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Abstract

The numerical treatment of linear-quadratic regulator problems for
parabolic partial differential equations (PDEs) on infinite time horizons
requires the solution of large scale algebraic Riccati equations (ARE).
The Newton-ADI iteration is an efficient numerical method for this task.
It includes the solution of a Lyapunov equation by the alternating di-
rections implicit (ADI) algorithm in each iteration step. On finite time
intervals the solution of a large scale differential Riccati equation is re-
quired. This can be solved by a backward differentiation formula (BDF)
method, which needs to solve an ARE in each time step.
Here, we study the selection of shift parameters for the ADI method.

This leads to a rational min-max-problem which has been considered by
many authors. Since knowledge about the complete complex spectrum
is crucial for computing the optimal solution, this is infeasible for the
large scale systems arising from finite element discretization of PDEs.
Therefore several alternatives for computing suboptimal parameters are
discussed and compared for numerical examples.



Contents

1 Introduction 1
1.1 Problem background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Newton-ADI iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Review of existing parameter selection methods 5
2.1 Leja Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Optimal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Heuristic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Suboptimal parameter computation 9

4 Numerical results 11
4.1 FDM semidiscretized diffusion-convection-reaction equation . . . . . . . . 12
4.2 FDM semidiscretized heat equation . . . . . . . . . . . . . . . . . . . . . 13
4.3 FEM semidiscretized convection-diffusion equation . . . . . . . . . . . . . 14

5 Conclusions 16

Author’s addresses:

Peter Benner, Jens Saak

Fakultät für Mathematik,
Technische Universität Chemnitz,
D-09107 Chemnitz,
[benner,jens.saak]@mathematik.tu-chemnitz.de

Hermann Mena

Departamento de Matemática,
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1 Introduction

Optimal control problems governed by partial differential equations are a topic of cur-
rent research. Many control, stabilization and parameter identification problems can be
reduced to the linear-quadratic regulator (LQR) problem, see [14, 24, 25, 9, 10]. Par-
ticularly, LQR problems for parabolic systems have been studied in detail in the past
30 years and several results concerning existence theory and numerical approximation
can be found [27, 24, 25]. Gibson [17] and Banks/Kunisch [3] present an approxima-
tion technique to reduce the inherently infinite-dimensional problem of the distributed
regulator problem for parabolic PDEs to (large) finite-dimensional analogues.

The solution of these finite-dimensional problems can be reduced to the solution of a
matrix Riccati equation. In the finite-time horizon case this is a first order differential
equation and in the infinite–time horizon case an algebraic one, see e.g. [4, 37].

In Section 1.1 we briefly summarize the basic results for the LQR control of parabolic
PDEs. Then we review the Newton-ADI iteration for the solution of large scale matrix
Riccati equations in Section 1.2, showing how this involves the solution of a Lyapunov
equation by the ADI algorithm in every iteration step. Furthermore we introduce the
rational minimax problem related to the parameter selection problem there, which is
the main topic of this paper. We give a brief summary of Wachspress’s results and a
heuristic choice of parameters described in [33], as well as a Leja point approach [38, 39]
in Section 2. In Section 3 we show how the first two of these methods can be combined
to have a parameter computation which can be applied efficiently even in case of very
large systems. The forth section will show the efficiency of our method compared to
the Wachspress parameters for test examples, where the complete spectrum can still
be computed numerically and thus Wachspress’s method can be used to compute the
optimal parameters. We close this article with some conclusions in Section 5.

1.1 Problem background

Consider nonlinear parabolic diffusion-convection and diffusion-reaction systems of the
form

∂x

∂t
+∇ · (c(x)− k(∇x)) + q(x) = Bu(t), t ∈ [0, Tf ], (1)

in Ω ⊂ Rd, d = 1, 2, 3, with appropriate initial and boundary conditions. The equation
can be split into the convective term c, the diffusive part k and the uncontrolled reaction
given by q. The state x of the system depends on ξ ∈ Ω and the time t ∈ [0, Tf ] and is
denoted by x(ξ, t).

Notation Note that we use bold letters for the infinite-dimensional setting and regular
letters for the discretized case. We also write x(t) ∈ X in the abstract setting, while
x(ξ, t) is used if concrete problems (PDEs) are considered.

