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Abstract

A practical procedure based on implicit time integration methods ap-
plied to the differential Lyapunov equations arising in the square root
balanced truncation method is presented. The application of high or-
der time integrators results in indefinite right-hand sides of the alge-
braic Lyapunov equations that have to be solved within every time step.
Therefore, classical methods exploiting the inherent low-rank structure
often observed for practical applications end up in complex data and
arithmetic. Avoiding the additional effort treating complex quantities,
a symmetric indefinite factorization of both the right-hand side and the
solution of the differential Lyapunov equations is applied.
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1 Introduction

Consider a linear time-varying (LTV) control system

E(t)ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0,
y(t) = C(t)x(t),

(1)

where E(t), A(t) ∈ Rn×n, B(t) ∈ Rn×m and C(t) ∈ Rp×n, x0 ∈ Rn is the initial
condition, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input, and y(t) ∈ Rp

is the output. The system matrices E(t), A(t), B(t) and C(t) are assumed to be
continuous and bounded, and E(t) is nonsingular for all t ∈ [0, T ]. Furthermore,
without loss of generality, we may assume that x0 = 0. It is also possible to con-
sider second-order systems that can be reformulated to systems of the form (1),
see, e.g., [2, 22] and references therein.

In model order reduction, we aim to find a reduced-order model

Ê(t) ˙̂x(t) = Â(t)x̂(t) + B̂(t)u(t), x̂(0) = x̂0,

ŷ(t) = Ĉ(t)x̂(t),
(2)

with Ê(t), Â(t) ∈ Rr×r, B̂(t) ∈ Rr×m and Ĉ(t) ∈ Rp×r such that r � n and
the approximation error ‖ŷ − y‖ is small in an appropriately chosen norm for all
admissible inputs.

2 Balanced truncation for LTV systems

In this section, we briefly review a balanced truncation model order reduction
method for LTV systems developed in [23, 24, 26]. This method relies on the
reachability and observability Gramians P (t) and Q(t) defined for the LTV sys-
tem (1) as the solutions of the differential Lyapunov equations (DLEs)

E(t)Ṗ (t)E(t)T = A(t)P (t)E(t)T +E(t)P (t)A(t)T +B(t)B(t)T , P (0) = 0,
(3)

−E(t)T Q̇(t)E(t)= A(t)TQ(t)E(t)+E(t)TQ(t)A(t) + C(t)TC(t), Q(T ) = 0.
(4)

The initial and final conditions are directly given from the alternate integral
representations

P (t) =

∫ t

0

Φ(t, τ)B(τ)B(τ)TΦ(t, τ)Tdτ,

Q(t) =

∫ T

t

Φ(τ, t)TC(τ)TC(τ)Φ(τ, t)dτ
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of the time-varying system Gramians, where Φ(t, τ) is the transition matrix of the
system, see, e.g., [16, Chapter 9.2]. Note that P (t) and Q(t) are both symmetric
and positive semidefinite for all t ∈ [0, T ]. Then the product P (t)E(t)TQ(t)E(t)
has real nonnegative eigenvalues λi

(
P (t)E(t)TQ(t)E(t)

)
. The Hankel singular

values (HSV) of system (1) are defined as

σi(t) =
√
λi
(
P (t)E(t)TQ(t)E(t)

)
, i = 1, . . . , n .

We assume that the Hankel singular values are ordered decreasingly, i.e.,

σ1(t) ≥ · · · ≥ σn(t), t ∈ [0, T ].

The LTV system (1) is called balanced if P (t) = Q(t) = diag(σ1(t), . . . , σn(t)) for
all t ∈ [0, T ]. Under certain conditions on system (1), see [24, 26], one can find
nonsingular system transformation matrices Wb(t) and Zb(t) such that Zb(t) is
continuously differentiable and the transformed system

W T
b (t)E(t)Zb(t)ẋb(t) = W T

b (t)
(
A(t)Zb(t)−E(t)Żb(t)

)
xb(t)+W T

b (t)B(t)u(t),
y(t) = C(t)Zb(t)xb(t)

(5)

is balanced. Then a reduced-order model (2) can be determined by truncating the
states of (5) corresponding to the small Hankel singular values. In practice, we do
not need to construct the balancing transformations Wb(t) and Zb(t) explicitly.
Instead, the reduced-order model (2) can be computed by Algorithm 1, which is
a generalization of a square root balanced truncation method developed in [18, 25]
for linear time-invariant systems.

