

}

and
q ∈ D2 :=

{
q ∈ H2(Ω) : 0 < C3 ≤ q ≤ C4 <∞ a.e. on Ω

}
.

For given c ∈ D1 and q ∈ D2, the weak solution u ∈ V of(13) is given by

a(u, v; c, q) = 〈f, v〉, ∀ v ∈ V . (14)

where
V :=

{
u ∈ H1(Ω) : u ≡ 0 auf ΓD

}

is a Hilbert space associated with H1-scalar product. Moreover, the bilinear form
a(·, ·; c, q) : V × V −→ R is defined via

a(u, v; c, q) :=

∫

Ω

q∇u∇v dξ +

∫

Ω

c u v dξ, u, v ∈ V ,

and f ∈ V∗ as

〈f, v〉 :=

∫

Ω

f v dξ, v ∈ V .

Now two possible inverse problems can be formulated: Assume one of the func-
tions c or q to be unknown. Then we try to determine this function approximately
by an additional (noisy) measurement yδ on Ω1 ⊆ Ω. We discuss both variants.

a) Determining the reaction term

First, we suppose that the function c ∈ D1 has to be identified, whereas q = q∗ ∈
D2 is a given function. We set Q = H2(Ω), U = Z = V and Y = L2(Ω1). The
domain D1 ⊂ Q denotes the set of admissible parameters. The operator P is the
projection operator onto Ω1, i.e. P u = u|Ω1 for U ∈ V . Following the Lagrange
approach in Section 4 we define the Lagrangian functional as

L(c, u, λ) :=
1

2

∫

Ω1

(
u− yδ

)2
dξ + 〈E(c, u), λ〉

with
〈E(c, u), λ〉 := a(u, λ; c, q∗)− 〈f, λ〉.

We consider derivatives. Let the iterate (ck, uk, λk) be given. Again we formulate
the quadratic problem (10) and add the regularization term αk

2
‖∆c−c∗k‖2

L2 . Note,

11



that this choice differs from the regularization terms in the previous sections since
we consider the L2-norm instead the H2-norm. In order to formulate the equation
(5) we have the bilinear forms

ac(c, p) =

∫

Ω

c p dξ, c, p ∈ Q,

au(u, v) =

∫

Ω1

u v dξ, u, v ∈ V ,

bc(c, z) =

∫

Ω

c uk z dξ, c ∈ Q, z ∈ V , and

bu(u, z) = a(u, z; ck, q
∗), u, v ∈ V .

For the second derivatives we have Ecc = 0 = Euu and

〈Ecu(c, u), λk〉 =

∫

Ω

c u λk dξ, c ∈ Q, u ∈ V .

Hence, for the iteration

ck+1 := ck + ∆c, uk+1 := uk + ∆u and λk+1 := λ

we have to find a solution (∆c,∆u, λ) of the problem

αk

∫

Ω

∆c p dξ +

∫

Ω

p∆uλk dξ +

∫

Ω

p uk λ dξ

= αk

∫

Ω

p c∗k dξ, ∀ p ∈ Q,

∫

Ω

∆c v λk dξ +

∫

Ω1

∆u v dξ + a(v, λ; ck, q
∗)

=

∫

Ω1

v(yδ − uk) dξ, ∀ v ∈ V ,

∫

Ω

∆c uk z dξ + a(∆u, z; ck, q
∗) = 〈f, z〉 − a(uk, z; ck, q

∗), ∀ z ∈ V .

(15)

We discuss a discretization approach of the problem. Let Vn := span{ϕ1, . . . , ϕn} ⊂
V and Qm := span{ψ1, . . . , ψm} ⊂ Q be subspaces and

u ≈
n∑

i=1

uiϕi, z ≈
n∑

i=1

ziϕi, and c ≈
m∑

i=1

ciψi.

12

Moreover, we set u := (u1, . . . , un)T , z := (z1, . . . , zn)T ∈ Rn and c := (c1, . . . , cm)T ∈
Rm.

For the given data we introduce a slight modification. We assume YN ⊆ Vn
with YN := span{ϕi1 , . . . , ϕiN}. Then the projection operator is given as matrix
P ∈ RN×n such that

P u = (ui1 , . . . , uiN )T ∈ RN .

This approach can be motivated as follows: the discrete data y = (y1, . . . , yN)T ∈
RN is given on N measurement points, which coincide with nodes Pi1 , . . . , PiN of
the FE-mesh. Hence, we set

yδ :=
N∑

j=1

yjϕij ,

whereas the projection in the space Vn of functions we interprete as

P u = P

(
n∑

i=1

uiϕi

)
:=

N∑

j=1

uijϕij .

We introduce the following notations

K = (kij) ∈ Rn×n : kij :=

∫

Ω

q∗∇ϕi∇ϕj dξ,

Q = (qij) ∈ Rm×m : qij :=

∫

Ω

ψi ψj dξ,

Mk =
(
m

(k)
ij

)
∈ Rn×n : m

(k)
ij :=

∫

Ω

ψk ϕi ϕj dξ, 1 ≤ k ≤ m,

M̃ = (m̃kj) ∈ Rn×n : m̃kj :=

{ ∫
Ω

ϕk ϕj dξ, j, k ∈ {i1, . . . , , iN},
0 else.

Moreover we have the matrices

M(u) := (M1u, . . . ,Mmu) ∈ Rn×m,

M̂(c) :=
m∑

i=1

ciMi ∈ Rn×n and

A(c) := K + M̂(c) ∈ Rn×n,

and finally

f = (f1, . . . , fn)T ∈ Rn with fi := 〈f, ϕi〉, 1 ≤ i ≤ n.
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