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Abstract

In this paper we present some numerical results concerning the identifi-
cation of material parameters in linear elasticity by dealing with small
deformations. On the basis of a precise example different aspects of the
parameter estimation problem are considered. We deal with practical
questions such as the experimental design for obtaining sufficient data
for recovering the unknown parameters as well as questions of treating
the corresponding inverse problems numerically. Two algorithms for
solving these problems can be introduced and extensive numerical case
studies are presented and discussed.
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regularization algorithms even for problems without ill-posedness effects. If no
ill-posedness effects occur the modification (24) should be preferred.
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So we only consider the conditions II and III.

We choose the measurement design with 24 measurement points on the upper
boundary and consider two different noise levels δ1 = 10−4 and δ1 = 10−3 for
the error in the measured displacement. In both cases we used δ2 = 10−3 for
the error in the second data. Then the multiparameter regularization (19) was
applied. The results can be found in table 7. The comparable results for the
standard least-square-minimization (15) were presented in table 3. As we see, in
three of four situations we have higher numerical costs since the iteration numbers
are increasing for δ1 = 10−4 with both boundary conditions and for δ1 = 10−3

for boundary condition II. But for δ1 = 10−3 and boundary condition III we
achieved a reduction of the iteration number. This shows the stabilization effect
of the multi-parameter regularization approach (19): finding a minimizer of (19)
is numerically more robust than solving the least-square problem (15). As we
can also see, the accuracy of the estimated parameter pδ could be improved.

Noise Bound. Cond. II Bound. Cond. III

δ1 δ2 K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

10−4 10−3 13 230.4 0.0088 15 262.8 0.0144
10−3 10−3 14 246.7 0.0206 16 278.7 0.0286

Table 7: Multi-parameter regularization for different noise levels (M = 24 mea-
suring points on Γ2, n = 33377 nodes)

Since we do not have ill-posedness effects we finally consider the modified multi-
parameter regularization iteration (24). As written above, the iteration stops as
soon as we have found a solution of the problem (25). This avoides the final min-
imization procedure of (15) which might become numerically expensive for noisy
data as seen in the results of table 3 for δ1 = 10−3. The corresponding results
are presented in table 8 with the same experimental design as in the descriptions
above. So we can see that there is a decrease of the iteration number in all four
calculations and a slight improvement of the accuracy of the estimated param-
eter pδ. These calculations show, that for considering noisy data it makes nu-

Noise Bound. Cond. II Bound. Cond. III

δ1 δ2 K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

10−4 10−3 9 168.8 0.0057 11 200.8 0.0121
10−3 10−3 10 184.3 0.0150 10 184.8 0.0280

Table 8: Modified multi-parameter regularization for different noise levels (M =
24 measuring points on Γ2, n = 33377 nodes)

merically sense to replace the least-square-minimization (15) by multi-parameter
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1 Introduction

In this paper the numerical studies of [4] are continued. We examine an in-
verse problem for small deformations in linear elasticity. For one material the
deformation law can be described by the two so-called Lamé constants λ and µ
which represents material properties. If we have a body consisting of different
types of material we have two parameters for each material. If we do not know
these parameters we can perform mechanical experiments in order to get some
information depending on these parameters. This could be done in the following
way:

• For a given force we measure the deformation of the body on some points
on the boundary.

• We provide a certain displacement on one part of the boundary and consider
the deformation on some points on other parts of the boundary. Addition-
ally we can measure the distributed load which is necessary to obtain the
desired deformation.

Thereby we have to regard that the measurements usually are afflicted with some
errors. So the parameter identification problem under consideration deals with
the following question: can we estimate the unknown parameters stable from the
given (noisy) data? Considering this problems we want to give answers to several
topics:

• What kind of data do we need so that we can identify the parameter
uniquely?

• How many measurement points should be used for the identification and
where should they be located?

• How do we solve the inverse problem numerically?

• Does it be necessary or advantageously to introduce some regularization
strategies for stabilizing the numerical algorithms?

In our simulation we restrict our numerical experiments to deformations with
plain stress, i.e. the stress into the third space coordinate is assumed to be
zero, so that the calculations can be reduced to a problem on a two-dimensional
geometry.

The paper is organized as follows: In section 2 we shortly present the analysis of
small deformations in linear elasticity with plain stress. Thereby the weak for-
mulation for solving the corresponding equations by a Finite-elements approach
is specified. For the treatment of the corresponding inverse problems derivatives
with respect to the unknown parameters are necessary. Those were derived also
in section 2. Section 3 is devoted to the Finite elements discretization for the
numerical solution of the underlying differential equations. In section 4 two types
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of (discretized) inverse problems for the estimation of the unknown parameters
are formulated. Moreover, one unregularized least-squares minimization problem
and a multi-parameter regularization approach for solving these inverse problems
were introduced. Additionally, a modification of the multi-parameter regulariza-
tion approach is presented. In the final section 5 first the test problem under
consideration is described. The following detailed numerical studies presented in
this section should give some answers to the questions formulated above.

2 Weak formulation

Let Ω ⊂ R2 be a bounded domain which describes the geometry of the (two-
dimensional) plain body under consideration. We consider small mechanical de-
formations with plain stress, see e.g. [3], i.e. there occur no stresses in the third
dimension. Then a deformation ϕ : Ω −→ R2 can be written as

ϕ(x) := x+ u(x), x = (x1, x2)T ∈ Ω,

where u(x) = (u1(x1, x2), u2(x1, x2))T is the displacement by ignoring deforma-
tions into the third dimension. Moreover, we define the (two-dimensional) strain
tensor

ε(u) :=

(
ε11 ε12

ε21 ε22

)
with εij :=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2.

and the symmetric stress tensor

σ(u) :=

(
σ11 σ12

σ21 σ22

)

i.e. we have σ12 = σ21. The correlation between σ and ε is given by the linear
deformation law

