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Abstract

Model reduction is a common theme within the simulation, control and
optimization of complex dynamical systems. For instance, in control
problems for partial differential equations, the associated large-scale
systems have to be solved very often. To attack these problems in rea-
sonable time it is absolutely necessary to reduce the dimension of the
underlying system. We focus on model reduction by balanced truncation
where a system theoretical background provides some desirable prop-
erties of the reduced-order system. The major computational task in
balanced truncation is the solution of large-scale Lyapunov equations,
thus the method is of limited use for really large-scale applications.
We develop an effective implementation of balancing-related model re-
duction methods in exploiting the structure of the underlying problem.
This is done by a data-sparse approximation of the large-scale state ma-
trix A using the hierarchical matrix format. Furthermore, we integrate
the corresponding formatted arithmetic in the sign function method
for computing approximate solution factors of the Lyapunov equations.
This approach is well-suited for a class of practical relevant problems
and allows the application of balanced truncation and related methods
to systems coming from 2D and 3D FEM and BEM discretizations.
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the same order. The numerical examples discussed in this paper should give a
good indication for reasonable parameter combinations.

Acknowledgements

This work was supported by the DFG Research Center “Mathematics for key
technologies” and DFG grant BE 2174/7-1, Automatic, Parameter-Preserving
Model Reduction for Applications in Microsystems Technology.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, PA, third ed.,
1999.

[2] A. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM
Publications, Philadelphia, PA, 2005.

[3] A. Antoulas, D. Sorensen, and Y. Zhou, On the decay rate of Hankel
singular values and related issues, Sys. Control Lett., 46 (2002), pp. 323–342.

[4] O. Axelsson and V. Barker, Finite Element Solution of Boundary Value
Problems, SIAM Publications, Philadelphia, PA, 2001. Originally published
by Academic Press, Orlando, Fl, 1984.

[5] U. Baur, Low Rank Solution of Data-Sparse Sylvester Equa-
tions, Preprint #266, MATHEON, DFG Research Cen-
ter ”Mathematics for Key Technologies”, Berlin, FRG,
http://www.math.tu-berlin.de/DFG-Forschungszentrum, Oct. 2005. To
appear in Numer. Lin. Alg. Appl.

[6] U. Baur and P. Benner, Factorized solution of Lyapunov equations based
on hierarchical matrix arithmetic, Computing, 78 (2006), pp. 211–234.

[7] M. Bebendorf and W. Hackbusch, Existence of H-matrix approxi-
mants to the inverse FE-matrix of elliptic operators with L∞-coefficients,
Numer. Math., 95 (2003), pp. 1–28.

[8] P. Benner, J. Claver, and E. Quintana-Ort́ı, Efficient solution of
coupled Lyapunov equations via matrix sign function iteration, in Proc. 3rd

Portuguese Conf. on Automatic Control CONTROLO’98, Coimbra, A. D.
et al., ed., 1998, pp. 205–210.

28

1 Introduction

The dynamical systems considered here are described for the continuous-time case
by a differential equation, the input-to-state equation, and an algebraic equation,
the output equation,

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0,

(1)

with constant matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. That is,
we consider a linear, time-invariant (LTI) system. The vector u(t) ∈ Rm contains
the input variables, y(t) ∈ Rp the output variables, and x(t) ∈ Rn denotes the
vector of state variables. Applying the Laplace transformation to (1) under the
assumption x0 = 0 yields the connection between input and output variables in
the frequency domain as y(s) = G(s)u(s), where

G(s) = C(sI − A)−1B +D

is the transfer function matrix (TFM) associated to the system (1), see, e.g. [48].
The complexity (order) of such a system is measured by the dimension n of the
state-space. Often, in practice, e.g., in the control of partial differential equations
(PDEs), the system matrix A comes from the spatial discretization of some partial
differential operator. In this case, n is typically large (often n ≥ O(104)) and the
system matrices are sparse. On the other hand, boundary element discretizations
of integral equations lead to large-scale dense matrices that often have a data-
sparse representation [41, 30, 40]. Hence, in general, we will not assume sparsity
of A, but we will assume that a data-sparse representation of A exists. Usually,
the number of inputs and outputs in practical applications is small compared to
the number of states, so that it is reasonable to assume m, p≪ n for the rest of
this paper.

Alternatively, we consider LTI systems which are discretized in time

xj+1 = Axj +Buj, x0 = x0,
yj = Cxj +Duj,

(2)

for j = 0, 1, 2, . . . . The dimensions of the matrices are equal to those in the
continuous-time setting. The TFM in discrete-time is obtained by applying the
Z-transformation (see, e.g., [34, Section 11]) to (2), yielding

G(z) = C(zI − A)−1B +D.

Large-scale discrete-time LTI systems arise for instance when applying a full
discretization scheme to a control problem for a time-dependent linear PDE [19].

1



In this paper, we will restrict our attention to stable systems, that is, all eigen-
values of the coefficient matrix A, denoted by Λ (A), are assumed to be in the
open left half plane C− for continuous-time systems or in the interior of the unit
disk for discrete-time systems. These properties are also refered to as A being
Hurwitz in the continuous-time setting or A being Schur stable or convergent in
the discrete-time case. This is typically the case for systems arising from the
discretization of parabolic partial differential equations like the heat equation or
linear convection-diffusion equations.

Model reduction aims at approximating a given large-scale system (1) or (2) by
a system of reduced order r, r ≪ n. In system theory and control of ordinary
differential equations (ODEs), balanced truncation [36] and related methods are
the methods of choice since they have some desirable properties: they preserve
the stability of the system and provide a global computable error bound which
allows an adaptive choice of the reduced order r. The basic approach relies on
balancing the Gramians of the systems. For continuous-time systems, they are
given by the solutions of the Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA + CTC = 0, (3)

while in the discrete-time case, they solve the Stein (or discrete-time Lyapunov)
equations

P = BBT + APAT , Q = CTC + ATQA. (4)

Thus, the major part of the computational complexity of these methods stems
from the solution of these two large-scale matrix equations. In general, numer-
ical methods for linear matrix equations have a complexity of O(n3) (see, e.g.,
[20, 42]) and therefore, all these approaches are restricted to problems of mod-
erate size. To overcome this limitation for a special class of practically relevant
large-scale systems, we consider modifications of a class of algorithms that allow
the use of data-sparse matrix formats. In particular, we will describe iterative
solvers for matrix equations based on the sign function method for continuous-
time systems and on the squared Smith method in discrete time, incorporating
data-sparse matrix approximations and a corresponding formatted arithmetic in
the iteration scheme. The main properties of balanced truncation and of model
reduction by singular perturbation approximation are described at the beginning
of Section 2. The iterative solvers for the matrix equations are briefly illustrated
in Section 2.3. In Section 3.1, we give a short introduction of the data-sparse
matrix format employed here, the so called hierarchical matrix format (H-matrix
format), and describe the modified iterations in Section 3.2. By integrating the
new solvers in the model reduction routines as done in Section 3.3 we obtain
efficient methods of linear-polylogarithmic complexity which combine the desir-
able features of balanced truncation methods with structural information of the
underlying PDE. Some accuracy results are presented in Section 4 and several
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reduced-order systems. Again, we observe the usual small error of BT at large
and for SPA at low frequencies.