We consider applications where the control u(t) is assumed to depend only on the
time t ∈ [0, Tf ] while the linear operator B may depend on ξ ∈ Ω. Let Ĵ(x,u) be a given
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performance index, then the control problem is given as:

min
u
Ĵ(x,u) subject to (1). (2)

If (1) is in fact linear, then a variational formulation leads to an abstract Cauchy problem
for a linear evolution equation of the form

ẋ = Ax+Bu, x(0) = x0 ∈ X , (3)

for linear operators

A : dom(A) ⊂ X → X ,
B : U → X , (4)

C : X → Y ,

where the state space X , the observation space Y , and the control space U are assumed
to be separable Hilbert spaces. Additionally, U is assumed to be finite dimensional, i.e.
there are only a finite number of independent control inputs to (1). Here C maps the
states of the system to its outputs, such that

y = Cx. (5)

If (1) is nonlinear, model predictive control technics can be applied [5, 21, 22]. There
the equation is linearized at certain working points or around reference trajectories and
linear problems for equations as in (3) have to be solved on subintervals of [0, Tf ].

In many applications in engineering the performance index Ĵ(x,u) is given in quadratic
form. We assume (3) to have a unique solution for each input u so that x = x(u). Thus
we can write the cost functional as J(u) := Ĵ(x(u),u). Then

J(u) =
1

2

Tf∫

0

〈x,Qx〉X + 〈u,Ru〉U dt+ 〈xTf ,GxTf 〉X , (6)

where Q, G are selfadjoint operators on the state space X , R is a selfadjoint operator
on the control space U and xTf denotes x(., Tf ). To guarantee unique solvability of the
control problem R is assumed positive definite. Since often only a few measurements of
the state are available as the outputs of the system, the operator Q := C∗Q̃C (here and
in the following ∗ denotes the Hilbert space adjoint) generally is only positive semidefinite
as well as G. In many applications one simply has Q̃ = I (e.g., in the examples in
Section 4).
If the standard assumptions that

• A is the infinitesimal generator of a C0-semigroup T(t),

• B,C are linear bounded operators and

• for every initial value there exists an admissible control u ∈ L2(0,∞;U)
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hold then the solution of the abstract LQR problem can be obtained analogously to the
finite-dimensional case (see [44, 13, 17]). We then have to consider the operator Riccati
equations

0 = <(X) := C∗QC+A∗X+XA−XBR−1B∗X (7)

and
Ẋ = −<(X) (8)

depending on whether Tf < ∞ (8) or not (7). If Tf = ∞ then G = 0 and the linear
operator X is the solution of (7), i.e. X : domA→ domA∗ and 〈x̂,<(X)x〉 = 0 for all
x, x̂ ∈ dom(A). The optimal control is then given as the feedback control

u∗(t) = −R−1B∗X∞x∗(t), (9)

which has the form of a regulator or closed-loop control. Here, X∞ is the minimal
nonnegative self-adjoint solution of (7), x∗(t) = S(t)x0(t), and S(t) is the C0-semigroup
generated by A−BR−1B∗X∞. In problems where Tf < ∞, the optimal control is
defined similarly to (9 ) but then X∞ represents the unique nonnegative solution of the
differential Riccati equation (8) with initial condition XTf = G and therefore depends
on time, i.e., it has to be replaced by X∞(t) in (9). Most of the required conditions,
particularly the restrictive assumption that B is bounded, can be weakened [24, 25, 35].
In order to solve the infinite-dimensional LQR problem numerically we use a Galerkin

projection of the variational formulation of the PDE (1) onto a finite-dimensional space
Xh spanned by a finite set of basis functions (e.g., finite element ansatz functions).
If we now choose the space of test functions as the space generated by finite element

(fem) ansatz functions for a finite element semidiscretization in space, then the operators
above have matrix representations in the fem basis. So we have to solve the discrete
problem

min
u∈L2(0,Tf ;U)

1

2

Tf∫

0

〈x,Qx〉Xh
+ 〈u,Ru〉U dt+ 〈xTf , GxTf 〉Xh

, (10)

with respect to

ẋ = Ax+Bu,

x(., 0) = Ihx0, (11)

y = Cx.