3 Solving differential Lyapunov equations

In this section, we discuss the numerical solution of the DLE (3). The dual
DLE (4) has to be solved backward in time. Substituting t with T − t and
introducing the matrices ET (t) = E(T − t), AT (t) = A(T − t), BT (t) = B(T − t),
CT (t) = C(T − t) and QT (t) = Q(T − t), we obtain the DLE

ET
T (t)Q̇T (t)ET (t) = ATT (t)QT (t)ET (t) + ET

T (t)QT (t)AT (t) + CT
T (t)CT (t),

QT (0) = 0.
(7)

This initial value problem can then be solved analogously to (3). Note that
the DLE can be considered as a special case of the differential Riccati equation
(DRE). Therefore, any integration method developed for the DREs [6, 9, 11, 20]
can also be employed for the DLEs. Here, we consider the backward differentia-
tion formulas (BDF) and the Rosenbrock methods only.
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Algorithm 1 Balanced truncation for LTV systems.

Require:
(
E(t), A(t), B(t), C(t)

)
Ensure: a reduced-order system

(
Ê(t), Â(t), B̂(t), Ĉ(t)

)
1: Compute the Cholesky factorsR(t) and L(t) of the reachability and observabi-

lity Gramians P (t) = R(t)RT(t) and Q(t) = L(t)LT(t) satisfying the DLEs (3)
and (4), respectively.

2: Compute the singular value decomposition

RT(t)ET(t)L(t) = [U1(t), U2(t) ]

[
Σ1(t)

Σ2(t)

]
[V1(t), V2(t) ]T ,

where the matrices [U1(t), U2(t) ] and [V1(t), V2(t) ] have orthonormal
columns, Σ1(t) = diag(σ1(t), . . . , σr(t)) and Σ2(t) = diag(σr+1(t), . . . , σn(t)).

3: Compute the reduced-order system (2) with

Ê(t) = W T(t)E(t)Z(t), Â(t) = W T(t)
(
AZ(t)− E(t)Ż(t)

)
,

B̂(t) = W T(t)B(t), Ĉ(t) = C(t)Z(t),
(6)

where W (t) = L(t)V1(t)Σ
−1/2
1 (t) and Z(t) = R(t)U1(t)Σ

−1/2
1 (t).

In the remainder, as a representative of the DLEs (3) and (7), we consider the
DLE

E(t)Ẋ(t)ET(t) = F (t,X(t)), X(0) = 0, (8)

where

F (t,X(t)) = A(t)X(t)ET(t) + E(t)X(t)AT(t) +N(t)NT(t)

with E(t), A(t) as before and N(t) ∈ Rn×ñ(t), ñ(t) � n for all t ∈ [0, T ]. Let
τk be the time step size and let t0 = 0 < t1 < . . . < tq = T with q ∈ N be
a discretization of the time interval [0, T ] with tk+1 = tk + τk, k = 0, . . . , q − 1.

3.1 Backward Differentiation Formulas

The s-step BDF method applied to equation (8) has the form

E(tk)
( s∑
j=0

αjXk−j
)
ET(tk) = τkβF (tk, Xk),

where Xk is an approximation to X(tk), and the coefficients αj and β are given
in Table 1. These coefficients are chosen such that the s-step BDF method has
the maximum possible order s. Setting Ek = E(tk), Ak = A(tk) and Nk = N(tk)

3



and assuming that X0, . . . , Xk−1 are already known, the matrix Xk can then be
determined from the algebraic Lyapunov equation (ALE)

ÃkXkE
T
k + EkXkÃ

T
k = −τkβNkN

T
k + Ek

( s∑
j=1

αjXk−j
)
ET
k (9)

with Ãk = τkβAk− α0

2
Ek. If the pencil λEk−Ak is stable, i.e., all its eigenvalues

have negative real part, then λEk − Ãk is stable too. In this case, the ALE (9) is
uniquely solvable. For large-scale problems, it is recommended to never compute
the full solutions Xk, k = 1, . . . , q. Since in practice the solutions Xk have often
numerically low ranks, low-rank solution methods [3, 4, 19, 21] should be applied
to the ALE (9). Note that for s ≥ 2 some of the coefficients αj, j = 1, . . . , s, are
positive, and hence the right-hand side (rhs) of (9) may become indefinite. If the
matrices Xj, j = 0, . . . , k − 1, admit a so-called low-rank symmetric indefinite
factorization Xj ≈ LjDjL

T
j with Lj ∈ Rn×`j , symmetric Dj ∈ R`j×`j and `j � n,

then the rhs of the ALE (9) can be approximated by

−τkβNkN
T
k + Ek

( s∑
j=1

αjXk−j
)
ET
k ≈ −GkSkG

T
k ,

where the factors Gk and Sk are given by

Gk =
[
Nk, EkLk−1, . . . , EkLk−s

]
,

Sk =


τkβIñk

−α1Dk−1

. . .