We would like to emphasize that in this example, we have computed very small
reduced-order models (r = 10) for a fairly large LTI system (n = 32, 768). In
particular, here A is a dense 32, 768×32, 768 matrix. This becomes only possible
through the combination of H-matrix approximation and model reduction. �

6 Conclusions

We have shown that balanced truncation can be used for model reduction of
large-scale linear systems resulting from (semi-)discretizations of parabolic con-
trol systems when the state matrix may be dense, but has a data-sparse represen-
tation. Employing formatted arithmetic in sign function-based Lyapunov solvers,
the resulting implementations of balanced truncation and singular perturbation
approximation have linear-polylogarithmic complexity. The approximation qual-
ity is critical with respect to the several parameters that have to be chosen in
the computations. The usual error bound obtained in balanced truncation can
here only serve as an estimate. If used for determining the size of the reduced-
order model based on a given tolerance threshold, the parameters determining
the accuracy in the formatted arithmetic and the approximation quality of the
low-rank factors of the system Gramians need to be chosen with care. A rough
error analysis confirmed by the numerical experiments indicates that the quality
of the reduced-order model is essentially determined by the accuracy of the low-
rank factors of the Gramians as long as the H-matrix approximation error is of
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Figure 3: Frequency response errors for BT and SPA reduced-order models in Exam-
ple 5.3.

frequencies for the BT model of size r = 4 with an estimate δ = 8.39× 10−5 for
the error. The reduced-order models computed by SPA have good approximation
at low frequencies. �

Example 5.5 In this example we consider a finite element discretization of a
boundary integral equation for solving the Laplace equation in Ω ⊂ R3. Using the
Ritz-Galerkin method with n piecewise constant ansatz functions {ϕ1, . . . , ϕn} we
obtain the following entries of the stiffness matrix

Aij =

∫

Γ

ϕi(y)

∫

Γ

1

4π

1

|x− y|ϕj(x) dΓxdΓy

for i, j = 1, . . . , n, where | . | denotes the Euclidean norm, see [29] for details. To
construct a dynamical system we introduce an artifical time dependence. By use
of the stiffness matrix A, taking B,CT ∈ Rn×1 as introduced in Example 5.1, we
obtain a stable LTI system

ẋ(t) = −Ax(t) +Bu(t),

y(t) = Cx(t).

We choose Ω as a three-dimensional sphere and compute the entries in the low-
rank blocks of theH-matrix using adaptive cross approximation [17] with a block-
wise accuracy of ǫ = 10−8. By a problem size of n = 32, 768 the frequency
response errors for BT and SPA reduced models are depicted in Figure 5. For
tol = 10−4 we determine the order r = 10 and the approximate error bound
δ = 4.82× 10−5. We observe a good approximation quality of the BT and SPA
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numerical experiments demonstrate the performance of the new methods in Sec-
tion 5.

2 Theoretical Background

2.1 Model Reduction by Balanced Truncation

Model reduction aims at eliminating some of the state variables of the original
large-scale system. We will first focus on the continuous-time case, the discrete-
time model reduction will be explained at the end of this section. Considering
again the LTI system (1), then the task in model reduction is to find another LTI
system

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(5)

with reduced state-space dimension r ≪ n and Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r,
D̂ ∈ Rp×m. The associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂+ D̂ should approximate
G(s) in some sense. We are interested in a small error norm ‖G−Ĝ‖∞ where ‖ · ‖∞
denotes the H∞-norm of a rational transfer function. In the scalar case, this 2-
induced operator norm equals the peak magnitude of the transfer function on the
imaginary axis, i.e., supω∈R |G(ω)| with  =

√
−1, whereas in the multivariable

case the following definition holds:

‖G‖∞ := sup
ω∈R

σmax(G(ω)),

where σmax denotes the maximum singular value of a matrix. By driving both
systems with the same input u, the worst output error ‖y− ŷ‖2 can be minimized
by minimizing ‖G− Ĝ‖∞ because

‖y − ŷ‖2 ≤ ‖G− Ĝ‖∞‖u‖2
due to the submultiplicativity property of the H∞-norm [48].

One of the classical approaches to model reduction is balanced truncation, see,
e.g., [2, 37, 48] and the references therein. The main principle of balanced trunca-
tion and of balancing-related model reduction is finding a particular state-space
basis in which we can easily determine the states, which will be truncated. These
states should have small impact on the system behavior concerning both, reach-
ability and observability. Such a system representation, where states which are
difficult to observe are also difficult to reach and vice-versa, is obtained by a
balancing transformation. The required state-space transformation, x → Tx,
T ∈ Rn×n non-singular, leads to a balanced realization of the original system

(A,B,C,D)→ (TAT−1, TB, CT−1, D),

3



where the reachability Gramian P and the observability Gramian Q are equal and
diagonal:

P = Q = Σ := diag{σ1, . . . , σn}.
For minimal systems (that is, the system order is minimal and thus equals the
McMillan degree of the system), there always exist balancing transformations and
we have

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

The numbers σi are called the Hankel singular values (HSVs) of the LTI system
(1). They are given as the square roots of the eigenvalues of the product of
the Gramians: σi =

√
λi(PQ), where P and Q are the unique positive definite

solutions of the two dual Lyapunov equations in (3) corresponding to (1). The
HSVs are system invariants as

Λ ((TPT T )(T−TQT−1)) = Λ (TPQT−1) = {σ2
1, . . . , σ

2
n}.

They provide a systematic way to identify the states which are least involved in
the energy transfer from inputs to outputs. For a system in balanced coordinates
an energy interpretation, see e.g. [46], determines these states as those which
correspond to small HSVs. If we truncate the states corresponding to the n − r
smallest HSVs from a balanced realization we obtain a reduced-order model of
size r where the worst output error is bounded [21]:

‖y − ŷ‖2 ≤ 2

(
n∑

j=r+1

σj

)
‖u‖2. (6)

This error bound provides a nice way to adapt the selection of the reduced order.
In addition, the reduced-order system remains stable and balanced with HSVs
σ1 to σr of the original system.

The square root method (SR method) of balanced truncation is based on Cholesky
factors of the Gramians P = SST and Q = RRT . The approach computes
projection matrices which balance a given minimal system and simultaneously
truncate states corresponding to small HSVs. The SR method can also be applied
to non-minimal systems where we have rank (S) < n and/or rank (R) < n, see
[32, 45]. In these papers it is also observed, that we need not compute the
whole transformation matrix T . An efficient implementation of this method was
proposed in [13] where the solution factors are computed as full-rank factors
S ∈ Rn×rP , R ∈ Rn×rQ, where rP and rQ denote the ranks of the Gramians
P respectively Q. This is of particular interest for large-scale computation if
the Gramians have low rank at least numerically, so we have reduced memory
requirements for the solution factors. An additional benefit of this ansatz is that
all computational costs are of order O(rPrQn) during the computation of the
reduced-order system as soon as the matrix equations (3) are solved.

4

Example 5.3 Next we include a constant convective term in (21). Thus, we con-
sider systems with nonsymmetric stiffness matrix Ã resulting from the convection-
diffusion equation

∂x

∂t
(t, ξ) = k∆x(t, ξ) + c · ∇x(t, ξ) + b(ξ)u(t), ξ ∈ Ω, t ∈ (0,∞),

with a constant diffusion coefficient k(ξ) ≡ 10−4 and a fixed choice of the convec-
tion vector c = (0, 1)T . The left plot of Figure 3 reports the absolute errors of the
transfer functions for the original system and the reduced-order models computed
by BT and SPA methods. By a choice of tol = 10−4 a reduced order of r = 11
is determined and the error bound estimate is computed as δ = 7.74 × 10−5.
It is seen that the reduced systems satisfy the error estimate. To examine the
influence of the parameter setting, BT results for different choices of τ and ǫ are
depicted in the right plot. As analyzed in Section 3.3, choosing τ ≫ ǫ influences
the accuracy of the reduced-order model: combining τ = 10−4 with ǫ = 10−6

or ǫ = 10−8, the error is clearly dominated by the value of τ . In this example,
reduced-order models which satisfy the given error bound can only be obtained
by choosing ǫ ≤ τ ≪ tol. For τ = ǫ = tol (in the presented example, all values are
10−4), the accumulated errors obtained from using H-matrix arithmetic and the
resulting approximate Gramians are obviously larger than the required tolerance.
Also note that in this example, the condition number of T is much larger than
1 so that a significant error amplification can be expected, see the discussion at
the end of Section 3.3.