Here Ih is the interpolation operator from the space discretization method (here fem).
Approximation results in terms of approximation of the Riccati solution operator X and
the solution semigroup S(t) for the closed loop system, validating this technique have
been considered e.g. in [25, 3, 8, 20, 30, 31]. Note that the control space is considered
finite-dimensional and therefore does not change under spatial semi-discretization, i.e.,
we can directly apply the control computed for the discretized systems (11) to the
infinite-dimensional system (3), although it might be suboptimal there. The estimation
of the sub-optimality of that approach will be considered elsewhere.
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1.2 Newton-ADI iteration

In this note we will concentrate on the step of solving the large sparse matrix Riccati
equations

0 = <h(X) = CT Q̃C + ATX +XA−XBR−1BTX, (12)

or
Ẋ = −<h(X) = −CT Q̃C − ATX −XA+XBR−1BTX, (13)

respectively. The initial value for the latter initial value problem is X(Tf ) = G. Such
initial value problems can efficiently be solved by BDF methods known from ordinary
differential equations [7, 16, 12]. This involves solving algebraic equations of type (12) in
each time step. The algebraic Riccati equation (ARE) is a nonlinear system of equations
so it is natural to apply Newton’s method to find its solutions. This approach has been
investigated; details and further references can be found in [36, 23, 29, 34, 4, 15].
Observing that the (Frechét) derivative of <h at P is given by the Lyapunov operator

<′
h|P : Q 7→ (Ah −BhR

−1BT
h P )

TQ+Q(Ah −BhR
−1BT

h P ),

Newton’s method for AREs can be written as

N` :=
(
<′
h|P`

)−1

<h(P`),
X`+1 := X` +N`.

Then one step of the Newton iteration for a given starting matrix can be implemented
as follows:

Algorithm 1.1 Newton’s method for AREs

Require: Pl, such that Al is stable
1: A` ← Ah −BhR

−1BT
h P`

2: Solve the Lyapunov equation AT` N` +N`A` = −<h(P`)
3: P`+1 ← P` +N`

Newton’s iteration for AREs can be reformulated as a one step iteration re-writing it
such that the next iterate is computed directly from the Lyapunov equation in Step 2
of Algorithm 1.1,

(Ah −BhR
−1BT

h P`)
TP`+1 + P`+1(Ah −BhR

−1BT
h P`) =

−CT
h Q̃hCh − P`BhR

−1BT
h P` =: −W`W

T
` .

So we have to solve a Lyapunov equation

F TX +XF = −WW T (14)

with stable F in each Newton step. (14) will be solved using the alternating direction
implicit(ADI) iteration, which can be written as [42]

(F T + pjI)Q(j−1)/2 = −WW T −Qj−1(F − pjI),
(F T + pjI)Q

T
j = −WW T −Q(j−1)/2(F − pjI), (15)
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model is of the form
Mẋ = Ãx+ B̃u

y = C̃x.
(35)

This is transformed into a standard system (32) by decomposing M into M = MLMU

where ML = MT
U since M is symmetric. Then defining x̃ := MUx, A := M−1

L ÃM−1
U ,

B := M−1
L and C := C̃M−1

U (without computing any of the inverses explicitly in the
code) we end up with a standard system for x̃ having the same inputs u as (35).
Note, that the heuristic parameters do not appear in the results bar graphics here.

This is due to the fact, that the LyaPacksoftware crashed while applying the complex shift
computed by the heuristics. Numerical tests where only the real ones of the heuristic
parameters where used lead to very poor convergence in the inner loop, which is generally
stopped by the maximum iteration number stopping criterion. This resulted in breaking
the convergence in the outer Newton loop.