~σ(u) :=




σ11

σ22

σ12


 =

E

1− ν2




1 ν 0
ν 1 0
0 0 1−ν

2






ε11

ε22

2ε12




=




λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 2µ






ε11

ε22

2ε12




=: C(λ, µ)~ε(u)

with

λ :=
Eν

1− ν2
, µ :=

E

2(1 + ν)
and ~ε(u) :=

(
∂u1

∂x1

,
∂u2

∂x2

,
∂u1

∂x2

+
∂u2

∂x1

)T
.
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methods in the same way. As a consequence the solution of [IP-2] is more robust
for boundary condition II. If the initial guess p̃

0
is too far away from the exact

solution p† several trouble can happen depending on the chosen bounds. For
wide bounds the problem becomes ill conditioned and the resulting numerical
output is not useful. In table 6 the entry ’badly scaled’ refers to this problem.
Because badly scaling happens for the default values of ε and ε2, we tried to
extinguish that problem by variation of bounds. But constricting the lower and
upper bounds correlates with the effect, that the iterates p

k
tend to hang in

the bounds. That means despite the modification of bounds no feasible search
direction is found. For example in case of measuring method (27) with p̃

0
= 7.5p

0
the restriction of bounds ε = 1 and ε2 = 1000 only corrects the ill conditioning,
but the inaccurateness of results is more than 600%. The same situation is
achieved for measuring method (30).

Due to the above results concerning the attainable accuracy, for boundary con-
dition I it makes only sense to check the robustness, if measuring method (30) is
used. From the results we discover, that in this setting the initial guess can be
chosen in a very wide range. In particular all starting values between the default
lower and upper bounds lead to an accurate solution.

Meas. Pts. Start. Bound. Cond. I Bound. Cond. II Bound. Cond. III

M p̃
0

K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

12 on Γ2 0.01p
0

- - - 7 138.9 0.0248 9 170.1 0.0519

12 on Γ2 0.10p
0

- - - 7 138.9 0.0248 9 170.4 0.0519

12 on Γ2 1.00p
0

- - - 6 122.0 0.0248 7 138.2 0.0519

12 on Γ2 2.00p
0

- - - - - - 9 170.0 0.0519

12 on Γ2 3.00p
0

- - - - - - badly scaled

12 on Γ2 5.00p
0

- - - 7 139.2 0.0248 badly scaled

12 on Γ2 7.50p
0

- - - 8 154.9 0.0248 badly scaled

12 on Γ2 9.00p
0

- - - badly scaled badly scaled

12 Γ2/12 Γ3 0.01p
0

12 218.2 0.0061 8 155.2 0.0198 6 123.2 0.0069

12 Γ2/12 Γ3 0.10p
0

9 170.9 0.0061 7 139.5 0.0198 6 123.4 0.0069

12 Γ2/12 Γ3 1.00p
0

6 123.9 0.0061 7 139.6 0.0198 6 123.6 0.0069

12 Γ2/12 Γ3 2.00p
0

- - - - - - 7 139.1 0.0069

12 Γ2/12 Γ3 3.00p
0

- - - - - - badly scaled

12 Γ2/12 Γ3 5.00p
0

23 387.8 0.0061 9 171.3 0.0198 badly scaled

12 Γ2/12 Γ3 7.50p
0

23 389.1 0.0061 badly scaled badly scaled

12 Γ2/12 Γ3 106p
0

23 392.5 0.0061 badly scaled badly scaled

Table 6: Robustness of the Gauß-Newton iteration with respect to the choice of
the starting parameter (33377 nodes, δ1 = δ2 = 10−4)

e) Multi-parameter regularization approaches

Even there are no ill-posedness effects it makes sense to test multi-parameter
regularization approaches to show that they work in principle. For the boundary
condition I we do not apply these methods since only the displacement is given.
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of the inverse problem is unique or not. In practical problems this may be an
important fact for experimental design.

Meas. Pts. Bound. Cond. I Bound. Cond. II Bound. Cond. III

M ∆pΩ1
∆pΩ2

∆pΩ3
∆pΩ1

∆pΩ2
∆pΩ3

∆pΩ1
∆pΩ2

∆pΩ3

12 on Γ2 0.8227 0.0152 0.0044 0.0446 0.0265 0.0033 0.0519 0.0162 0.0955
24 on Γ2 1.0000 0.0392 0.0062 0.0441 0.0413 0.0043 0.0111 0.0601 0.0392
48 on Γ2 0.9928 0.0157 0.0031 0.0229 0.0117 0.0008 0.0033 0.0085 0.0021

12 Γ2/12 Γ3 0.0085 0.0078 0.0032 0.0280 0.0278 0.0034 0.0014 0.0126 0.0009

Table 4: Computed errors of least-squares solutions seperated for each subdomain
(33377 nodes, δ1 = δ2 = 10−4)

In the same context, it plays an important role, whether the identification problem
is modelled as [IP-1] or [IP-2]. For this we solved [IP-1] with boundary condition
II and III. The difference to [IP-2] then is, that no force information on boundary
is available. As we see in table 5, for boundary condition II and III omitting
force measurement results in large errors. This holds for all measuring methods
(27)-(30). The reason is, that without using additional force data, the parameter
identification problem has not a unique solution. Due to a loss of information,
the parameters cannot be identified. Hence the statements of remark 4.1 are
certified.

Meas. Pts. Bound. Cond. II Bound. Cond. III

M K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

12 on Γ2 7 139.6 0.2150 7 139.2 0.2088
24 on Γ2 7 138.6 0.2148 7 138.5 0.2094
48 on Γ2 7 141.1 0.2147 7 140.6 0.2094

12 Γ2/12 Γ3 7 139.7 0.2155 6 123.6 0.2125

Table 5: Results for least-squares solutions without using force data zdata (33377
nodes, δ1 = δ2 = 0)

d) Robustness with respect to the initial guess

The next part of the numerical studies deals with the robustness of the Gauß-
Newton iteration (16)-(18) w.r.t. the choice of initial guess p

0
, lower (ε) and

upper (ε2) bounds of the unknown parameters. At first varying iteration starting
points were tested by substituting p̃

0
for p

0
. Table 6 shows the corresponding

results considering measuring method (27) and (30). Note that for method (27),
(28) and (29) the robustness results are exactly the same.