−αsDk−s

 . (10)

In this case, an approximate solution of the ALE (9) can be determined in the
factorized form Xk ≈ LkDkL

T
k using the LDLT -type ADI or Krylov method

presented in [5, 17], respectively. Note that the application of the symmetric
indefinite factorization based solvers is recommended in order to avoid complex
data and arithmetic which is introduced by classical low-rank factorization of
the indefinite rhs. Since the rhs low-rank factors will increase within each time
integration step, it is desirable to perform a column compression as proposed in [8]
in order to reduce the number of columns of these factors and, as a consequence,
to reduce the computational complexity of solving the ALE (9).

3.2 Rosenbrock methods

Following the descriptions for DREs in [6, 17, 20], a general s-stage Rosenbrock
method, as defined in [10, Chapter 9], applied to the DLE (8) with a constant
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s β α0 α1 α2 α3 α4 α5 α6

1 1 1 -1
2 2 3 -4 1
3 6 11 -18 9 -2
4 12 25 -48 36 -16 3
5 60 137 -300 300 -200 75 -12
6 60 147 -360 450 -400 225 -72 10

Table 1: Coefficients of the s-step BDF method.

mass matrix E(t) ≡ E, reads

Xk+1 = Xk +
s∑
i=1

biKi,

AkiKiE
T + EKiA

T
ki=−F

(
tk + αiτk, Xk+

i−1∑
j=1

aijKj

)
−

i−1∑
j=1

cij
τk
EKjE

T .

(11)

In the literature many authors, see e.g., [14, Section IV.7], start their expla-
nations for autonomous ODE systems. Then a general Rosenbrock scheme for
non-autonomous ODEs is based on an autonomization and thus yields

Xk+1 = Xk +
s∑
i=1

biKi,

AkiKiE
T + EKiA

T
ki=−F

(
tk + αiτk, Xk+

i−1∑
j=1

aijKj

)
−

i−1∑
j=1

cij
τk
EKjE

T − γiτkFtk .

In both cases Aki = A(tk)− 1
2γiiτk

E and bi, αi, aij, cij, γi, and γii are the method
coefficients. In the latter scheme, defined for non-autonomous ODEs being au-
tonomized, Ftk denotes the time derivative ∂F

∂t
(tk, X(tk)) of F at (tk, X(tk)). This

term may be disadvantageous for the stability of the method, see [10, Chapter
9.5] for details. Therefore, in the remainder, we neglect the time derivative Ftk
and restrict our considerations to scheme (11) defined for non-autonomous ODEs.

3.2.1 1-stage Rosenbrock method

The 1-stage Rosenbrock scheme

Xk+1 = Xk +K1,

Ak1K1E
T + EK1A

T
k1 = −F

(
tk, Xk

)
(12)

5



with b1 = γ11 = 1 and α1 = 0 represents the linear implicit Euler scheme of first
order. Substituting K1 = Xk+1 −Xk into the ALE (12), we obtain the ALE

Ak1Xk+1E
T + EXk+1A

T
ki = −NkN

T
k −

1

τk
EXkE

T . (13)

Note that starting with X0 = 0, the solution Xk+1, k = 0, . . . , q − 1, of the
ALE (13) is symmetric, positive semidefinite provided the pencil λE − Ak1 is
stable. Assuming the low-rank factorization Xk ≈ YkY

T
k , the rhs of the ALE (13)

can be written as

−NkN
T
k −

1

τk
EXkE

T ≈ −
[
Nk,

1
√
τk
EYk

] [
Nk,

1
√
τk
EYk

]T
.

Therefore, the classical low-rank ADI or (rational) Krylov subspace method [3, 12]
can be used for computing a low-rank solution of the ALE (13).