This example confirms that for model reduction purposes, the relation of τ to tol
is the main critical issue. As ǫ should be chosen as large as possible to minimize
workspace requirements and computing time, this confirms the sensible choice
τ = ǫ. �

Example 5.4 We consider a time discretization of the instationary heat equation
(21) with time step size Ts = 10−4 . Using the FEM space discretization as
introduced in Example 5.1 (setting k(ξ) ≡ 1.0) and an backward Euler scheme
we obtain a discrete time-invariant system

xj+1 = (E − TsA)
−1E︸ ︷︷ ︸

Ad

xj + Ts(E − TsA)
−1B︸ ︷︷ ︸

Bd

uj ,

yj = Cdxj , for j = 0, 1, 2, . . . ,

with stable state matrix Ad ∈ Rn×n and Bd, C
T
d ∈ Rn×1. The order of the system

is chosen as n = 16, 384. We compute the absolute error at 30 frequencies ωk in
logarithmic scale with ωk ∈ [0, 2ωN ]. The absolute errors of the transfer functions
for the original system and the reduced-order models computed by BT and SPA
methods are shown in Figure 4. We again observe a good matching at high
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Figure 1: Absolute errors in Example 5.1.
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Figure 2: Absolute errors in Example 5.2.

The order of the finite element ansatz space is chosen as n = 16, 384. We ap-
proximate the n × n mass matrix E in H-matrix format and invert it using a
formatted LU decomposition. The resulting state matrix A = −E−1Ã is also
stored as H-matrix. Thus, we have a large-scale stable LTI system as introduced
in (1) with B = E−1B̃, CT ∈ Rn×1 (SISO). With the given approximation error
threshold of tol = 10−4, the reduced order is determined as r = 4 and the approx-
imate error bound is computed to be δ = 9.18 × 10−5. The frequency response
errors for the H-matrix based BT and SPA method are shown in Figure 1. The
errors are computed as described in Section 5.1 as the pointwise absolute values
of the error system at 20 fixed frequencies ωk from 10−2, . . . , 106 in logarithmic
scale by use of the formatted H-matrix arithmetic. We observe good matching at
high frequencies for the BT model while the SPA model has good approximation
at low frequencies as expected. �

Example 5.2 In this example we use the same FEM discretization of the heat
equation (21) as in Example 5.1. Instead of a constant choice of the diffusion
coefficient k(ξ) we vary k(ξ) over the domain similar to [26]:

k(ξ) =





10, ξ ∈ [−1, 1]× [−1
3
, 1
3
],

10−4, ξ ∈ [−1
3
, 1
3
]×
(
[−1,−1

3
) ∪ (1

3
, 1]
)
,

1.0, otherwise.

Here, the reduced order is determined as r = 3. The frequency response errors for
BT and SPA reduced-order models are compared in Figure 2. As in the previous
example we observe a typical good approximation of the BT method for larger
frequencies and of the SPA reduced systems for frequencies close to zero. The
results fulfil the approximate BT error bound δ = 8.2× 10−5. �
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A similarity relation between the product of the full-rank factors and the square
root of the Gramian product, (PQ)1/2 ∼ STR, suggests to compute an SVD of
STR for obtaining a balancing transformation. The method requires only the
computation of the parts U1, V1 and Σ1 of the SVD

STR =
[
U1 U2

] [ Σ1 0
0 Σ2

] [
V T
1

V T
2

]
, (7)

where Σ1 = diag{σ1, . . . , σr}. If we assume that rP ≤ rQ, we have Σ2 = (Σ̄ 0)
and Σ̄ = diag{σr+1, . . . , σrP}. The case rP > rQ can be treated analogously. If
there is a significant gap between σr and σr+1, σr ≫ σr+1, the splitting in (7)
seems natural. We compute parts Tl ∈ Rr×n and Tr ∈ Rn×r of the balancing
transformation matrices T and T−1, respectively, where TlTr = Ir,

Tl = Σ
−1/2
1 V T

1 RT , Tr = SU1Σ
−1/2
1 ,

apply them to (1),

(Â, B̂, Ĉ, D̂) = (TlATr, TlB,CTr, D),

and end up with a balanced and reduced-order stable system of order r.

In the discrete-time setting we are looking for a reduced-order system

˙̂xj+1 = Âx̂j + B̂uj, x̂0 = x̂0,

ŷj = Ĉx̂j + D̂uj,
(8)

for j = 0, 1, 2, . . . , and Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r, D̂ ∈ Rp×m. Again, the
goal is to preserve stability and to approximate G(z) by Ĝ(z) = Ĉ(zI− Â)−1B̂+
D̂. Balanced truncation methods for discrete LTI systems (2) are performed
analogously to the continuous-time case. The only difference is the computation
of the two Gramians, which are in the discrete-time setting the unique, symmetric
and positive semidefinite solutions of two Stein equations (4). Note that in the
discrete-time case, the reduced-order model will in general not be balanced [37,
Section 1.9].

2.2 Model Reduction with Singular Perturbation
Approximation

Model reduction by balanced truncation performs well at high frequencies as

lim
ω→∞

(G(ω)− Ĝ(ω)) = D − D̂ = 0.

In some situations we are more interested in a reduced-order model with perfect
matching of the transfer function G at ω = 0. In state-space this corresponds to
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a zero steady-state error. Zero steady-state errors can be obtained by a singu-
lar perturbation approximation (SPA) to the original system [35, 47], also called
balanced residualization. Assume the realization of the system (1) is minimal
(otherwise use balanced truncation to reduce the order to the McMillan degree
of the system) and balanced. Then, in the continuous-time setting, consider the
following partitioned representation

[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u,

y =
[
C1 C2

] [ x1

x2

]
+Du,

where A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r and r is the desired reduced order.
Neglecting the dynamics of the faster state variables x2 by setting ẋ2(t) = 0 and
assuming A22 to be nonsingular, we obtain a reduced-order model as in (5) with

Â := A11 − A12A
−1
22 A21, B̂ := B1 −A12A

−1
22 B2,

Ĉ := C1 − C2A
−1
22 A21, D̂ := D − C2A

−1
22 B2.

(9)

The balanced truncation error bound (6) holds as well and the SPA reduced-order
model additionally satisifies Ĝ(0) = G(0) and provides a good approximation at
low frequencies.

For discrete-time systems, the formulae

Â := A11 + A12(I − A22)
−1A21, B̂ := B1 + A12(I − A22)

−1B2,

Ĉ := C1 + C2(I −A22)
−1A21, D̂ := D + C2(I − A22)

−1B2,
(10)

yield an SPA, where the resulting reduced-order system is stable and balanced
and its TFM fulfills Ĝ(e·0) = Ĝ(1) = G(1) = G(e·0) [37, Section 1.9].

2.3 Solution of Linear Matrix Equations

It has already been noted in the introduction that solving the Lyapunov equations
(3) associated to continuous-time systems and the discrete analogon called Stein
equations (4) is the main computational task in balanced truncation and related
methods. Therefore we will describe solvers for these matrix equations which are
particularly adapted for the purpose of model reduction.

A well-suited iterative scheme for solving stable Lyapunov equations (that is,
Lyapunov equations with stable A) is based on the sign function method. Roberts
[39] introduced the sign function method for the solution of Lyapunov equations
(or of the more general Riccati equations). Consider the two dual Lyapunov
equations (3)

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0
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For determining the numerical McMillan degree of the LTI system in the approx-
imate SPA method we use a threshold of size 10−14.