In case of boundary condition II and III the bandwidth of adequate starting
solutions is between the lower bound and about eight times (bound. cond. II) or
two times (bound. cond. III) the exact parameter. This holds for all measuring

22

Ignoring volume forces, the equations of equilibrium are given by

divσ(u) = 0 on Ω,
u = gD on ΓD,

σ(u) · ~n = gN on ΓN .
(1)

Thereby ΓD denotes the part of Γ with given Dirichlet boundary condition,
whereas we have Neumann boundary conditions on ΓN . As usual notation, ~n
describes the outer normal vector on ΓN .

The Dirichlet boundary condition reads as

u =

(
u1

u2

)
=

(
g

(1)
D

g
(2)
D

)
=: gD on ΓD,

with functions g
(i)
D ∈ L2(ΓD), i = 1, 2. It can be also replaced by a one-

dimensional condition

ui = g
(i)
D on ΓD for i = 1 or i = 2.

The Neumann boundary condition we can rewrite with ~n = (n1, n2)T as

σ(u) · ~n =

(
σ11n1 + σ12n2

σ21n1 + σ22n2

)
=

(
g

(1)
N

g
(2)
N

)
=: gN

with two functions g
(i)
N ∈ L2(ΓN), i = 1, 2.

In order to derive the weak formulation we define the space of test functions

V0 :=
{
v ∈

[
H1(Ω)

]2
: v|ΓD

= 0
}

and the space of ansatz functions

VD :=
{
u ∈

[
H1(Ω)

]2
: u|ΓD

= gD

}
.

Then the bilinear form a(·, ·;λ, µ) : VD × V0 −→ R is given by

a(u, v;λ, µ) :=

∫

Ω

~ε(u)TC(λ, µ)~ε(v) dx. (2)

We now call u ∈ [H1(Ω)]2 a weak solution of (1) if





a(u, v;λ, µ) =

∫

ΓN

gN · v dx, ∀ v ∈ V0,

u ∈ VD.

(3)
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We define the forward operator F : D(F ) ⊂ X −→ Y as

F (p) := u

with p = (λ, µ)T and u ∈ VD is the corresponding solution of (3). The choice of
the spaces X and Y we discuss later.

We consider derivatives. Let be u0 := F (p0) with p0 = (λ0, µ0)T ∈ D(F ). Fur-
thermore we set ∆p := (0,∆µ)T with p0 + ∆p ∈ D(F ) and define pτ := p0 + τ ∆p
as well as uτ := F (pτ ) for τ ∈ (0, 1]. We introduce

w(µ) := lim
τ→0

1

τ
(F (pτ )− F (p0)) .

Obviously we have w(µ) ∈ V0 and

0 =

∫

Ω

~ε(uτ )
TC(λ0, µ0 + τ∆µ)~ε(v) dx−

∫

Ω

~ε(u0)TC(λ0, µ0)~ε(v) dx

=

∫

Ω

~ε(uτ − u0)TC(λ0, µ0)~ε(v) dx+ τ

∫

Ω

~ε(uτ )
TC(0,∆µ)~ε(v) dx

for all test functions v ∈ V0. Dividing by τ , taking the limit τ → 0 and noticing
that ~ε(uτ )→ ~ε(u0) we conclude, that we can determine w(µ) as solution of

{
a(w(µ), v;λ0, µ0) = −a(u0, v; 0,∆µ), ∀ v ∈ V0,

w(µ) ∈ V0.
(4)

Analogous, with pτ := p0 + τ ∆p, ∆p := (∆λ, 0)T fulfilling p0 + ∆p ∈ D(F ) and

w(λ) := lim
τ→0

1

τ
(F (pτ )− F (p0)) ,

we find, that w(λ) ∈ [H1(Ω)]2 satisfies
{
a(w(λ), v;λ0, µ0) = −a(u0, v; ∆λ, 0), ∀ v ∈ V0,

w(λ) ∈ V0.
(5)

Hence the derivative F ′(p0) : X −→ Y is given as

F ′(p0)

(
∆λ
∆µ

)
:= w(λ) + w(µ),

(
∆λ
∆µ

)
∈ X . (6)

Finally we introduce another mapping. Let Γ̃D ⊆ ΓD be a part of the Dirichlet
boundary. Then we define G : D(F ) ⊂ X −→ R2 as G(p) := (g1, g2)T where

(
g̃

(1)
N

g̃
(2)
N

)
:= σ(u) · ~n|ΓD

, gi :=

∫

Γ̃D

g̃
(i)
N ds, i = 1, 2. (7)

4

while applying boundary condition I. Continuing with boundary condition II we
see, that the behavior of results differs a little. With a noise level of 10−4 the
measuring methods do not evolve significant variances of accuracy. If the noise
is increased up to 10−3, measuring method (29) marks to be much more precise
than all the other. While using boundary condition III in combination with noisy
data, the numerical tests show, that increasing the number of measuring points
improves the quality of results. Applying method (30) produces a comparable
accuracy of parameter values. Altogether it is sticking out, that in the case of
enlarged noise the quality of results can be improved by appropriate measurement
design.