5 Conclusions

In this paper we have reviewed existing methods for determining sets of ADI parameters
and based on this review we suggest a new procedure which combines the best features
of two of those. For the real case, the parameters computed by the new method are
optimal and in general their performance is quite satisfactory as one can see in the
numerical examples. The computational cost depends only on the computation of an
Arnoldi process for the matrix involved and on the computation of elliptic integrals.
Since the latter is a quadratically converging scalar iteration, the Arnoldi process is
the dominant computation here, which makes this method suitable for the large scale
systems arising from finite element discretization of PDEs. The main advantages of the
new method are, that it is cheaper to compute than the existing ones and that it avoids
complex computations in the ADI iteration for many cases where the others would result
in complex iterations.
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where p denotes the complex conjugate of p ∈ C. If the shift parameters pj are chosen
appropriately, then limj→∞Qj = Q with a superlinear convergence rate.
In order to make this iteration work for large-scale problems we apply the low rank

Newton ADI method presented in [6, 33] (based upon the iterative technique by Wach-
spress [42]) to the AREs.
Practical experience shows that it is crucial to have good shift parameters to get fast

convergence in the ADI process. The error in iterate j is given by ej = Rjej−1, where

Rj := (F + pjI)
−1(F T − pjI)(F T + pjI)

−1(F − pjI).

Thus the error after J iterations satisfies

eJ = GJe0, GJ :=
J∏

j=1

Rj,

due to the fact that GJ is symmetric,

||eJ || ≤ ρ(GJ)||e0||, ρ(GJ) = k(p)2,

where p = {p1, p2, . . . , pJ} and

k(p) = max
λ∈σ(F )

∣∣∣∣∣
J∏

j=1

(pj − λ)
(pj + λ)

∣∣∣∣∣ . (16)

By this the ADI parameters are chosen in order to minimizes ρ(GJ) which leads to the
rational minimax problem

min
{pj∈R:j=1,...,J}

k(p) (17)

for the shift parameters pj, see e.g. [43]. This minimization problem is also known as
the rational Zolotarev problem since, in the real case, i.e σ(F ) ⊂ R, it is equivalent to
the third of four approximation problems solved by Zolotarev in the 19th century, see
[26]. For a complete historical overview see [41].

2 Review of existing parameter selection methods

Many procedures for constructing optimal or suboptimal shift parameters have been
proposed in the literature [19, 32, 39, 43]. Most of the approaches cover the spectrum
of F by a domain Ω ⊂ C− and solve (17) with respect to Ω instead of σ(F ). In
general one must choose among the various approaches to find effective ADI iteration
parameters for specific problems. One could even consider sophisticated algorithms like
the one proposed by Istace and Thiran [19] in which the authors use numerical techniques
for nonlinear optimization problems to determine optimal parameters. However, it is
important to take care that the time spent in computing parameters does not outweigh
the convergence improvement derived therefrom.

5
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Wachspress et al. [43] compute the optimum parameters when the spectrum of the
matrix F is real or, in the complex case, if the spectrum of F can be embedded in an
elliptic functions region, which often occurs in practice. These parameters may be chosen
real even if the spectrum is complex as long as the imaginary parts of the eigenvalues
are small compared to their real parts (see [28, 43] for details). The method applied by
Wachspress in the complex case is similar to the technique of embedding the spectrum
into an ellipse and then use Chebyshev polynomials. In case that the spectrum is not well
represented by the elliptic functions region a more general development by Starke [39]
describes how generalized Leja points yield asymptotically optimal iteration parameters.
Finally, an inexpensive heuristic procedure for determining ADI shift parameters, which
often works well in practice, was proposed by Penzl [32]. We will summarize these
approaches here.

2.1 Leja Points

Gonchar [18] characterizes the general minimax problem and shows how asymptotically
optimal parameters can be obtained with generalized Leja or Fejér points. Starke [38]
applies this theory to the ADI minimax problem (17). The generalized Leja points
are defined as follows. Given ϕ ∈ E and ψ ∈ F arbitrarily, E,F subsets of C, for
j = 1, 2, . . . , the new points ϕj ∈ E and ψj ∈ F are chosen recursively in such a way
that, with

rj(z) =

j∏

i=1

z − ϕj
z − ψj

(18)

the two conditions
maxx∈E |rj(z)| = |rj(ϕj+1)|,
maxx∈F |rj(z)| = |rj(ψj+1)| (19)