Example 5.1 As a first example we consider the two-dimensional heat equation
in the unit square Ω = (0, 1)2 with constant heat source in some subdomain Ωu

as described in [26]:

∂x

∂t
(t, ξ) = ∇(k(ξ) · ∇x(t, ξ)) + b(ξ)u(t), ξ ∈ Ω, t ∈ (0,∞), (21)

b(ξ) =

{
1, ξ ∈ Ωu,

0, otherwise.

The diffusion coefficient k is a material-specific quantity depending on the heat
conductivity, the density and the heat capacity. In this example we choose the
diffusion constant as k(ξ) ≡ 1.0. We impose homogeneous Dirichlet boundary
conditions

x(t, ξ) = 0, ξ ∈ ∂Ω,

and allow the measurement of the temperature in a small subdomain Ωo

y(t, ξ) = x(t, ξ)|Ωo
.

We discretize the heat equation (21) with linear finite elements and n inner grid
points ξi. In the weak form of the partial differential equation we use a classical
Galerkin approach with bilinear finite element ansatz functions ϕi: x(t, ξ) ≈∑n

i=1 xi(t)ϕi(ξ). For the n unknowns xi we obtain a system of linear differential
equations

Eẋ(t) = −Ãx(t) + B̃u(t) (22)

with matrices E, Ã, B̃ defined by the entries

Eij =

∫

Ω

ϕi(ξ)ϕj(ξ) dξ,

Ãij =

∫

Ω

k(ξ) 〈∇ϕi(ξ),∇ϕj(ξ)〉 dξ, (23)

B̃i1 =

∫

Ω

b(ξ)ϕi(ξ) dξ, for i, j = 1, . . . , n.

The additional output equation is given as

y(t) = Cx(t),

where

C1j =

{
1, ξj ∈ Ωo,

0, otherwise,
for j = 1, . . . , n.
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Since B is real-valued we obtain a system of equations for the unknowns XRe and
XIm

−AHXRe − ωkXIm = B,
ωkXRe − AHXIm = 0,

and by some simple calculations the following solution formulas:

XRe = −(A2
H + ω2

kI)
−1AHB,

XIm = −ωk(A
2
H + ω2

kI)
−1B.

The norm of the error system with formatted arithmetics can now be approxi-
mated as follows:

‖GH(ωk)− Ĝ(ωk)‖2 = σmax(GH(ωk)− Ĝ(ωk))

= σmax(C(XRe + XIm)− Ĉ(ωI − Â)−1B̂)

= σmax(C[− InvH(AH ⊙ AH ⊕ ω2
kI)AHB − ωk InvH(AH ⊙AH ⊕ ω2

kI)B]

−Ĉ(ωI − Â)−1B̂).

5.2 Results by Balanced Truncation and Singular Perturbation
Approximation

All numerical experiments were performed on an SGI Altix 3700 (32 Itanium II
processors, 1300 MHz, 64 GBytes shared memory, only one processor is used).
We made use of the LAPACK and BLAS libraries for performing the standard
dense matrix operations and include the routine DGEQPX of the RRQR library
[16] for computing the RRQR factorization. For the H-matrix approximation
we employ HLib 1.3 [18] with adaptive rank choice (see [23]) instead of a given
constant rank. The parameter ǫ which determines the desired accuracy in each
matrix block is chosen in dependency on the RRQR parameter τ . As we choose
τ = 10−8, the discussion at the end of Section 3.3 implies setting ǫ = 10−8,
too. Accordingly, we choose 10−4 =

√
ǫ as stopping criterion for the matrix

equation solvers and perform two additional iteration steps, thereby exploiting the
quadratic convergence rate of the sign or Smith iteration. For reducing the order
n of the systems we apply the H-matrix based model reduction methods where
the reduced order is determined by the threshold tol = 10−4 for the approximation
quality. We denote by δ the computable main part of the estimate of the global
error bound (6),

δ = 2

ñ∑

j=r+1

σj .

Then, the reduced order r is chosen as minimal integer such that

2
ñ∑

j=r+1

σj ≤ tol.

22

and an initialization given by A0 = A, B0 = B and C0 = C. We compute the
two Gramians simultaneously by the following iteration:

Aj+1 ←
1

2
(Aj + A−1

j ),

Bj+1B
T
j+1 ←

1

2
(BjB

T
j + A−1

j BjB
T
j A

−T
j ),

CT
j+1Cj+1 ←

1

2
(CT

j Cj + A−T
j CT

j CjA
−1
j ), j = 0, 1, 2, . . . ,

with quadratic convergence rate and

P =
1

2
lim
j→∞

BjB
T
j , Q =

1

2
lim
j→∞

CT
j Cj .

In [8, 11], this iteration scheme is modified for the direct computation of the
Cholesky (or full-rank) factors which are needed in the SR method. To obtain
the Gramians in factorized form, we partition the iteration as follows:

Aj+1 ←
1

2
(Aj + A−1

j ),

Bj+1 ←
1√
2

[
Bj , A−1

j Bj

]
, (11)

Cj+1 ←
1√
2

[
Cj

CjA
−1
j

]
, j = 0, 1, 2, . . . ,

see [11] for details. The matrices S = 1√
2
limj→∞Bj and RT = 1√

2
limj→∞Cj are

solution factors as

P = SST =
1

2
lim
j→∞

BjB
T
j , Q = RRT =

1

2
lim
j→∞

CT
j Cj .

In many large-scale applications it can be observed that the eigenvalues of the
Gramians decay rapidly, in particular when n≫ m, p, see e.g., [3, 24, 38]. Then
the memory requirements for storing the solution factors as well as the compu-
tational costs of the over-all balanced truncation algorithm can be considerably
reduced by computing low-rank approximations to the factors directly. Since the
sizes of the matrices Bj and Cj in (11) are doubled in each iteration step, it
is proposed in [11] to apply a rank-revealing QR factorization (RRQR) [22] in
order to reveal the expected low numerical rank and to limit the exponentially
growing number of rows and columns. The modified iteration scheme for solving
Lyapunov equations is explained in detail in [11, 6].

For the numerical solution of the two dual Stein equations (4),

P = BBT + APAT , Q = CTC + ATQA,
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we consider a fixed point iteration scheme called squared Smith iteration [43] with
initializations A0 = A, B0 = B, and C0 = C:

Bj+1B
T
j+1 ← AjBjB

T
j A

T
j +BjB

T
j ,

CT
j+1Cj+1 ← AT

j C
T
j CjAj + CT

j Cj ,

Aj+1 ← A2
j , j = 0, 1, 2, . . . .

The iteration converges quadratically to the Gramians as

P = lim
j→∞

BjB
T
j , Q = lim

j→∞
CT

j Cj,

if the matrix A is Schur stable. Some remarks concerning convergence theory
and overflow are presented in [12]. A problem adapted variant can be found in
[14] for the direct computation of low-rank approximations to the full-rank or
Cholesky factors of the solutions. With the modified iteration scheme

Bj+1 ←
[
Bj , AjBj

]
,

Cj+1 ←
[

Cj

CjAj

]
, (12)

Aj+1 ← A2
j , j = 0, 1, 2, . . . ,

we obtain convergence to the solution factors S = limj→∞Bj andRT = limj→∞Cj .