3.2.2 2-stage Rosenbrock method

Based on the formulations for the DRE in [6, 20], the 2-stage Rosenbrock scheme
from [27] applied to the DLE (8) is given by

Xk+1 = Xk +
3

2
K1 +

1

2
K2,

ÃkK1E
T + EK1Ã

T
k = −F (tk, Xk) (14)

ÃkK2E
T + EK2Ã

T
k = −F (tk + τk, Xk +K1) +

2

τk
EK1E

T (15)

with Ãk = γA(tk) − 1
2τk
E. Now, we assume that the solutions at the previous

time steps are given by Xk ≈ LkDkL
T
k . Therefore, for the rhs of the first stage

equation (14), we obtain the low-rank symmetric indefinite factorization

F (tk, Xk) = NkN
T
k + AkXkE

T + EXkA
T
k ≈ Gk1Sk1G

T
k1

with the factors

Gk1 =
[
Nk, AkLk, ELk

]
, Sk1 =

Iñk

Dk

Dk

 .
Then the solutionK1 of (14) can be determined in a factorized formK1 ≈ R1M1R

T
1

with R1 ∈ Rn×r1 and M1 ∈ Rr1×r1 . In this case, the rhs of the second stage equa-
tion (15) can be written as

F (tk + τk, Xk +K1)−
2

τk
EK1E

T = Nk+1N
T
k+1 + Ak+1XkE

T + EXkA
T
k+1

+ Ak+1K1E
T + EK1A

T
k+1 −

2

τk
EK1E

T

≈ Gk2Sk2G
T
k2

6



with

Gk2 =
[
Nk+1, Ak+1Lk, ELk, Ak+1R1, ER1

]
,

Sk2 =


Iñk+1

Dk

Dk

M1

M1 − 2
τk
M1

 . (16)

Therefore, the solution K2 of (15) can be computed in the form K2 ≈ R2M2R
T
2

with R2 ∈ Rn×r2 and M2 ∈ Rr2×r2 yielding a low-rank symmetric indefinite
factorization Xk+1 ≈ Lk+1Dk+1L

T
k+1 with

Lk+1 =
[
Lk, R1, R2

]
, Dk+1 =


Dk

3

2
M1

1

2
M2

 .
The Rosenbrock methods of higher order can be extended to the DLE (8) in
a similar way.

4 Solving the reduced-order system

In this section, we present two approaches for solving the reduced-order model (2), (6)
using the BDF methods.

Approach I: Approximating the derivatives of the reduced state x̂(t) and the
projection matrix Z(t) at t = tk by

˙̂x(tk) ≈
1

τkβ

s∑
j=0

αjx̂k−j, Ż(tk) ≈
1

τkβ

s∑
j=0

αjZk−j,

where x̂j is an approximation to x̂(tj), Zj = Z(tj) and αj, β are given in Table 1,
we obtain from (2), (6) that

Êk
1

τkβ

s∑
j=0

αjx̂k−j =
(
Âk −

1

τkβ
W T
k Ek

s∑
j=0

αjZk−j

)
x̂k + B̂kuk

with Êk = Ê(tk), Âk = Â(tk), B̂k = B̂(tk), Wk = W (tk), and uk = u(tk). Then
the approximate solution x̂k at time tk is determined by solving the linear system(

2α0Êk − τkβÂk +W T
k Ek

s∑
j=1

αjZk−j

)
x̂k = −Êk

s∑
j=1

αjx̂k−j + τkβB̂kuk.

7



For s = 1, this formula simplifies to the implicit Euler method(
2Êk − τkÂk −W T

k EkZk−1

)
x̂k = Êkx̂k−1 + τkB̂kuk. (17)

Note that for Approach I, the dimension of the reduced-order systems needs to be
equal over the entire time horizon. This directly leads to the need of a strategy
to decide for a fixed reduced dimension valid for all time instances.

Approach II: An alternative approach for solving the reduced-order model
(2), (6) is based on an approximation of the derivative

d

dt

(
Z(tk)x̂(tk)

)
≈ 1

τkβ

s∑
j=0

αjZk−jx̂k−j

instead of the single derivatives ˙̂x(t) and Ż(t) separately. This allows us to
vary the system dimension r of the reduced-order model at every time step.
Substituting this approximation into the reduced-order model

W (t)TE(t)
d

dt

(
Z(t)x̂(t)

)
= W (t)TA(t)Z(t)x̂(t) +W (t)TB(t)u(t), (18)

which is equivalent to (2), (6), yields the linear system

(α0Êk − τkβÂk)x̂k = −W T
k Ek

s∑
j=1

αjZk−jx̂k−j + τkβB̂kuk.