are fullfilled. Bagby [2] shows that the rational functions rj obtained by this procedure
are asymptotically minimal for the rational Zolotarev problem. Starke considers a gen-
eral ADI iteration, so for ADI applied to the Lyapunov equation (15) the generalized
Leja points will be defined as follows:
Given p0 ∈ E, E is a complex subset such that σ(F ) ⊂ E, for j = 1, 2, . . . , the new

points pj ∈ E are chosen recursively in such a way that, with

rj(z) =

j∏

i=1

z − pj
z + pj

(20)

the condition
max
x∈E
|rj(z)| = |rj(pj+1)|, (21)

holds. The generalized Leja points can be determined numerically for a large class of
boundary curves ∂E. When relatively few iterations are needed to attain the prescribed
accuracy, the Leja points may be poor. Moreover their computation can be quite time
consuming when the number of Leja points generated is large, since the computation
gets more and more expensive the more prior Leja points are already calculated.
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Figure 4: (a) sparsity pattern of A and M in (35) , (b) sparsity pattern of A and M
in (35) after reordering for bandwidth reduction, (c) sparsity pattern of the
Cholesky factor of reordered M and (d) Iteration history for the Newton ADI

chemical reactors. The model equations are:

∂x
∂t
− α∆x+ v · ∇x = 0 in Ω

x = x0 on Γin

∂x
∂n

= σ(u− x) on Γheat1 ∪ Γheat2

∂x
∂n

= 0 on Γout.

(34)

Here Ω is the rectangular domain shown in Figure 3 (a). The inflow Γin is at the left
part of the boundary and the outflow Γout the right one. The control is applied via
the upper and lower boundaries. We can restrict ourselves to this 2d-domain assuming
rotational symmetry, i.e., non-turbulent diffusion dominated flows. The test matrices
have been created using the COMSOL Multiphysics software and α = 0.06, resulting in
the Eigenvalue and shift distributions shown in Figure 3 (b).

Since a finite element discretization in space has been applied here, the semidiscrete
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Figure 3: (a) A 2d cross-section of the liquid flow in a round tube. (b) Eigenvalue and
shift parameter distributions.

In Figure 2 we plotted the sparsity pattern of A and the iteration history for the
solution of the corresponding ARE. We can see (Figure 2 (b)) that iteration numbers
only differ very slightly. Hence we can choose quite independently which parameters
to use. Since the Wachspress approach needs a good approximation of the smallest
magnitude eigenvalue it might be a good idea to choose the heuristic parameters here
(even though they are much more expensive to compute) if the smallest magnitude
eigenvalue is known to be close to the origin (e.g. in case of finite element discretizations
with fine meshes).

4.3 FEM semidiscretized convection-diffusion equation

The last example is a system appearing in the optimal heating/cooling of a fluid flow
in a tube. An application is the temperature regulation of certain reagent inflows in
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2.2 Optimal parameters

We will briefly summarize the parameter selection procedure given in [43] in this section.
Define the spectral bounds a, b and a sector angle α for the matrix F as

a = min
i
(Re{λi}), b = max

i
(Re{λi}), α = tan−1 max

i

∣∣∣∣
Im{λi}
Re{λi}

∣∣∣∣, (22)

where λ1, . . . , λn are eigenvalues of −F . It is assumed that the spectrum of −F lies
inside the elliptic functions region determined by a, b, α, as defined in [43]. Let

cos2 β =
2

1 + 1
2

(
a
b
+ b

a

) , m =
2 cos2 α

cos2 β
− 1. (23)

If α < β, then m ≥ 1 and the parameters are real. We define

k1 =
1

m+
√
m2 − 1

, k =
√

1− k12. (24)

Define the elliptic integrals K and v via

F [ψ, k] =

∫ ψ

0

dx√
1− k2 sin2 x

, (25)

as

K = K(k) = F

[
π

2
, k

]
, v = F

[
sin−1

√
a

bk1
, k1

]
, (26)

where F is the incomplete elliptic integral of the first kind, k is its modulus and ψ is its
amplitude.
The number of the ADI iterations required to achieve k(p)2 ≤ ε is J = d K

2vπ
log 4

ε
e,

and the ADI parameters are given by

pj = −
√
ab

k1
dn

[
(2j − 1)K

2J
, k

]
, j = 1, 2, . . . , J, (27)

where dn(u, k) is the elliptic function (see [1]).
If m < 1, the parameters are complex. We define the dual elliptic spectrum,

a′ = tan

(
π

4
− α

2

)
, b′ =

1

a′
, α′ = β.