This iteration is less expensive during the first iteration steps, if we assume n≫
m, p. But clearly this advantage gets lost caused by the doubling of workspace in
the first two lines of the iteration (12). As mentioned already for the continuous-
time case, we expect that the Gramians have a low numerical rank so that the
iterates also remain of low numerical rank. To exploit this property and to avoid
the exponential growth of the matrices, we apply a RRQR to BT

j+1 and Cj+1 in
each iteration step as proposed in [14]. We review this row compression for the
computation of a low-rank approximation to S:

BT
j+1 = Qj+1B̂j+1Πj+1 = Qj+1

[
B̂11

j+1 B̂12
j+1

0 B̂22
j+1

]
Πj+1. (13)

Here Πj+1 is a permutation matrix, Qj+1 is orthogonal and B̂11
j+1 is a Rmj+1×mj+1

matrix. The order mj+1 of B̂11
j+1 denotes the numerical rank of Bj+1 determined

by a threshold τ . Given a threshold τ , the numerical rank of a matrix with
singular values µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 is the largest r such that µr > µ1τ . In

the RRQR, the 2-norm condition number is estimated by cond2

(
B̂11

j+1

)
≤ 1/τ .

Thus, only the entries in the upper triangular part of B̂j+1, that is the well-
conditioned part of the matrix, have to be stored for obtaining an approximate
solution S̃ = limj→∞ B̃j, with

B̃j+1 :=
[
B̂11

j+1 B̂12
j+1

]
Πj+1.
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reduced-order model cannot be expected to fulfil the error bound for all exam-
ples, in particular if the underlying system involves an ill-conditioned matrix A.
A complete analysis including all these error terms is beyond the scope of this
paper and will be reported elsewhere.

5.1 Computing Frequency Response Errors in H-Matrix
Arithmetic

For computing a bound for the latter part ‖GH− Ĝ‖∞ of the error estimate (15)
we have to note that the H-matrix format is defined only for real-valued matrices.
So we have to compute the frequency response of the complex transfer function
GH separately for the real and for the imaginary part.

We discuss the results of the model reduction methods by help of a Bode diagram
which is often used in systems theory and signal processing to show the transfer
function or frequency response of an LTI model. This model can be continuous
or discrete, and single-input/single-output (SISO) or multi-input/multi-output
(MIMO). We consider only one part of the diagram, the Bode magnitude plot,
where the magnitude of the frequency response is plotted against the frequency.
Typically, logarithmic scales are used for both axis to display a large range of
values.

In the continuous-time setting, the frequency response of the error system G(ω)−
Ĝ(ω) is evaluated at some fixed frequencies ωk and used to quantify the error
employing the spectral norm:

‖GH(ωk)− Ĝ(ωk)‖2 = |GH(ωk)− Ĝ(ωk)|, for SISO systems,

‖GH(ωk)− Ĝ(ωk)‖2 = σmax(GH(ωk)− Ĝ(ωk)), for MIMO systems.

For discrete-time systems the absolute error is computed as the maximum singular
value of the error system GH(z) − Ĝ(z) for z = eωkTs and sampling time Ts at
some fixed frequencies ωk ∈ [0, 2ωN ], where ωN = π/Ts is the so-called Nyquist
frequency,

‖GH(eωkTs)− Ĝ(eωkTs)‖2 = |GH(eωkTs)− Ĝ(eωkTs)|, for SISO systems,

‖GH(eωkTs)− Ĝ(eωkTs)‖2 = σmax(GH(eωkTs)− Ĝ(eωkTs)), for MIMO systems.

We will treat the continuous-time case in more detail. For the complex-valued
matrix in the definition of the transfer function we consider a splitting into real
part XRe and imaginary part XIm:

GH(ωk) = C(ωkI − AH)
−1B +D = C(XRe + XIm) +D.
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We can now state our main result of this section which combines the errors due
to the H-matrix approximation and balanced truncation.

Theorem 4.5 With Ĝ as TFM associated to the reduced-order system (5) ob-
tained by applying balanced truncation to GH and the assumptions of Theorem 4.1
using Ã = AH, with H-matrix approximation error

‖A−AH‖2 ≤ cHǫ,

we obtain for the whole approximation error (15)

‖G−Ĝ‖∞ ≤ ‖C‖2‖B‖2 cond2 (T ) cond2 (TH)
1

min
i=1,...,n

|Re(λi(A))|2
O(ǫ)+2

(
n∑

j=r+1

σj

)
.

The bound simplifies for the practical relevant case of symmetric, negative definite
matrices A and A+∆A with ordered real eigenvalues λi ∈ Λ(A) as in (19) to

‖G− Ĝ‖∞ ≤ cHǫ‖C‖2‖B‖2 max
λ∈Λ(A)

1

|λ| max
λ̃∈Λ(A+∆A)

1

|λ̃|
+ 2

(
n∑

j=r+1

σj

)

≤ 1

λ2
1

‖C‖2‖B‖2O(ǫ) + 2

(
n∑

j=r+1

σj

)
.

All error bounds derived in this section are of merely qualitative nature and
suggest to choose the tolerance for the H-matrix approximation small enough
to compensate for possible error amplification due to eigenvalues close to the
imaginary axis. In the next section, we will show the approximation errors ‖GH−
Ĝ‖∞ which were not analyzed in this section. Thus, for reduced-order models to
exhibit the accuracy displayed there, the H-matrix approximation error discussed
in this section needs to be of the same order as the errors ‖GH − Ĝ‖∞.

5 Numerical Experiments

Before we describe the exemplary systems on which we have tested the developed
model reduction methods, we consider how to measure the accuracy of the result-
ing reduced-order system in practice. Note that we can only compute the second
part in (15), i.e., ‖GH − Ĝ‖∞, of the approximation error between original and
reduced-order system G− Ĝ. This part were bounded by the usual error bound
(6) if the reduced-order system were computed by exact balanced truncation.
Using the H-matrix format and the approximate arithmetic we compute approx-
imations to the low-rank factors of the Gramians. Therefore, we introduce further
errors, also in further computational steps based on these Gramians. Thus, the

20

We thus have reduced storage requirements of order O(rPn) since the numerical
rank of each iterate is bounded by the numerical rank of the Gramian.

Despite the low memory requirements for the approximate solution factors we
still have storage requirements of order O(n2) and O(n3) operations during both
iterations (11), (12) for the iterates Aj . Therefore we will integrate a data-sparse
matrix format and the corresponding approximate arithmetic in the iteration
schemes. This format and the modified algorithms will be described in the next
section.

3 Solvers Based on Data-Sparse Approximation

3.1 H-Matrix Arithmetic Introduction

In [26], the sign function method for solving algebraic Riccati equations is com-
bined with a data-sparse matrix representation and a corresponding approximate
arithmetic. This initiated the idea to use the same approach for solving Lya-
punov equations as these are special cases of algebraic Riccati equations. As our
approach also makes use of this H-matrix format, we will introduce some of its
basic facts in the following.

The H-matrix format is a data-sparse representation for a special class of matri-
ces, which often arise in applications. Matrices that belong to this class result, for
instance, from the discretization of partial differential or integral equations. Ex-
ploiting the special structure of these matrices in computational methods yields
reduced computing time and memory requirements. A detailed description of the
H-matrix format can be found, e.g. in [23, 25, 30, 31].

The basic idea of the H-matrix format is to partition a given matrix recursively
into submatrices that admit low-rank approximations. To determine such a par-
titioning, we consider a product index set I×I, where I = {1, . . . , n} corresponds
to a finite element or boundary element basis (ϕi)i∈I . The product index set is
hierarchically partitioned into blocks r × s, where we stop the block splitting as
soon as the corresponding submatrix M|r×s admits a low-rank approximation

rank(M|r×s) ≤ k.

An hierarchically partitioned product index is called block H-tree and is denoted
by TI×I . The suitable blocks in TI×I are determined by a problem dependent
admissibility condition. The submatrices corresponding to admissible leaves are
stored in factorized form as Rk-matrices (matrices of rank at most k)

M|r×s = ABT , A ∈ Rr×k, B ∈ Rs×k.

