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Abstract

In this paper we consider the p-FEM for elliptic boundary value prob-
lems on tetrahedral meshes where the entries of the stiffness matrix are
evaluated by numerical quadrature. Such a quadrature can be done by
mapping the tetrahedron to a hexahedron via the Duffy transformation.

We show that for tensor product Gauss-Lobatto-Jacobi quadrature
formulas with q+1 = p+1 points in each direction and shape functions
that are adapted to the quadrature formula, one again has discrete
stability for the fully discrete p-FEM.

The present error analysis complements the work Eibner and Melenk
[2006] for the p-FEM on triangles/tetrahedra where it is shown that by
adapting the shape functions to the quadrature formula, the stiffness
matrix can be set up in optimal complexity.
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Figure 1: rel. energy norm error

where r2 = x2
1 + x2

2 + x2
3. We base the p-FEM on a single element on two

different sets of shape functions: ΦKS is the set of shape functions proposed
by Karniadakis & Sherwin Karniadakis and Sherwin [1999] and spans Pp(K̂) ∩
H1

0 (K̂); the set ΦLag is, roughly, speaking, the set of Langrange interpolation

points in the quadrature points (on Q); it spans a space that contains Pp(K̂) ∩
H1

0 (K̂) and we refer to Eibner and Melenk [2006] for details. In both cases
the stiffness matrix is set up using the minimal quadrature, i.e., q = p. Fig. 1
shows the relative energy norm error (Eexact−aq(uN ,uN )

Eexact
)1/2 for both cases, where

Eexact =
∫

Ω
∇u ·A∇dΩ. To illustrate that the optimal rate of convergence is not

affected by the quadrature, we include in Fig. 1 a calculation (based on ΦKS)
that corresponds to (15) with A = I; in this case the linear system of equations
can be set up without quadrature errors. We observe indeed that the rate of
convergence is the same as in the case of quadrature.

We close by pointing out that the shape functions in ΦLag are adapted to the
quadrature rule. While the number of functions in ΦLag is (asymptotically for
large p) 6 times that of ΦKS, setting up the stiffness matrix is not slower than
setting up the stiffness matrix based on ΦKS. We refer to Eibner and Melenk
[2006] for a detailed study.
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1 Introduction

In the p-FEM and the closely related spectral method, the solution of an elliptic
boundary value problems is approximated by piecewise (mapped) polynomials
of degree p on a fixed mesh T . In practice, the entries of the p-FEM stiffness
matrix cannot be evaluated exactly due to variable coefficients and/or non-affine
element maps and one has to resort to numerical quadrature to obtain a fully dis-
crete method. Computationally, choosing shape functions that are related to the
quadrature formula employed can significantly improve the computational com-
plexity. For example, for tensor product elements (i.e., quadrilaterals, hexahedra)
choosing tensor product Gauss-Lobatto quadrature with q + 1 = p + 1 points in
each spatial direction and taking as shape functions the Langrange interpolation
polynomials (of degree p) in the Gauss-Lobatto points effectively leads to a spec-
tral method. The quadrature error analysis for the p-FEM/spectral method is
available even for this case of minimal quadrature (see, e.g., Maday and Ronquist
[1990], Melenk and Schwab [1998] and reference there). Key to the error analysis
is a one-dimensional discrete stability result for the Gauss-Lobatto quadrature
due to Canuto and Quarteroni [1982] (corresponding to α = 0 in Lemma 2.3 be-
low) that can readily be extended to quadrilaterals/hexahedra by tensor product
arguments.