Substituting a′ in (23), we find that

β′ = α, m′ =
2 cos2 β

cos2 α
− 1.

By construction, m′ must now be greater than 1. Therefore we may compute the opti-
mum real parameters p′j for the dual problem. The corresponding complex parameters
for the actual spectrum can then be computed from:

cosαj =
2

p′j +
1
p′j

, (28)
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for j = 1, 2, . . . , d1+J
2
e

p2j−1 =
√
ab exp[ıαj], p2j =

√
ab exp[−ıαj] (29)

2.3 Heuristic parameters

The bounds needed to compute optimal parameters are too expensive to be computed
exactly in case of large scale systems because they need the knowledge of the whole
spectrum of F . In fact, this computation would be more expensive than the application
of the ADI method itself.
An alternative was proposed by Penzl in [32]. He presents a heuristic procedure

which determines suboptimal parameters based on the idea of replacing σ(F ) by an
approximation R of the spectrum in (17). Specifically, σ(F ) is approximated using the
Ritz values computed by the Arnoldi process (or any other large scale eigensolver). Due
to the fact that the Ritz values tend to be located near the largest magnitude eigenvalues,
the inverses of the Ritz values related to F−1 are also computed to get an approximation
of the smallest magnitude eigenvalues of F yielding a better approximation of σ(F ).
The suboptimal parameters P = {p1, . . . , pk} are chosen among the elements of this
approximation because the function

sP(t) =
|(t− p1) . . . (t− pk)|
|(t+ p1) . . . (t+ pk)|

becomes small over σ(F ) if there is one of the shifts pj in the neighborhood of each
eigenvalue. The procedure determines the parameters as follows. First, the element
pj ∈ R which minimizes the function s{pj} over R is chosen. The set P is initialized by
either {pj} or the pair of complex conjugates {pj, p̄j}. Now P is successively enlarged
by the elements or pairs of elements of R, for which the maximum of the current sP
is attained. Doing this the elements of R giving the largest contributions to the value
of sP are successively canceled out. Therefore the resulting sP is nonzero only in the
elements of R where its value is comparably small anyway. In this sense (17) is solved
heuristicly.

2.4 Discussion

We are searching for a parameter set for the ADI method applied to a control prob-
lem, where in the PDE constraint (1) the diffusive part is dominating the reaction or
convection terms, respectively. Thus the resulting operator has a spectrum with only
moderately large imaginary components compared to the real parts. In these problems
the Wachspress approach should always be applicable and lead to real shift parameters
in many cases. In problems, where the reactive and convective terms are absent, i.e.
we are considering a plain heat equation and therefore the spectrum is part of the real
axis, the Wachspress parameters are proven to be optimal. The heuristics proposed by
Penzl is more expensive to compute there and Starke notes in [38], that the generalized
Leja approach will not be competitive here since it is only asymptotically optimal. For
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Figure 2: (a) sparsity pattern of the FDM semidiscretized operator for equation (33) and
(b) Iteration history for the Newton ADI

Figure 1 (a),(b) show the spectrum and sparsity pattern of the system matrix A. The
iteration history, i.e., the numbers of ADI steps in each step of Newton’s method are
plotted in Figure 1 (c). There we can see that in fact the semi-optimal parameters work
exactly like the optimal ones by the Wachspress approach. This is what we would expect
since the rectangular spectrum is an optimal case for our idea, because the parameters a,
b and α are exactly (to the accuracy of Arnoldi’s method) met here. Note especially that
for the heuristic parameters even more outer Newton iterations than for our parameters
are required.

4.2 FDM semidiscretized heat equation

In this example we tested the parameters for the finite difference semidiscretized heat
equation on the unit square (0, 1)× (0, 1).