9



The remaining inadmissible (but small) submatrices corresponding to leaves are
stored as usual full matrices. The set of H-matrices of block-wise rank k based
on TI×I is denoted byMH,k(TI×I). The storage requirements for a matrix M ∈
MH,k(TI×I) are

NMH,kSt = O(n log(n)k)

instead of O(n2) for the original (full) matrix. We denote by MH the hierarchical
approximation of a matrix M .

The formatted arithmetic ⊕, ⊖, ⊙ on the set of H-matrices is defined by using
standard arithmetic for the full matrices in the inadmissible blocks. In the Rk-
matrix blocks we apply standard arithmetic followed by a truncation, that maps
the submatrices (which, e.g. in case of addition generically have rank 2k) back
to the Rk-format. The truncation operator, denoted by Tk, can be achieved by
a truncated singular value decomposition and results in a best Frobenius and
spectral norm approximation, see, e.g., [25] for more details. For H-matrices the
truncation operator TH,k : Rn×m → MH,k(TI×I), M 7→ M̃ , is defined blockwise
for all leaves of TI×I by

M̃|r×s :=

{
Tk(M|r×s

) if r × s admissible,

M|r×s otherwise.

For two matrices A,B ∈ MH,k(TI×I) and a vector v ∈ Rn we consider the for-
matted arithmetic operations, which all have linear-polylogarithmic complexity:

v 7→ Av : O(n log(n)k),
A⊕B = TH,k(A+B) : O(n log(n)k2),
A⊙B = TH,k(AB) : O(n log2(n)k2),

InvH(A) = TH,k(Ã
−1) : O(n log2(n)k2).

(14)

Here, Ã−1 denotes the approximate inverse of A which is computed by using
the Frobenius formula (obtained by block-Gaussian elimination on A under the
assumption that all principal submatrices of A are non-singular) with formatted
addition and multiplication. In some situations it is recommended to compute
the inverse V of a matrix A using an approximate H-LU factorization A ≈ LHUH
followed by an H-forward (LHW = (I)H) and H- backward substitution (UHV =
W ).

Note that it is also possible to choose the rank adaptively for each matrix block
instead of using a fixed rank k. Depending on a given approximation error ǫ, the
approximate matrix operations are exact up to ǫ in each block. The truncation
operator for the Rk-matrices is then changed in the following way:

Tǫ(A) = argmin

{
rank(R)

∣∣∣∣
‖R− A‖2
‖A‖2

≤ ǫ

}
,
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Remark 4.3 If a finite element method is used for the spatial semi-discretization
of a parabolic PDE, the corresponding differential equation looks as follows:

Mẋ(t) = −Sx(t) + B̂u(t),

where M is the mass matrix and S the stiffness matrix. For a self-adjoint spatial
differential operator, both are symmetric and positive (semi-)definite. With a
Cholesky decomposition of M = McM

T
c , we obtain a symmetric, stable system

matrix A = −M−1
c SM−T

c if we multiply the state equation by M−1
c from the left

and define x̂ := MT
c x, and a transformed state equation

˙̂x(t) = Ax̂(t) +Bu(t),

with B := M−1
c B̂. For these systems with symmetric state matrix A and with

correspondingH-matrix approximation AH the assumptions of Corollary 4.2 with
Ã = AH are fulfilled. �

Example 4.4 As an example assume that M,S are the mass and stiffness matri-
ces associated to a finite-element approximation of a second-order elliptic operator
with corresponding coercive, symmetric bilinear form and coercivity constant ρ
on a bounded domain Ω ⊂ R2, using a family of meshes with a certain regularity
(see [4, Section 5.5]). We can thus order the eigenvalues of M and S as

0 < λS
1 ≤ λS

2 ≤ . . . ≤ λS
n and 0 < λM

1 ≤ λM
2 ≤ . . . ≤ λM

n , respectively.

Then A = −M−1
c SM−T

c is negative definite with eigenvalues λj as in (19). As
S − λM is a symmetric-definite pencil (see, e.g., [22, Section 8.7] for properties
of those), we have

−λ1 = min
‖x‖2=1

xTSx

xTMx
≥ min‖x‖2=1 x

TSx

max‖x‖2=1 xTMx
=

λS
1

λM
n

.

Using the bound λS
1 ≥ ρλM

1 for the minimal eigenvalue of S given in [4, Sec-
tion 5.5], we get

−λ1 ≥
ρλM

1

λM
n

=
ρ

cond2 (M)
.

Thus, for such problems, we obtain from (20)

‖G− G̃‖∞ ≤
cond2 (M)2

ρ2
‖C‖2‖B‖2O(‖∆A‖2).

According to [4, Section 5.5], the spectral condition number of M is uniformly
bounded, i.e., there exists a constant cM , independent of the mesh (here, repre-
sented by the dimension n of the finite-element ansatz space), so that cond2 (M) ≤
cM · 1

n2 . Hence

‖G− G̃‖∞ ≤
cM

(ρn)2
‖C‖2‖B‖2O(‖∆A‖2)

for all meshes in the considered family. �

19



and invoking (16) yields, by simple calculations, the following bounds:

‖G− G̃‖∞ ≤ α ‖C‖2‖B‖2 cond2 (T ) cond2

(
T̃
)
sup
ω∈R
‖(ωI − Λ)−1‖2 sup

ω∈R
‖(ωI − Λ̃)−1‖2

= α ‖C‖2‖B‖2 cond2 (T ) cond2

(
T̃
)

max
λ∈Λ(A)

1

|Re(λ)| max
λ̃∈Λ(A+∆A)

1

|Re(λ̃)|
(∗)
= α ‖C‖2‖B‖2 cond2 (T ) cond2

(
T̃
) 1

µ µ̃
(∗∗)
≤ α ‖C‖2‖B‖2 cond2 (T ) cond2

(
T̃
) 1

µ(µ− cond2 (T )α)
(∗∗∗)
≤ α ‖C‖2‖B‖2 cond2 (T ) cond2

(
T̃
)( 1

µ2
+

1

µ3
O(α)

)

The identity (∗) follows from the observation that the maximum of 1/minλ∈Λ(A) |ω−
λ| over the imaginary axis is taken for the eigenvalue closest to the imaginary
axis, that is the eigenvalue with minimal absolute value of the real part. The
estimate in (∗∗) is a consequence of the Bauer-Fike theorem, see, e.g., in [22,
Theorem 7.2.2]. Due to (17) we can apply the geometric series to obtain (∗ ∗ ∗).
�

For unitarily diagonalizable A as obtained, e.g., from a finite-differences dis-
cretization of a self-adjoint elliptic operator, the error bound (18) becomes much
nicer.

Corollary 4.2 With the same assumptions as in Theorem 4.1, and assuming
additionally that A and A+∆A are unitarily diagonalizable by

UHAU = diag{λ1, . . . , λn}, ŨH(A+∆A)Ũ = diag{λ̃1, . . . , λ̃n},

we obtain the error bound

‖G− G̃‖∞ ≤ ‖C‖2‖B‖2
1

min
i=1,...,n

|Re(λi(A))|2
O(‖∆A‖2).

�

Thus, for a symmetric negative-definite A with spectrum

−λn ≤ . . . ≤ −λ1 < 0 (19)

and symmetric negative-definite approximation Ã we get the error bound

‖G− G̃‖∞ ≤
1

λ2
1

‖C‖2‖B‖2O(‖∆A‖2). (20)
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where the parameter ǫ determines the desired accuracy in each matrix block.
Using the corresponding truncation operator TH,ǫ of hierarchical matrices changes
the formatted arithmetic in (14) to a so-called adaptive arithmetic.