In the present paper, we show an analog of the error analysis of the above minimal
quadrature for the p-FEM on tetrahedral meshes (the easier case of triangles can
be treated completely analogously). Quadrature on a tetrahedron can be done by
a mapping to a hexahedron via the Duffy transformation D of (3). We show in
Thm. 2.5 that for tensor product Gauss-Lobatto-Jacobi quadrature formulas with
q+1 = p+1 points in each direction, one again has discrete stability for the fully
discrete p-FEM. A complete quadrature error analysis (Thm. 2.7, Cor. 2.9) then
follows from Strang’s lemma and shows that the convergence rates of the Galerkin
p-FEM (where all integrals are evaluated exactly) is retained by the fully discrete
p-FEM. The present error analysis complements the work Eibner and Melenk
[2006] for the p-FEM on triangles/tetrahedra where it is shown that by adapting
the shape functions to the quadrature formula, the stiffness matrix can be set
up in optimal complexity. However, we mention that the approximation spaces
employed in Eibner and Melenk [2006] are no longer the classical spaces Sp,1(T )
of piecewise polynomials but the spaces Sp,1(T ) augmented by bubble shape
functions for each element, which makes the static condensation more expensive.

To fix ideas, we consider

−∇ · (A(x)∇u) = f on Ω ⊂ R3, u|∂Ω = 0, (1)

where A ∈ C(Ω,R3×3) is pointwise symmetric positive definite. We require A

1



and f to be analytic on Ω and the standard ellipticity condition

0 < λmin ≤ A(x) ≤ λmax, ∀x ∈ Ω.

2 Quadrature Error Analysis

2.0.1 Notation

The reference tetrahedron K̂ and the reference cube Q are defined as

K̂ = {(x, y, z) | − 1 < x, y, z ∧ x+ y + z < −1}, Q := (−1, 1)3. (2)

The Duffy transformation D : Q → K̂ is given by

D(η1, η2, η3) :=

(
(1 + η1)(1− η2)(1− η3)

4
− 1,

(1 + η2)(1− η3)

2
− 1, η3

)
. (3)

Lemma 2.1. The Duffy transformation is a bijection between the (open) cube Q
and the (open) tetrahedron K̂. Additionally,

D′(η1, η2, η3) :=

[
∂ξi
∂ηj

]3

i,j=1

=




1
4
(1− η2)(1− η3) 0 0
−1

4
(1 + η1)(1− η3) 1

2
(1− η3) 0

−1
4
(1 + η1)(1− η2) −1

2
(1 + η2) 1



>

,

(D′(η1, η2, η3))
−1

=
1

(1− η2)(1− η3)




4 2(1 + η1) 2(1 + η1)
0 2(1− η2) 1− η2

2

0 0 (1− η2)(1− η3)


 ,

detD′ =

(
1− η2

2

)(
1− η3

2

)2

. (4)

Proof. See, for example, Karniadakis and Sherwin [1999].

We employ standard notation by writing Pp(K̂) for the space of polynomials of

degree p on K̂, and by denoting Qp(Q) the tensor-product space of polynomials
of degree p in each variable, Schwab [1998]; additionally we set

Q̃p := {u ∈ Qp(Q) | ∂1u = ∂2u = ∂3u = 0 on η3 = 1 and ∂1u = 0 on η2 = 1}.

Remark 2.2. The Duffy transformation D maps the face η3 = 1 to the point
(−1,−1, 1) and the face η2 = 1 to a line. An important property of Q̃p is that

u ∈ Pp(K̂) implies u ◦D ∈ Q̃p.

2

Proof of Theorem 2.5. We will only show (8) as (9) follows easily from Lemma 2.4.

Let u be such that û := u ◦D ∈ Q̃p. In view of the positivity of the quadrature

weights and Lemma 3.1 we get for Ẽ := diag((D′)−1(D′)−>)

GLJ bK,q(∇u · A∇u) ≥ λmin GLJ bK,q(|∇u|2)

= λmin GLJQ,q(∇û · (D′)−1(D′)−>∇û) ≥ λmin
3468

GLJQ,q(∇û · Ẽ∇û).