∂x

∂t
−∆x = f(ξ)u(t). (33)

The data is generated by the routines fdm 2d matrix and fdm 2d vector from the ex-
amples of the LyaPack package. Details on the generation of test problems can be found
in the documentation of these routines (comments and Matlab help). Since the differ-
ential operator is symmetric here, the matrix A is symmetric and its spectrum is real
in this case. Hence α = 0 and for the Wachspress parameters only the largest magni-
tude and smallest magnitude eigenvalues have to be found to determine a and b. That
means we only need to compute two Ritz values by the Arnoldi (which here is in fact a
Lanczos process because of symmetry) process compared to about 30 (which seems to
be an adequate number of shifts) for the heuristic approach. We used a test example
with 400 unknowns here to still be able to compute the complete spectrum using eig

for comparison.
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Figure 1: (a) sparsity pattern of the FDM semidiscretized operator for equation (31) and
(b) its spectrum (c) Iteration history for the Newton ADI method applied to
(31)

4.1 FDM semidiscretized diffusion-convection-reaction equation

Here we consider the finite difference semidiscretized partial differential equation

∂x

∂t
−∆x−

[
20
0

]
.∇x+ 180x = f(ξ)u(t), (31)

where x is a function of time t, vertical position ξ1 and horizontal position ξ2 on the
square with opposite corners (0, 0) and (1, 1). The example is taken from the SLICOT
collection of benchmark examples for model reduction of linear time-invariant dynamical
systems (see [11, Section 2.7] for details). It is given in semidiscretized state space model
representation:

ẋ = Ax+Bu, y = Cx. (32)

The matrices A, B, C for this system can be found on the NICONET web site3.

2available from: http://www.netlib.org/lyapack/ or http://www.tu-chemnitz.de/sfb393/

lyapack/
3http://www.icm.tu-bs.de/NICONET/benchmodred.html
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the complex spectra case common strategies to determine the generalized Leja points
generalize the idea of enclosing the spectrum by a polygonal domain, where the start-
ing roots are placed in the corners. So one needs quite exact information about the
shape of the spectrum there. In practice this would need to be able to compute the
eigenvalues with largest imaginary parts already for a simple rectangular enclosure of
the spectrum. Since this still doesn’t work reliable, we decided to avoid the comparison
with that approach in this publication, although it might proof useful in cases where the
Wachspress parameters are no longer applicable or one knows some a-priori information
on the spectrum.

3 Suboptimal parameter computation

In this section we discuss our new contribution to the parameter selection problem. The
idea is to avoid the problems of the methods reviewed in the previous section and on
the other hand combine their advantages.
Since the important information that we need to know for the Wachspress approach

is the outer shape of the spectrum of the matrix F , we will describe an algorithm
approximating the outer spectrum. With this approximation the input parameters a,
b and α for the Wachspress method are determined and the optimal parameters for
the approximated spectrum are computed. Obviously, these parameters have to be
considered suboptimal for the original problem, but if we can approximate the outer
spectrum at a similar cost to that of the heuristic parameter choice we end up with a
method giving nearly optimal parameters at a drastically reduced computational cost
compared to the optimal parameters.
In the following we discuss the main computational steps in Algorithm 3.1.

Real spectra In the case where the spectrum is real we can simply compute the upper
and lower bounds of the spectrum by an Arnoldi process and enter the Wachspress
computation with these values for a and b, and set α = 0, i.e., we only have to compute
two complete elliptic integrals by an arithmetic geometric mean process. This is very
cheap since it is a quadratically converging scalar computation (see below).

Complex spectra For complex spectra we introduce an additional shifting step to be
able to apply the Arnoldi process more efficiently. Since we are dealing with stable
systems1 we compute the largest magnitude and smallest magnitude eigenvalues and
use the arithmetic mean of their real parts as a horizontal shift, such that the spectrum
is centered around the origin. Now Arnoldi’s method is applied to the shifted spectrum,
to compute a number of largest magnitude eigenvalues. These will now automatically
include the smallest magnitude eigenvalues of the original system after shifting back. So
we can avoid extensive application of the Arnoldi method to the inverse of F . We only

1Note that the Newton-ADI-iteration assumes that we know a stabilizing initial feedback, or the system
is stable itself
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Algorithm 3.1 approximate optimal ADI parameter computation

Require: F Hurwitz stable
1: if σ(F ) ⊂ R then
2: Compute the spectral bounds and set a = minσ(−F ) and b = maxσ(−F ),
3: k1 =

a
b
, k =

√
1− k21,

4: K = F (π
2
, k) , v = F (π

2
, k1).