We will use the H-matrix structure to compute solution factors of Lyapunov and
of Stein equations, which reduces the complexity and the storage requirements
of the underlying iteration scheme.

3.2 Sign Function and Smith Iterations with Formatted
Arithmetic

We consider the modified iteration schemes (11) and (12) for the direct compu-
tation of full-rank solution factors S and R of the Gramians P and Q. If we
consider the amount of memory which is needed throughout the iterations, we
remark reduced requirements for the solution factors if we apply a RRQR factor-
ization (13) in each iteration step. But in the other part of the iteration schemes,
the part for the iterates Aj , we still have memory requirements of order O(n2). In
this part, we also have computational cost of order O(n3) caused by inversion or
multiplication of n×n matrices. Therefore, we approximate A and its iterates in
H-matrix format and replace the standard operations by the hierarchical matrix
arithmetic (compare with Section 3.1). The matrices Bj and Cj, which yield the
solution factors at the end of the iteration, are stored in the usual “full” format.
In these parts of the iteration, arithmetic operations from standard linear algebra
packages such as LAPACK [1] and BLAS [33] can be used.

For the sign function iteration (11) we replace the inversion of Aj by computing an
approximate H-LU factorization as described in the previous section (the inverse
is denoted by V ):

Aj+1 ←
1

2
(Aj ⊕ V ),

Bj+1 ←
1√
2

[
Bj, V Bj

]
,

Cj+1 ←
1√
2

[
Cj

CjV

]
, j = 0, 1, 2, . . . .

Since limj→∞Aj = −In, as it was seen in Section 2.3, we choose

‖Aj + In‖ ≤ tol

as stopping criterion for the iteration. With two additional iteration steps and
an appropriate choice of norm and relaxed tolerance, we usually get a sufficient
accuracy due to the quadratic convergence, see [11] for details. Note that the
stopping citerion is meaningful even using formatted arithmetic since the identity

11



Algorithm 1 Calculate approximate low rank factors S̃ and R̃ of (3)

INPUT: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n; tolerances tol for convergence of (11),
ǫ for the H-matrix approximation error and τ for the rank detection.

OUTPUT: Approximations to full-rank factors S and R, such that P ≈ S̃S̃T ,
Q ≈ R̃R̃T .

1: A0 ← (A)H
2: B0 ← B, C0 ← C
3: j = 0
4: while ‖Aj + In‖2 > tol do
5: [L,U ]← LUH(Aj)
6: Solve LW = (In)H by H-forward substitution.
7: Solve UV = W by H-back substitution.
8: Aj+1 ← 1

2
(Aj ⊕ V )

9: Bj+1 ← 1√
2

[
Bj, V Bj

]

10: Cj+1 ← 1√
2

[
Cj

CjV

]

11: Compress columns of Bj+1, rows of Cj+1 using a RRQR with threshold τ
(see (13)).

12: j = j + 1
13: end while
14: S̃ ← 1√

2
Bj+1, R̃

T ← 1√
2
Cj+1.

is contained in the class of H-matrices. A detailed description of the H-matrix
arithmetic based sign function iteration for solving Lyapunov equations (also in
generalized form) can be found in [5, 6]. Based on this, we obtain Algorithm 1
which solves both equations in (3) simultaneously.

For the squared Smith iteration, we replace the multiplication of the large-scale
iterates Aj by formatted arithmetic

Bj+1 ←
[
Bj, AjBj

]
,

Cj+1 ←
[

Cj

CjAj

]
,

Aj+1 ← Aj ⊙ Aj , j = 0, 1, 2, . . . .

This iteration scheme has reduced memory requirements in the expensive part of
the iteration, that is forAj ∈ MH,k(TI×I) we have a demand of orderO(n log(n)k)
instead of O(n2). The computational complexity reduces to O(n log2(n)k2) in
this part of the iteration scheme. Since the sizes of the two solution iterates
Bj ∈ Rn×mj and Cj ∈ Rpj×n are bounded above by the numerical rank rP and rQ
during the RRQR factorization, compare (13), the complexity of the iterations
in lines 5.– 6. of Algorithm 2 is bounded by O(rPn log(n)k) and O(rQn log(n)k),
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functions derived in [44] and can partially be obtained as special cases of error
bounds given there.

First, we note the identity

C(ωI −A)−1B − C(ωI − Ã)−1B = C[(ωI − A)−1(A− Ã)(ωI − Ã)−1]B.

If we denote the TFM of the perturbed system by

G̃(s) := C(sI − Ã)−1B +D,

then the error can be expressed as

‖G− G̃‖∞ = sup
ω∈R
‖C[(ωI − A)−1(A− Ã)(ωI − Ã)−1]B‖2.

Thus

‖G− G̃‖∞ ≤ ‖C‖2‖B‖2‖A− Ã‖2 sup
ω∈R
‖(ωI −A)−1‖2 sup

ω∈R
‖(ωI − Ã)−1‖2. (16)

As in our application Ã comes from the H-matrix approximation of some elliptic
operator, we will provide some specific bounds for matrices with the “nice” spec-
tral properties often obtained in these situations. In the following, let Ã = A+∆A
so that ‖∆A‖2 accounts for the approximation error in A.

Theorem 4.1 Let A and A + ∆A be stable and assume that both matrices are
diagonalizable so that

T−1AT = diag{λ1, . . . , λn}, T̃−1(A+∆A)T̃ = diag{λ̃1, . . . , λ̃n}.

Furthermore, assume that

cond2 (T ) ‖∆A‖2 ≤ min
i=1,...,n

|Re(λi(A))|. (17)

Then the H∞-norm of the corresponding error system G− G̃ is bounded by

‖G− G̃‖∞ ≤ ‖C‖2‖B‖2 cond2 (T ) cond2

(
T̃
) 1

min
i=1,...,n

|Re(λi(A))|2
O(‖∆A‖2).

(18)

Proof: Using the notation

Λ := diag{λ1, . . . , λn}, Λ̃ := diag{λ̃1, . . . , λ̃n},
α := ‖∆A‖2,

setting
µ = min

i=1,...,n
|Re(λi(A))|, µ̃ = min

i=1,...,n
|Re(λi(A+∆A))|,

17



Algorithm 4 Approximate SPA for LTI systems (1) and (2)

INPUT: LTI system AH ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m; tolerance tol
for the approximation error of the reduced-order model.

OUTPUT: Reduced-order model (of order r) Â, B̂, Ĉ, D̂; error bound δ.
1: Compute approximate full-rank factors S̃ ∈ Rn×rP , R̃ ∈ Rn×rQ of the system

Gramians using Algorithm 1 for continuous-time systems, Algorithm 2 in the
discrete-time case.

2: Compute SVD of S̃T R̃ (ñ := min{rP , rQ})

S̃T R̃ = UΣV T ,

with Σ = diag(σ1, . . . , σñ) and HSVs in decreasing order.

3: Compute truncation matrices: Tl = Σ− 1
2V T R̃T ∈ Rn̂×n, Tr = S̃ U Σ− 1

2 ∈
Rn×n̂.

4: Compute balanced and minimal realization:

Â = TlATr, B̂ = TlB, Ĉ = CTr, D̂ = D.

5: Partition matrices according to reduced order r (A11 ∈ Rr×r), r is determined

by given tolerance: 2
ñ∑

j=r+1

σj ≤ tol,

Â =

[
A11 A12

A21 A22

]
, B̂ =

[
B1

B2

]
, Ĉ =

[
C1 C2

]
.

6: Compute SPA reduced-order model Â, B̂, Ĉ, D̂ with formulas (9) for
continuous-time and with (10) for discrete-time systems and the estimate

δ = 2
ñ∑

j=r+1

σj for the error bound (6).