Meas. Pts. Noise Bound. Cond. I Bound. Cond. II Bound. Cond. III

M δ1 = δ2 K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

12 on Γ2 0 7 139.2 0.1983 6 122.8 0.0078 7 138.2 0.0134
24 on Γ2 0 7 139.4 0.2201 6 124.0 0.0084 8 154.7 0.0119
48 on Γ2 0 7 141.2 0.2364 6 124.9 0.0088 8 156.7 0.0122

12 Γ2/12 Γ3 0 5 109.3 0.0014 7 139.9 0.0080 5 107.3 0.0017

12 on Γ2 10−4 10 185.9 0.3732 6 122.0 0.0248 7 138.2 0.0519
24 on Γ2 10−4 50 819.9 0.4540 6 123.7 0.0300 9 170.7 0.0327
48 on Γ2 10−4 - - - 7 141.0 0.0122 8 156.7 0.0051

12 Γ2/12 Γ3 10−4 6 123.9 0.0061 7 139.6 0.0198 6 123.6 0.0069

12 on Γ2 10−3 50 819.1 0.4583 6 122.9 0.1990 50 816.4 0.6364
24 on Γ2 10−3 - - - 7 138.3 0.2837 50 810.5 0.2310
48 on Γ2 10−3 - - - 7 141.3 0.0461 15 266.9 0.0473

12 Γ2/12 Γ3 10−3 7 139.6 0.0699 8 155.7 0.1956 6 123.6 0.0582

Table 3: Results for least-squares solutions by varying measuring methods (33377
nodes)

Reverting to the fact, that without using displacement measurement on Γ3, the
solution of [IP-1] contains large errors, we analyze the concerning results in detail.
See table 4 for the error levels evolved in each subdomain of Ω. At this the
computing errors restricted on the subdomains Ωi, i = 1, 2, 3, are defined as

∆pΩi
:=

∥∥∥∥
(
λi
µi

)
−
(
λδi
µδi

)∥∥∥∥
2∥∥∥∥

(
λi
µi

)∥∥∥∥
2

, i = 1, 2, 3

with µi and λi being the exact values from (26). The computed parameters are
denoted as µδi and λδi . We clearly recognize, that for boundary condition I the
main part of error trouble happens in Ω1, while measuring methods (27)-(29)
are used. In contrast to this, for method (30) the parameter values in Ω1 are as
accurate as in the other subdomains. This indicates, that for every combination of
boundary condition and measuring method we have to check whether the solution
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case of boundary condition II and III quite good approximations of the material
parameter are reached for δ1 = δ2 = 10−4. The relative deviation of the computed
parameter lies between 2% and 5%. Increasing the noise level to 10−3 causes a
loss of accuracy, that is no more acceptable.

In the middle part of table 2 the value of δ2 was changed while δ1 remained fixed.
One can realize from the listed results, that the value of δ2 has almost no effect on
the accuracy of pδ, if it is not too large. A conspicuous loss of quality is pointed
out not before δ2 > 10−2. From this follows for [IP-2] that the measured force
data zδdata needs not to be as precise as the displacement data yδ

data
. The main

part of the computing error is determined by the displacement noise level δ1. As
the last row of table 2 shows, the above mentioned bad results for δ1 = 10−3

cannot be improved by increasing the accuracy of zδdata.

Noise Bound. Cond. I Bound. Cond. II Bound. Cond. III

δ1 δ2 K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

0 0 7 139.2 0.1983 6 122.8 0.0078 7 138.2 0.0134
10−4 10−4 10 185.9 0.3732 6 122.0 0.0248 7 138.2 0.0519
10−3 10−3 50 819.1 0.4583 6 122.9 0.1990 50 816.4 0.6364

10−4 10−4 - - - 6 122.0 0.0248 7 138.2 0.0519
10−4 10−3 - - - 6 122.7 0.0249 7 138.1 0.0523
10−4 10−2 - - - 6 122.5 0.0273 7 138.1 0.0562
10−4 10−1 - - - 6 122.7 0.1044 8 145.1 0.1289

10−3 10−3 - - - 6 122.9 0.1990 50 816.4 0.6364
10−3 0 - - - 6 122.6 0.1987 50 817.8 0.6354

Table 2: Impact of different noise levels on the least-squares solutions (M = 12
measuring points on Γ2, n = 33377 nodes)

c) Changing the measurement design

As we learned from the analyzes above, for measuring method (27) in combination
with boundary condition I and noise levels δ1 > 10−4 we achieve unsatisfying
results referring to the accuracy. We are interested in, if the measurement design
plays a role in this context. For improving results we use two ways. The first
idea is just raising the number of measuring points. As a second way we include
measurement information containing Γ3. For details of the several measurements
see definition 5.2 and figure 5.

In table 3 computed results for differing measuring methods and noise levels are
listed. In the case of exact data we derive that simple enlarging of the number
M has almost no effect. In contrast with this the quality of results concerning
boundary condition I is considerably magnified by using method (30). That
means, if we include displacement data covering information about Ω1, we get
fine approximations of p† by solving [IP-1], too. This result remains true for noisy
data. Even if the noise level is 10−3, the computation error does not exceed 7%
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We give an alternative way for calculating G, which will be used later for numer-
ical calculations. Let, for given p, u ∈ VD be a solution of (3). For simplicity,
we assume, that Γ̃D = ΓD. The given displacement is obtained by a uniquely
determined force g̃N = (g̃

(1)
N , g̃

(2)
N )T on ΓD. Hence we can rewrite (1) by adding

the boundary condition
σ(u) · ~n = g̃N on ΓD.

Note, that we cannot remove the Dirichlet boundary condition completely, since
then a (weak) solution of (1) is determined uniquely only up to a constant. The
weak formulation now is given as finding the function u ∈ VD which satisfies

a(u, v;λ, µ) =

∫

ΓN

gN · v dx+

∫

ΓD

g̃N · v dx, ∀ v ∈
[
H1(Ω)

]2
.

We choose two test functions v1, v2 ∈ [H1(Ω)]2 with

v1|ΓD
=

(
1
0

)
and v2|ΓD

=

(
0
1

)
. (8)

Using (7) we obviously have

gi = a(u, vi;λ, µ)−
∫

ΓN

g
(i)
N ds, i = 1, 2. (9)

Note, that there are no further restrictions on the test functions v1 and v2. The
derivative G′(p0) : X −→ R2 is given by G′(p0)∆p = (g′1, g

′
2)T ∈ R2 with p0 :=

(λ0, µ0)T and ∆p := (∆λ,∆µ)T as

g′i := a(F ′(p0)∆p, vi;λ0, µ0) + a(F (p0), vi; ∆λ,∆µ), i = 1, 2,

where the functions vi, i = 1, 2, again satisfy (8).