5: Compute J and the parameters according to (27).
6: else
7: Compute ã = minRe (σ(−F )), b̃ = maxRe (σ(−F )) and c = ã+b̃

2
.

8: Compute l largest magnitude eigenvalues λ̂i for the shifted matrix −F + cI by an
Arnoldi process or alike.

9: Shift these Eigenvalues back, i.e. λ̃i = λ̂i + c.
10: Compute a, b and α from the λ̃i like in (22).
11: if m ≥ 1 in (23) then
12: Compute the parameters by (23)–(27).
13: else {The ADI parameters are complex in this case}
14: Compute the dual variables.
15: Compute the parameters for the dual variables by (23)–(27).
16: Use (28) and (29) to get the complex shifts.
17: end if
18: end if

need it to get a rough approximation of the smallest magnitude eigenvalue to determine
ã and b̃ for the shifting step.

The number of eigenvalues we compute can be seen as a tuning parameter here. The
more eigenvalues we compute, the better the approximation of the shape of the spectrum
is and the closer we get to the exact a, b and α, but obviously the computation becomes
more and more expensive. Especially the dimension of the Krylov subspaces is rising
with the number of parameters requested and with it the memory consumption in the
Arnoldi process. But in cases where the spectrum is filling a rectangle or an egg-like
shape, a few eigenvalues are sufficient here (compare Section 4.1).

A drawback of this method can be that in case of small (compared to the real parts)
imaginary parts of the eigenvalues, one may need a large number of eigenvalue approx-
imations to find the ones with large imaginary parts, which are crucial to determine α
accurately. On the other hand in that case the spectrum is almost real and therefore it
will be sufficient to compute the parameters for the approximate real spectrum in most
applications.

Computation of the elliptic integrals The new as well as the Wachspress parameter
algorithms require the computation of certain elliptic integrals presented in (25). These
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are equivalent to the integral

F [ψ, k] =

∫ ψ

0

dx√
(1− k2) sin2 x+ cos2 x

=

∫ ψ

0

dx√
(k21) sin

2 x+ cos2 x
. (30)

In the case of real spectra, ψ = π
2
and F [π

2
, k] is a complete elliptic integral of the form

I(a, b) =

∫ π
2

0

dx√
a2 cos2 x+ b2 sin2 x

and I(a, b) = π
2M(a,b)

, where M(a, b) is the arithmetic geometric mean of a and b. The
proof for the quadratic convergence of the arithmetic geometric mean process is given
in many textbooks (e.g.,[40]).

For incomplete elliptic integrals, i.e., the case ψ < π
2
, an additional Landen’s trans-

formation has to be performed. Here, first the arithmetic geometric mean is computed
as above, then a descending Landen’s transformation is applied (see [1, Chapter 17]),
which comes in at the cost of a number of scalar tangent computations equal to the
number of iteration steps taken in the arithmetic geometric mean process above.

The value of the elliptic function dn from equation (27) is also computed by an arith-
metic geometric mean process (see [1, Chapter 16]).

To summarize the advantages of the proposed method we can say:

• We compute real shift parameters even in case of many complex spectra, where
the heuristic method would compute complex ones. This results in a significantly
cheaper ADI iteration considering memory consumption and computational effort,
since complex computations are avoided.

• We have to compute less Ritz values compared to the heuristic method, reducing
the time spent in the computational overhead for the acceleration of the ADI
method.

• We compute a good approximation of the Wachspress parameters at a drastically
reduced computational cost compared to their exact computation.

4 Numerical results

For the numerical tests we used the LyaPack2 software package [33]. A test program
similar to demo r1 from the LyaPack examples is used for the computation, where the
ADI parameter selection is switched between the methods described in the previous
sections. We are here concentrating on the case where the ADI shift parameters can be
chosen real.
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