We can split the approximation error into two parts using the triangle inequality:

‖G− Ĝ‖∞ ≤ ‖G−GH‖∞ + ‖GH − Ĝ‖∞, (15)

where the first term accounts for the H-matrix approximation error and the
second part is taken care of by the balanced truncation error bound as well
as other sources of error like those introduced by using approximate Gramians.
Here, we will analyze the first term only, a complete analysis is beyond the scope
of this paper and will be given elsewhere, see also [27].

We will derive some expressions and results that may also be of use if A is
approximated by some other matrix Ã. (In our case, we will have Ã = AH.) We
note that the following results are related to the perturbation theory for transfer
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Algorithm 2 Calculate approximate low rank factors S̃ and R̃ of (4)

INPUT: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n; tolerances tol for convergence of (12),
ǫ for the H-matrix approximation error and τ for the rank detection.

OUTPUT: Approximations to full-rank factors S and R, such that P ≈ S̃S̃T ,
Q ≈ R̃R̃T .

1: A0 ← (A)H
2: B0 ← B, C0 ← C
3: j = 0
4: while ‖Aj‖2 > tol do
5: Bj+1 ←

[
Bj , AjBj

]

6: Cj+1 ←
[

Cj

CjAj

]

7: Compress columns of Bj+1, rows of Cj+1 using a RRQR with threshold τ
(see (13)).

8: Aj+1 ← Aj ⊙ Aj

9: j = j + 1
10: end while
11: S̃ ← Bj+1, R̃

T ← Cj+1

respectively. Instead of a constant given rank k we will use an adaptive rank
choice based on a prescribed approximation error ǫ in our numerical experiments
in Section 5. In the investigated examples, i.e., discretized control problems for
PDEs defined on Ω ⊂ Rd, it is observed that k ∼ logd+1(1/ǫ) is sufficient to
obtain a relative approximation error of O(ǫ), [7].
For the squared Smith iteration we have limj→∞Aj = 0; thus it is advised to
choose

‖Aj‖2 ≤ tol

as stopping criterion for the iteration, which is easy to check. A parallel imple-
mentation of the method is described in [15]. The developed H-matrix arithmetic
based implementation of the Smith iteration is summarized in Algorithm 2, which
again solves both equations in (4) simultaneously.

3.3 H-Matrix Based Model Reduction

We integrate the H-matrix based sign function iteration as summarized in Algo-
rithm 1 in the SR method for balanced truncation (as introduced in Section 2.1)
for computing a continuous-time system of reduced order. For discrete-time sys-
tems the sign function solver is replaced by the H-matrix based Smith iteration
as described in Algorithm 2. This is summarized in Algorithm 3. By using the
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Algorithm 3 Approximate Balanced Truncation for LTI systems (1) and (2)

INPUT: LTI system AH ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m; tolerance tol
for the approximation error of the reduced-order model.

OUTPUT: Reduced-order model (of order r) Â, B̂, Ĉ, D̂; error bound δ.
1: Compute approximate full-rank factors S̃ ∈ Rn×rP , R̃ ∈ Rn×rQ of the system

Gramians using Algorithm 1 for continuous-time systems, Algorithm 2 in the
discrete-time case.

2: Compute SVD of S̃T R̃ (ñ := min{rP , rQ})

S̃T R̃ = [U1 U2 ]

[
Σ1 0

0 Σ2

] [
V T
1

V T
2

]
,

with Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σñ), HSVs in decreasing or-

der with σr > σr+1. Adaptive choice of r by given tolerance: 2
ñ∑

j=r+1

σj ≤ tol.

3: Compute truncation matrices: Tl = Σ
− 1

2
1 V T

1 R̃T ∈ Rn×r, Tr = S̃ U1Σ
− 1

2
1 ∈

Rr×n.
4: Compute BT reduced-order model:

Â = TlATr, B̂ = TlB, Ĉ = CTr, D̂ = D

and the estimate δ = 2
ñ∑

j=r+1

σj for the error bound (6).

formatted arithmetic for the solution of the large-scale matrix equations we re-
duce the computational complexity in the first stage of Algorithm 3 from O(n3)
to O(n log2(n)k2). A detailed analysis of the complexity of the SR method can be
found in [10]. It is shown that all subsequent steps do not contribute significantly
to the cost of the algorithm as their complexity is reduced to O(rP rQ n). In Al-
gorithm 4 the H-matrix based SPA method is presented. For the computation of
a balanced and minimal realization of (1) (respectively (2) in discrete-time) with
McMillan degree n̂ Algorithm 1 (Algorithm 2) is used as first stage in the model
reduction process. The computed approximate low-rank factors S̃ ∈ Rn×rP and
R̃ ∈ Rn×rQ of the two system Gramians are used for computing the truncation
matrices Tl and Tr.

Note that if the H-matrix based iteration schemes are used for approximating
the solution of the corresponding matrix equations, e.g., P ≈ S̃S̃T , then it is
sufficient to choose τ ≤ √ǫ (τ is the threshold for the numerical rank decision)
to obtain ‖P − S̃S̃T‖2 ∼ ǫ; see [10], although the accuracy of the solution factors
is ‖S − S̃‖2 ∼

√
ǫ. But for the purpose of balanced truncation, we need τ ∼ ǫ

as the accuracy of the reduced-order model is affected by the accuracy of the
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solution factors themselves: we may assume that Algorithms 1,2 yield S̃, R̃ so that
S =

[
S̃, ES

]
and R =

[
R̃, ER

]
, where ‖ES‖2 ≤ τ‖S‖2, ‖ER‖2 ≤ τ‖R‖2.

Then

STR =

[
S̃T R̃ S̃TER

ET
S R̃ ET

SER

]
.

Hence, the relative error introduced by using the “small” SVD, i.e., that of S̃T R̃,
rather than the full SVD, i.e., that of STR, is proportional to τ . Therefore, a
choice of τ =

√
ǫ would lead to an error of size

√
ǫ in the computed Hankel

singular values as well as the projection matrices Tl, Tr and thus in the reduced-
order model. This very rough error analysis motivates setting τ = ǫ.

Note that for both model reduction algorithms only the first ñHSVs are computed
(with ñ := min{rP , rQ}). Usually, ñ equals the numerical rank of S̃T R̃ with
respect to τ and can thus be considered as a “numerical McMillan degree with
respect to τ”. Thus, the original balanced truncation error bound as given in (6)
is under-estimated if ñ < n̂ by using only the computable part

δ = 2

ñ∑

j=r+1

σj

as approximation for the error in Algorithms 3 and 4. Moreover, a more detailed
error analysis in [27, 28] suggests that the error in the computed bound δ, intro-
duced by using approximate low-rank factors S̃, R̃, is also affected by cond2(T ),
where A = TΛT−1 is a spectral decomposition of A. Hence, for ill-conditioned
T , the computed error bound may under-estimate the model reduction error sig-
nificantly; see Example 5.3.

4 Accuracy of the Reduced-Order System

Besides the balanced truncation error bound (6), which measures the worst out-
put error between the original and the reduced-order system, we introduce further
errors using the H-matrix format and the corresponding approximate arithmetic.
Errors resulting from using the formatted arithmetic during the calculation can
be controlled by choosing the parameter for the adaptive rank choice accordingly,
see [6] for details. In this section we will specify the influence of the H-matrix
error introduced by the approximation of the original coefficient matrix A in
H-matrix format. Thus, balanced truncation is actually applied to

GH(s) := C(sI − AH)
−1B +D.

We ignore the influence of rounding errors as they are expected to be negligible
compared to the other error sources. Note that we assume B to be unaffected by
the H-matrix approximation, see also Remark 4.3.
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