3 Finite element discretization

Let T be a triangulation of the domain Ω with n nodes Pi, 1 ≤ i ≤ n. Moreover,
ϕ1, . . . , ϕn denote the corresponding ansatz functions with ϕi(Pj) = δij, 1 ≤
i, j ≤ n. Then we can define the Finite-element space

V(2n) := span {ϕ̃1, . . . , ϕ̃2n}

with

ϕ̃i :=

(
ϕi
0

)
and ϕ̃n+i :=

(
0
ϕi

)
, 1 ≤ i ≤ n.
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The spaces V(2n)
0 and V(2n)

D are the subspaces of elements of V(2n) which satisfy the
corresponding Dirichlet boundary conditions. We also refer to [2] for the numer-
ical treatment of small deformations in linear elasticity in the three-dimensional
case.

Moreover u := (u
(1)
1 , . . . , u

(1)
n , u

(2)
1 , . . . , u

(2)
n )T ∈ R2n represents the approximation

of u ∈ V(2n)
D , i.e.

u ≈
n∑

i=1

(
u

(1)
i ϕ̃i + u

(2)
i ϕ̃n+i

)
=




n∑

i=1

u
(1)
i ϕi

n∑

i=1

u
(2)
i ϕi


 .

We introduce discretization of the parameter p. We set X := [span{ψ1, . . . , ψm}]2
and assume

p =

(
λ
µ

)
=




m∑

i=1

λiψi

m∑

i=1

µiψi


 .

Then the function p can be considered as vector p := (λ1, . . . , λm, µ1, . . . , µm)T ∈
R2m.

Furthermore we define the matrix K(p) = (kij) ∈ R2n×2n, which is given by

kij = a(ϕ̃i, ϕ̃j;λ, µ), 1 ≤ i, j ≤ 2n.

For the discretization of (3) we calculate the vector f = (f1, . . . , f2n)T ∈ R2n with

fi :=

∫

ΓN

gN · ϕ̃i ds, 1 ≤ i ≤ 2n.

Then we obtain an approximate solution u of (3) by solving the problem

1

2
uTK(p)u− fTu→ min subject to u ∈ V(2n)

D . (10)

Remark 3.1 The condition u ∈ V(2n)
D can be easily reformulated as equation

H u = g
D

. Then, by using a Langrange approach, we can find a solution u of
(10) by solving the linear system

K(p)u + HTν = f
H u = g

D
.

Thereby ν ∈ Rs denotes the corresponding Lagrange multiplier. The dimension s
depends on the number of the nodes laying on the Dirichlet boundary ΓD.

6

a) Accuracy depending on the mesh size

In the beginning we check, what discretization level is necessary in order to get
good results without exceeding the numerical costs. The first part of table 1
shows, that for exact data the quality of results increases by refining the mesh
up to exactness of the identified parameter. Note that the accurate computation
of p† for 132801 nodes is enforced by the fact, that the data is produced with the
same mesh. Respecting the second part of table 1 we conclude, that the 33337-
nodes mesh fits the needed requirements best. For noisy data we reveal finer
meshes not being appropriate, because the enlargement of computation times
is disproportionate to the improvement of the results. As one can see for the
boundary conditions II and III the discretization error for 33337 nodes is much
smaller than the error caused by the noise level. From this reason we restrict
the tests and present the following results only for the 33337-nodes mesh. We
mention that no adaptive meshing is used. In this paper we want to focus on
the inverse problem. Further research may improve the finite element solution
strategy included in the problem and lead to more efficient mesh structures.

Noise Nodes Bound. Cond. I Bound. Cond. II Bound. Cond. III

δ1 δ2 n K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

K0 Time
‖pδ−p†‖2
‖p†‖2

0 0 561 5001 64.9 0.4543 7 2.5 0.0553 36 6.4 0.2163
0 0 2153 5001 316.9 0.4537 7 6.8 0.0399 9 8.1 0.1229
0 0 8433 8 31.3 0.3707 7 28.1 0.0211 7 28.1 0.0449
0 0 33377 7 139.2 0.1983 6 122.8 0.0078 7 138.2 0.0134
0 0 132801 6 702.4 0.0000 6 698.5 0.0000 6 704.0 0.0000

10−4 10−4 561 50 8.2 0.4546 7 2.5 0.0677 721 11.6 0.2480
10−4 10−4 2153 50 34.0 0.4538 6 6.3 0.0544 9 8.4 0.1733
10−4 10−4 8433 50 160.3 0.4128 6 24.5 0.0368 8 31.4 0.0867
10−4 10−4 33377 10 185.9 0.3732 6 122.0 0.0248 7 138.2 0.0519
10−4 10−4 132801 11 1165.3 0.3359 6 697.8 0.0184 7 795.7 0.0374

Table 1: Least-squares solutions for varying discretization levels with exact and
noisy data (M = 12 measuring points on Γ2)

b) Influence of the noise level

Our next considerations concern the influence of the noise levels δ1 and δ2 on the
reached accuracy of pδ. Table 2 lists results for several noise levels. We derive
that the computing errors increase if the noise levels rise. Besides this expected
behavior the iteration remains stable. So we cannot detect any instability due
to some ill-posedness of the problem. Because of the small number of unknown
parameters, that have to be identified, a regularization by discretization comes
into effect. For boundary condition I we see that large errors in pδ occur while
using measuring method (27). Later we will inspect this problem deeper. In the

1For some computations the maximum number of iterations is extended up to kmax := 500.

19



As a second termination rule we set the stopping index, if the residual norm is
close enough to zero. That means for [IP-1]

∥∥∥QF (p
K0

)− yδ
data

∥∥∥
2
≤ 10−6

and for [IP-2] ∥∥∥∥∥

(
QF (p

K0
)

G̃(p
K0

)

)
−
(
yδ
data

zδdata

)∥∥∥∥∥
2

≤ 10−6 .

Finally the iteration is stopped if the iteration index exceeds a maximum number
of iterations:

K0 = kmax = 50 .

As a last detail for the numerical tests we have to verify that the problem remains
elliptic and bounded during the whole iteration process. The ellipticity of the
differential equation is warranted by installing a lower bound for the iterates p

k
.