A calculation reveals Ẽ =
(
E(1)

)2
+
(
E(2)

)2
if we introduce

E(1) := diag

{ √
8(1 + η1)

(1− η2)(1− η3)
,

1 + η2

1− η3

, 1

}
,

E(2) := diag

{
4

(1− η2)(1− η3)
,

2

1− η3

, 0

}

The assumption û ∈ Q̃p implies that the components of E(1)∇û and E(2)∇û are
in Qp(Q); hence, from Lemma 2.4

GLJQ,q(∇û · Ẽ∇û) = GLJQ,q(|E(1)∇û|2) + GLJQ,q(|E(2)∇û|2)

≥
∫

Q
|E(1)∇û|2| detD′|dΩ +

∫

Q
|E(2)∇û|2| detD′|dΩ

=

∫

Q
(∇û)>Ẽ∇û | detD′|dΩ

≥ 1

3

∫

Q
(∇û)>(D′)−1(D′)−>∇û | detD′|dΩ =

1

3

∫

bK |∇u|
2dΩ,

where we also appealed to Lemma 3.1. Collecting our findings, we arrive at

GLJ bK,q(∇u · A∇u) ≥ λmin
3468

1

3
‖∇u‖2

L2( bK)
≥ λmin

10404λmax

∫

bK ∇u · A∇udΩ.

4 Numerical example

Cor. 2.9 states that the fully discrete p-FEM converges at the same rate as a
Galerkin p-FEM where all integrals are evaluated exactly. We illustrate this
behavior for the following example:

−∇ · (A∇u) = 1 on Ω := K̂ and u = 0 on ∂Ω, (15)

A(x1, x2, x3) := diag

[
1

r2 + 1
, exp

(
r2
)
, cos

(
1

r2 + 1

)]
, (16)
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Lemma 3.1. Let E(η) := (D′−1D′−>)(η) and denote by diagE(η) ∈ R3×3 the
diagonal of E(η). Then

1

3468
diagE(η) ≤ E(η) ≤ 3 diagE(η) ∀η ∈ Q. (12)

Proof. One easily shows for any invertible matrix G ∈ Rn×n

B ≤ A ⇐⇒ G>BG ≤ G>AG. (13)

In order to prove (12), we define the diagonal matrix

B(η) := diag [(1− η2)(1− η3), (1− η3), 1]

and in view of (13) we are led to showing

1

3468
(B>(diagE)B)(η) ≤ (B>EB)(η) ≤ 3(B>(diagE)B)(η) ∀η ∈ Q. (14)

Explicitly computing

(B>EB)(η) =




8(1 + η1)2 + 16 (1 + η1){4 + 2(1 + η2)} 2(1 + η1)
sym. 4 + (1 + η2)2 (1 + η2)
sym. sym. 1




and applying the three estimates

2(1 + η1){4 + 2(1 + η2)}v1v2 ≤ 8(1 + η1)2v2
1 + [4 + (1 + η2)2]v2

2,

4(1 + η1)v1v3 ≤ 4(1 + η1)2v2
1 + v2

3, 2(1 + η2)v2v3 ≤ (1 + η2)2v2
2 + v2

3

for all η ∈ Q, v1, v2, v3 ∈ R, we conclude for any vector v = (v1, v2, v3)> ∈ R3

v>(B>EB)(η)v ≤ v> diag
[
20(1 + η1)2 + 16, 8 + 3(1 + η2)2, 3

]
v.

In view of (B>(diagE)B)(η) = diag [8(1 + η1)2 + 16, 4 + (1 + η2)2, 1] we arrive
at (B>EB)(η) ≤ 3(B>(diagE)B)(η). In order to prove the lower bound of (14)
we observe that (B>EB)(η) is symmetric positive definite for all η ∈ Q; denoting
by 0 < λ1 ≤ λ2 ≤ λ3 the three eigenvalues of (B>EB)(η), we conclude from the
Gershgorin circle theorem 0 < λ1 ≤ λ2 ≤ λ3 ≤ 68 for all η ∈ Q. Moreover,
a direct calculation shows det(B>EB)(η) = 64. Thus, λ1 ≥ det(B>EB)/λ2

2 ≥
4/289 for all η ∈ Q. Hence for all η ∈ Q

(B>EB)(η) ≥ 4

289
I ≥ 4

289
diag

[
8(1 + η1)2 + 16

48
,
4 + (1 + η2)2

8
, 1

]

≥ 1

3468
(B>(diagE)B)(η).
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2.1 Gauss-Lobatto-Jacobi quadrature

2.1.1 Gauss-Lobatto-Jacobi quadrature in 1D

For α > −1, n ∈ N, the Gauss-Lobatto-Jacobi quadrature formula is given by

GLJ(α,n)(f) :=
n∑

i=0

ω
(α,n)
i f(x

(α,n)
i ) ≈

∫ 1

−1

(1− x)αf(x)dx; (5)

(see, e.g., [Karniadakis and Sherwin, 1999, App. B]): the quadrature nodes x
(α,n)
i ,

i = 0, . . . , n, are the zeros of the polynomial x 7→ (1−x2)P
(α+1,1)
n (x), where P

(α,β)
n

denotes the Jacobi polynomial of degree n with respect to the weight function
(1 − x)α(1 + x)β. The quadrature weights ω

(α,n)
i , i = 0, . . . , n, are positive and

explicit formulas can be found, for example, in [Karniadakis and Sherwin, 1999,
App. B]. We have:
Lemma 2.3. Let Pn be the space of polynomials of degree n. Then for α > −1:

1. For all f ∈ P2n−1 there holds GLJ(α,n)(f) =
∫ 1

−1
f(x)(1− x)αdx.

2. For all f ∈ Pn there holds

∫ 1

−1

f 2(x)(1− x)αdx ≤ GLJα,n(f 2) ≤
(

2 +
α + 1

n

)∫ 1

−1

f 2(x)(1− x)αdx.

Proof. The first assertion is well-known. The second assertion follows by the same
arguments as in the case α = 0, which can be found, for example, in Canuto and
Quarteroni [1982] or [Bernardi and Maday, 1992, Cor. 1.13].

2.1.2 Gauss-Lobatto-Jacobi quadrature on K̂

Using the change of variables formula
∫ bK gdx =

∫
Q(g ◦ D)| detD′|dx, we can

introduce a quadrature formulas such that

GLJQ,n(f) ≈
∫

Q
f(η)| detD′(η)|dη, GLJK̂,n(g) ≈

∫

K̂

g(ξ) dξ

by setting

GLJQ,n(f) := 1/8
n∑

i1,i2,i3=0

ω
(0,n)
i1

ω
(1,n)
i2

ω
(2,n)
i3

f
(
x

(0,n)
i1

, x
(1,n)
i2

, x
(2,n)
i3

)
, (6)

GLJ bK,n(g) := GLJQ,n(g ◦D). (7)

Using standard tensor product arguments one can deduce from the properties of
the quadrature rules GLJα,n and the formula (4) the following result:
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Lemma 2.4. Let 1 ≤ p ≤ q and let û ∈ Qp(Q), v̂ ∈ Q2q−1(Q). Set u := û ◦D−1,
v := v̂ ◦D−1. Then the equalities GLJQ,q(v̂) =

∫
Q v̂| detD′|dΩ and GLJ bK,q(v) =∫

K̂
vdΩ are true and, for C := (2 + 1/p)(2 + 2/p)(2 + 3/p) ≤ 60,

∫

Q
|û|2| detD′|dΩ ≤ GLJQ,q(û2) ≤ C

∫

Q
|û|2| detD′|dΩ,

‖u‖2
L2( bK)

≤ GLJK̂,q(u
2) ≤ C‖u‖2

L2(K̂)
.

2.2 Discrete Stability

The following discrete stability result is the heart of the quadrature error analysis;
its proof is deferred to Section 3.

Theorem 2.5. Let A ∈ C(K̂,R3×3) be pointwise symmetric positive definite,

c ∈ C(K̂). Assume the existence of λmin, λmax, cmin > 0 with

λmin ≤ A(x) ≤ λmax, cmin ≤ c(x)∀x ∈ K̂.