Therefore we define a positive constant ε > 0 and compute in every iteration the
projection

p̃
k

:= max
{
p
k
, ε
}

with a vector ε := (ε, . . . , ε)T ∈ R6. After this the iteration is continued with p̃
k

instead of p
k
. In the same way we introduce an upper bound for the parameter

p
k
. With a positive number ε2, whereas ε < ε2 <∞ holds, we define

p̂
k

:= min
{
p
k
, ε2

}
.

As default values we set

ε := 0.001 and ε2 := 106 .

5.3 Numerical results

In the following part of the section we present some selected results of the nu-
merical studies. The results listed in the tables below include numerical costs
corresponding to the iteration number K0 and the computing time. The qual-
ity of the results is specified by the relative error of the computed parameter pδ

versus the exact parameter p†, namely

∥∥pδ − p†
∥∥

2∥∥p†
∥∥

2

.

In this context the index δ indicates the usage of noisy data.
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We give an alternative representation of the matrix K(p). Therefore we introduce

the matrices K(k) = (k
(k)
ij ) ∈ R2n×2n, 1 ≤ k ≤ 2m, with

k
(k)
ij := a(ϕ̃i, ϕ̃j;ψk, 0), k

(k+m)
ij := a(ϕ̃i, ϕ̃j; 0, ψk), 1 ≤ i, j ≤ 2n, 1 ≤ k ≤ m.

Then

K(p) =
m∑

k=1

λkK
(k) + µkK

(m+k) (11)

holds. The formula (11) has the advantage, that we can easily derive a discretiza-
tion of the derivatives of the operators F and G.

The discretization F : D(F ) ⊂ R2m −→ R2n of the operator F is now given as

F (p) := u, u ∈ D(F ),

where, for given p, u is the corresponding solution of (10).

For the discretization G : R2m −→ R2 of the operator G we use the representation
(9). We define the vector q = (q1, . . . , qn)T ∈ Rn with

qi :=

{
1, Pi ∈ Γ̃D,
0, else.

Then we introduce the functions

v1 :=




n∑

i=1

qiϕi

0


 =

n∑

i=1

qiϕ̃i and v2 :=




0
n∑

i=1

qiϕi


 =

n∑

i=1

qiϕ̃n+i

which satisfy (8). Then, by using the notation of the previous section, we have

g1 = a(u, v1;λ, µ)−
∫

ΓN

gN · v1 ds

=
n∑

i=1

qia(u, ϕ̃i;λ, µ)−
n∑

i=1

qi

∫

ΓN

gN · ϕ̃i ds

= (qT 0)
(
K(p)u− f

)
,

where (qT 0)T ∈ R2n. The same consideration holds for v2. Hence we obtain
G(p) by easily calculating

G(p) =

(
g1

g2

)
:=

(
qT 0
0 qT

)(
K(p)u− f

)
.
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Let p
0
∈ D(F ) be given and u0 := F (p

0
). We calculate the vectors w1, . . . , w2m ∈

R(2n) as solutions of

1

2
wTK(p

0
)w + uT0K

(i)w → min subject to w ∈ V(2n)
0 , 1 ≤ i ≤ 2m.

(12)
Then F ′(p

0
) := (w1, . . . , w2m) ∈ R2n×2m is the discretization of F ′(p0).

The discrete derivative G′(p
0
) := (g

1
, . . . , g

2m
) ∈ R2×2m is given by

g
i

:=

(
qT 0
0 qT

)(
K(p

0
)wi +K(i)u0

)
, 1 ≤ i ≤ 2m.

4 The inverse problem

Let y
data
∈ RM̃ denote a (noisy) observation of y := Qu, where u := F (p)

and Q ∈ RM̃×2n denotes the corresponding projection matrix. Furthermore, let
Pi1 , . . . , PiM denote the nodes of the mesh T , where the displacement is measured.
We differentiate between 3 cases:

a) M̃ = 2M and y := (u
(1)
i1
, . . . , u

(1)
iM
, u

(2)
i1
, . . . , u

(2)
iM

)T , which is the case, that the
displacement is given in both directions x1 and x2,

b) M̃ = M and y := (u
(1)
i1
, . . . , u

(1)
iM

)T , where we only consider displacements in
x1-direction and finally

c) M̃ = M and y := (u
(2)
i1
, . . . , u

(2)
iM

)T , where displacements in x2-direction are
given.

The second data zdata is a (noisy) observation of z := G̃(p), where G̃ is a (possible)
slight modification of G. Again we discuss 3 possibilities:

i) z ∈ R2 and G̃ = G, i.e. the distributed load is given in both directions x1

and x2,

ii) z = z ∈ R and G̃(p) := g1, where G(p) = (g1, g2)T , and alternatively

iii) z = z ∈ R and G̃(p) := g2.

Now we can define two types of inverse problems. In the first case we exploit only
the displacement y

data
. The distributed load zdata does not enter the calculations.

We define the appropriate problem.

Definition 4.1 (Discrete inverse problem I - [IP-1]) Let y
data

be the given
data. We search for a parameter p ∈ D(F ), such that

QF (p) = y
data

. (13)

8

second data zdata. In the following computations method iii) as mentioned above
is used. That means, only loads in x2-direction are considered. For boundary
condition I there is no sense in measuring the load, because it is implemented in
the boundary condition. From this consideration we treat the identification of p†

with boundary condition I as an inverse problem [IP-1]. The boundary conditions
II and III refer to the inverse problem [IP-2].

5.2 Numerical implementation

For numerical computations we use MATLAB R2007, whereas the solution of the
partial differential equation (1) is done by exploiting the PARTIAL-DIFFEREN-
TIAL-EQUATION-TOOLBOX [7]. All computing times mentioned below were
revealed under a LINUX setup on the CASE-computers of the department of
mathematics at the TU Chemnitz. The time unit is seconds.