Then for q ≥ p there holds for all u ∈ {u |u ◦D ∈ Q̃p}

GLJ bK,q(∇u · A∇u) ≥ λmin
10404

‖∇u‖2
L2( bK)

≥ λmin
10404λmax

∫

bK,q∇u · A∇udΩ, (8)

GLJ bK,q(cu2) ≥ cmin‖u‖2
L2( bK)

. (9)

2.3 Convergence Analysis of Fully Discrete p-FEM

For the model problem (1) and given mesh T consisting of (curvilinear) tetrahedra

with element maps FK : K̂ → K, we define the discrete bilinear form aq and
right-hand side F q by

aq(u, v) :=
∑

K∈T
GLJK̂,q (((∇u · A∇v)|K ◦ FK)| detF ′K |) ,

F q(u) :=
∑

K∈T
GLJK̂,q (((fu)|K ◦ FK)| detF ′K |) .

We let Sp,10 (T ) := {u ∈ H1
0 (Ω) |u|K ◦ FK ∈ Pp(K̂) ∀K ∈ T } and consider finite

dimensional spaces VN satisfying

Sp,10 (T ) ⊂ VN ⊂ S̃p,10 (T ) := {u ∈ H1
0 (Ω) |u|K ◦ FK ◦D ∈ Q̃p ∀K ∈ T }. (10)

Remark 2.6. By Remark 2.2, choosing VN = Sp,10 (T ) is admissible. Taking VN
larger than Sp,10 (T ) permits adapting the shape functions to the quadrature points
and permits efficient ways to generate the stiffness matrix, Eibner and Melenk
[2006].
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The fully discrete problem is then:

Find uN ∈ VN s.t. aq(uN , v) = F q(v) ∀v ∈ VN . (11)

The discrete stability result Theorem 2.5 for a single element is readily extended
to meshes with several elements and existence and uniqueness of solutions to (11)
follows. An application of Strang’s Lemma then gives error estimates:
Theorem 2.7. Let the mesh T be fixed and the element maps FK be analytic on

K̂. Assume (10) and q ≥ p. Let u solve (1) and uN solve (11). Then there exist
C, b > 0 depending only on Ω, the analytic data A, f of (1), and the analytic
element maps FK such that

‖u− uN‖H1(Ω) ≤ C

(
inf

v∈Sr
0(T )
‖u− v‖H1(Ω) + Cr3e−b(2q+p−r)

)

for arbitrary 1 ≤ r ≤ min{p, 2(q − 1)− p}.

Proof. The proof follows along the lines of [Melenk and Schwab, 1998, Secs. 4.2,
4.3]: Thm. 2.5 enables us to use a Strang lemma, and the resulting consistency
terms can be made exponentially small by the analyticity of A, f , and the FK .

Remark 2.8. It is worth stressing that analyticity of ∂Ω is not required in
Thm. 2.7—only analyticity of the element maps is necessary. Hence, also piece-
wise analytic geometries are covered by Thm. 2.7. The requirement that A, f be
analytic can be relaxed to the condition that A|K, f |K be analytic on K for all
elements.

We note that choosing r = bp/2c in Thm. 2.7 implies that the rate of convergence
of the fully discrete p-FEM is typically the same as the Galerkin p-FEM in which
all quadratures are performed exactly:
Corollary 2.9. Assume the hypotheses of Theorem 2.7. Then:

1. If infv∈Sp,1
0 (T ) ‖u− v‖H1(Ω) = O(p−α), then ‖u− uN‖H1(Ω) = O(p−α).

2. If infv∈Sp,1
0 (T ) ‖u−v‖H1(Ω) = O(e−bp) for some b > 0, then there exists b′ > 0

such that ‖u− uN‖H1(Ω) = O(e−b
′p).

3 Proof of Theorem 2.5

The heart of the proof of Theorem 2.5 consists in the assertion that for the Duffy
transformation D, the matrix (D′)−1(D′)−> is equivalent to its diagonal. To that
end, we recall for square matrices A, B ∈ Rn×n the standard notation A ≤ B
which expresses v>Av ≤ v>Bv for all v ∈ Rn. We have:
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