The data y
data

and zdata we provide by solving the direct problem for given pa-

rameter p†. In this context a finite element mesh with 132801 nodes is used to
discretize the domain Ω. By this strategy we get exact data without any per-
turbation. In order to deal with noisy observations, the exact data is disturbed
with given noise levels δ1 and δ2. The number δ1 specifies the relative noise level
of y

data
and analogous δ2 refers to the relative measurement error of zdata. We

generate a random vector e ∈ RM̃ with N(0, 1)-distributed entries and compute
the noisy displacement data as

yδ
data

:= y
data

+ δ1

‖y
data
‖2

‖e‖2

e .

The disturbed load data is defined by

zδdata := zdata + δ2zdata .

As mentioned above we use the Gauß-Newton iteration (16)-(18) for solving the
least-square problem (15). If no other value is referred to, the starting parameter
of the iteration is fixed as

p
0

:= (100, 100, 100, 100, 100, 100)T .

The iteration is terminated at stopping index K0, if one of the three following
stopping criteria is fulfilled for the first time. The first way to stop is, that the
norm of the search direction is very small up to a given tolerance:

∥∥dK0

∥∥
2
≤ 10−6 .
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Figure 5: Measuring points for displacement data y
data
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On the other hand, for identification problems it is always helpful to use as
many as possible information about the unknown parameters. In our context we
use both data y

data
and zdata for evaluating the parameter p. This leads to the

following problem.

Definition 4.2 (Discrete inverse problem II - [IP-2]) Let y
data

and zdata be
the given data. We search for a parameter p ∈ D(F ), such that

QF (p) = y
data

and G̃(p) = zdata. (14)

Remark 4.1 It is reasonable to deal both problems. By considering Case II and
III of Definition 5.1 in the next section, it can be easily seen that the parameter p
cannot be identified uniquely by measuring only the displacement y

data
. Assume,

that parameter p satisfies (13). Then cp is also a solution of (13) for each constant
c > 0 with cp ∈ D(F ). In fact, numerical tests show, that for arbitrary p ∈
D(F ) the matrix F ′(p)TQTQF ′(p) is (almost) singular with one eigenvalue (close
to) zero. On the other hand, G(cp) = cG(p), so that we can overcome this
nonuniqueness by examining the problem [IP-2].

4.1 Solving the problem without regularization

We consider the second case [IP-2]. For solving this equations approximately, we
deal with the minimizing problem

Jls(p) :=
∥∥∥QF (p)− y

data

∥∥∥
2

+
∥∥∥G̃(p)− zdata

∥∥∥
2

→ min . (15)

In particular, both measurements have the same weight in the objective functional
Jls. This might cause some difficulties when only noisy data is given. Therefore
an alternative approach is given in the next section.

For solving (15) numerically we apply a Gauß-Newton method, see e.g. [9, chapter
10]. For given p

k
we calculate a search direction dk as solution of the normal

equation

Hkd = F ′(p
k
)TQT

(
y
data
−QF (p

k
)
)

+ G̃
′
(p
k
)T
(
zdata − G̃(p

k
)
)

(16)

with
Hk := F ′(p

k
)TQTQF ′(p

k
) + G̃

′
(p
k
)T G̃

′
(p
k
) (17)

and update

p
k+1

:= p
k

+ γkdk such that Jls(pk+1
) < Jls(pk). (18)

The numerical results are presented in section 5.
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4.2 Noisy data and multi-parameter regularization approaches

Let us now assume, that we do not know the exact data y
data

and zdata. We have

only noisy data yδ
data

and zδdata with given error estimate ‖yδ
data
− y

data
‖ ≤ δ1 and

‖zδdata − zdata‖ ≤ δ2 with two constants δ1 ≥ 0 and δ2 ≥ 0. Therefore we deal
with a multi-parameter regularization approach for solving the problem [IP-2]
approximately. Let J : D(F ) −→ R be a nonnegative objective functional. Then
we consider the constrained minimization problem

J(p)→ min subject to

{ ‖QF (p)− yδ
data
‖ ≤ δ1,

‖G̃(p)− zδdata‖ ≤ δ2.
(19)

For the analytical background of such problems we refer to [6], see also [5] for
some newer results. Devoted to the noisy data a solution of (19) is denoted now
by pδ. If the problem is not ill-posed we also can think on problems of the form

‖QF (p)− yδ
data
‖2 → min subject to ‖G̃(p)− zδdata‖ ≤ δ2, (20)

or

‖G̃(p)− zδdata‖2 → min subject to ‖QF (p)− yδ
data
‖ ≤ δ1, (21)

where we do not introduce an additionally objective functional J(p).

We can apply Lagrangian techniques for solving the problem (19). For the an-
alytical background of Lagrangian techniques we advise to [1], see also [8] for
some aspects of their numerical realization. For simplicity we assume that the
side constraints are fulfilled both with equality. If not, we have to apply an active
set strategy additionally. Moreover we set

J(p) :=
1

2
‖p− p∗‖2

for a given a priori guess p∗ ∈ R2m. The Lagrangian functional is now given as

L(p, λ1, λ2) :=
1

2
‖p−p∗‖2+λ1

(
‖QF (p)− y

data
‖ − δ1

)
+λ2

(
‖G̃(p)− zdata‖ − δ2

)
.

We set

h1(p) := ‖QF (p)− y
data
‖ − δ1 and h2(p) := ‖G̃(p)− zdata‖ − δ2.

We apply a quadratic programming approach for solving (19). Let the iterate
(pδ
k
, λ1,k, λ2,k) be given. Then we set

pδ
k+1

:= pδ
k

+ dk and λi,k+1 := λi, i = 1, 2,

10
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Figure 4: deformed mesh III

y
data

we focus on variant c) as mentioned in the preceding section. That means,
only displacements in the x2-direction are considered. Since it is a single number
we use the notation zdata (instead of zdata) in the following. Different numbers
M of measuring points are placed on the boundary subsets Γ2 and Γ3. In the
numerical tests we check out four different constellations of measuring y

data
. For

the first three cases there are only displacements measured on Γ2, whereas the
number of points M is varied from 12 to 24 and 48. Additional, as a fourth
possibility, we set 12 points on Γ2 and 12 points on Γ3. Thus we get displacement
data on two borders of the domain Ω.

Definition 5.2 (Measurement design) The four measuring methods:

12 measuring points on Γ2 (27)

24 measuring points on Γ2 (28)

48 measuring points on Γ2 (29)

12 points on Γ2 and 12 points on Γ3 (30)

Figure 5 shows the arrangement of measuring points for the methods (27)-(30).

Additional to the displacement data, there is a possibility to get further infor-
mation by measuring the force that induces the deformation. Namely the given
displacement on Γ4 in the boundary conditions II and III corresponds to a dis-
tributed load operating on Γ4. The operator G̃ or G assigns a force z being
equivalent to these distributed load to a given parameter p. Thereby we get the

15
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Figure 3: deformed mesh II

While solving the inverse problem [IP-1] or [IP-2], our aim is to identify the exact
material parameter p† from given data. We discuss several measuring methods for
specifying the data y

data
and zdata. With respect to the measured displacement

14

where dk is the solution of the quadratic problem

1

2
dTHkd+ J ′(pδ

k
)Td→ min subject to hi(p

δ

k
) + h′i(p

δ

k
)Td = 0, i = 1, 2.

(22)
with Lagrangian multiplier λ1 and λ2. Thereby Hk is an approximation of the
Hessian of the functional L(p, λ1, λ2) at the element (pδ

k
, λ1,k, λ2,k). We have

J ′(p) = p− p∗, J ′′(p) ≡ I,

h′1(p) =
1

‖QF (p)− yδ
data
‖F
′(p)TQT

(
QF (p)− yδ

data

)
and

h′2(p) =
1

‖G̃(p)− zδdata‖
G̃
′
(p)T

(
G̃(p)− zδdata

)
,

by assuming that the residuals are not zero. The matrix I denotes the identity
matrix. The second derivatives of the side constraints we approximate by

h′′1(p) ≈
F ′(p)TQTQF ′(p)

‖QF (p)− yδ
data
‖ and

h′′2(p) ≈
G̃
′
(p)T G̃

′
(p)

‖G̃(p)− zδdata‖
.

Then we set

Hk := I + λ1,k

F ′(pδ
k
)TQTQF ′(pδ

k
)

‖QF (pδ
k
)− yδ

data
‖ + λ2,k

G̃
′
(pδ
k
)T G̃

′
(pδ
k
)

‖G̃(pδ
k
)− zδdata‖

.

The solution of the KKT-system of (22) is given as solution of the equation




Hk h′1(pδ
k
) h′2(pδ

k
)

h′1(pδ
k
)T 0 0

h′2(pδ
k
) 0 0






d
λ1

λ2


 = −




pδ
k
− p∗

h1(pδ
k
)

h2(pδ
k
)


 . (23)

The problems (20) and (21) can be treated similarly.

We finally want to mention another modification. With the same notation as
above we consider the quadratic problem

1

2
dTHkd→ min subject to hi(p

δ

k
) + h′i(p

δ

k
)Td = 0, i = 1, 2, (24)

which we can obtain by setting p∗ = pδ
k

in each iteration. The interpretation of
the idea is simple. It is a Levenberg-Marquardt scheme for solving the problem:

find any p = pδ ∈ D(F ) with ‖QF (p)−yδ
data
‖ ≤ δ1 and ‖G̃(p)−zδdata‖ ≤ δ2.

(25)
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In particular, if there occur no ill-posedness phenomena in solving [IP-2] since we
have only a little number of parameters to be identified the idea (24) should be
preferred. The convergence of the iteration is expected to be faster.

There is also another motivation of considering the modified iteration (24) in the
case of noisy data. By solving least-square problems for given noisy data the
following effect can be often observed: the convergence of the iterates becomes
very slow, when the residual is already as small as or smaller than the given
noise level. The noisy data causes trouble to find an optimal parameter which
fits the given data almost exactly. On the other hand, there is no need to fit
the noisy data as best as possible. We can stop the iteration as soon as the
residual has reached the size of the given noise level. This idea often safes much
numerical costs. Moreover, since we have multiple data, we cannot guarantee
that a minimizer of (15) is also a solution of (25). Hence it is advantageously to
solve (25) instead of (15) since we can avoid the final minimization procedure of
(15) by stopping the iteration (24) when the accuracy of F (pδ

k
) and G̃(pδ

k
) with

respect to the given data achieve the corresponding noise levels.

5 Numerical examples

In the following section we investigate the properties of the inverse problems [IP-1]
and [IP-2] by detailed numerical studies. For the solution of the inverse problems
the Gauß-Newton method without applying any regularization approach is used.
With this strategy we are able to find out, if ill-posedness phenomena appear.

5.1 Formulation of a test problem

First we define a test problem with a fixed L-shaped geometry and varying bound-
ary conditions. The domain Ω = Ω1 ∪ Ω2 ∪ Ω3 is given in Figure 1.

We assume that the parameter p is constant on Ωi, i = 1, 2, 3. That means it can
be represented as a vector p ∈ R6. As default value we set

p† =




λ1

λ2

λ3

µ1

µ2

µ3




:=




69
82
108

81
96
127




, (26)

which fits approximately the corresponding parameters of steel. The ansatz func-
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Figure 1: body Ω

tions ψi are determined as

ψi(ξ) := χΩi
(ξ), ξ ∈ Ω, i = 1, 2, 3 .

We consider three different types of boundary conditions.

Definition 5.1 (Boundary conditions)

• Case I: given force gN on Γ4, i.e.

u = 0 on Γ1,

σ(u) · ~n =

(
0
20

)
on Γ4.

• Case II: given displacement in x2-direction on Γ4, i.e.

u = 0 on Γ1,
u2 = 1 on Γ4.

• Case III: given displacement on Γ4, i.e.

u = 0 on Γ1,

u =

(
0
1

)
on Γ4.

The corresponding deformed bodies for the boundary conditions I-III are dis-
played in the figures 2-4. Note that for all the three cases the body Ω is fixed on
Γ1.
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