Here, the expression W T
k Ek

∑s
j=1 αjZk−jx̂k−j realizes the possible change of sys-

tem dimension by implicitly lifting the previous time solutions x̂k−j with Zk−j to
the full-order space and then again reducing the state dimension with W T

k Ek.

Again, for s = 1, we have the implicit Euler scheme

(Êk − τkÂk)x̂k = W T
k EkZk−1x̂k−1 + τkB̂kuk. (19)

Note that the reduced-order model (18) can also be solved using the Rosen-
brock method, whereas the application of this method to the reduced-order model
(2), (6) is more involved. Furthermore, we have observed in various experiments
that numerical results for Approach I are less accurate than for Approach II.
Therefore, in the following section, the reduced-order models will be solved using
Approach II only.

8



5 Numerical experiments

In this section, we present some numerical experiments for balanced truncation
model reduction for LTV systems. The reduced-order models are determined by
using the BDF methods of order 1, 2, 3, and 6 and the Rosenbrock schemes of
order 1 and 2 for solving the DLEs (3) and (4) within the balanced truncation
square root method presented in Algorithm 1. Then, the soltuions to the full
order system (1) and the reduced-order model (18) are computed using the linear
implicit Euler method (19) given in Approach II.

5.1 Example 1

Consider the 1D heat equation

cρ
∂θ

∂t
(t, z) = κ

∂2θ

∂z2
(t, z) + δ(z − ξ(t))u(t), (t, z) ∈ (0, T )× (0, `),

θ(t, 0) = 0, θ(t, `) = 0, t ∈ (0, T ),

θ(0, z) = 0, z ∈ (0, `),

(20)

with a moving heat source which describes the heat transfer along a beam of
length `. Here, θ(t, z) is the temperature distribution, c, ρ and κ are the specific
heat capacity, the mass density and the heat conductivity, respectively. Fur-
thermore, δ(z) denotes the Dirac delta function, and ξ(t) and u(t) describe, re-
spectively, the position and the intensity of the heat source at time t. A finite
element discretization of (20) with n+ 2 equidistant grid points leads to system
(1) with the time-invariant state matrices E,A ∈ Rn×n and the time-varying in-
put matrix B(t) ∈ Rn. Taking the output matrix as C(t) = B(t)T corresponds
to the observation of the temperature at the same position as the heat source.
Since, E = ET , A = AT , B = CT , and the initial condition of the reachability
DLE (3) and the final condition of the observability DLE (4) are also equal, we
obtain P (t) = Q(T − t) for t ∈ [0, T ]. Thus, we only have to solve one DLE in
Step 1 of Algorithm 1. We consider a system dimension of n = 2500 and the time
horizon t ∈ [0, 100]s with a time step size τ = 1s. The heat source is chosen to
be u(t) = 50 and ξ(t) = (`t)/T . In this example, the truncation tolerance for the
Hankel singular values is 1e-10.

Figure 1 shows the dimensions of the reduced-order models corresponding to
solutions of the DLEs based on the different DLE solvers (a), the Hankel singular
values σ1, σ3, and σ6 for all integrators (b) and the decay of the Hankel singular
values on the entire time horizon (c), respectively. The system outputs of the full
and the reduced-order models, as well as the related relative errors are depicted
in Figures 1(d) and 1(e). From these figures one observes that all considered

9
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Figure 1: Heated beam: (a) dimensions of the reduced state at different times,
(b) the Hankel singular values σ1, σ3, and σ6 for the BDF methods of
order 1, 2, 3, and 6 and the Rosenbrock schemes of order 1 and 2, (c)
Hankel singular values for the BDF method of order 1, (d) the outputs
of the full and the reduced-order models, and (e) relative errors in the
output.10



time integrators show basically the same results with slight advantages for the
BDF methods in particular in the time range of t ∈ [20, 80]. The behavior of the
Hankel singular values appears to be identical for all integration methods, see
Figure 1(b). This is, of course, expected, as long as the time integrators find the
“correct” solution to the DLEs (3) and (4).

5.2 Example 2

The second example describes a heat transfer model originating from an optimal
cooling problem for the steel profile given in [7]. In order to obtain an LTV
model, we have introduced an artificial time variability to the heat conduction
coefficient entering the system matrix A. As a result, we have the system (1)
with constant matrices E,B,C and a time-varying system matrix A(t). This
system has dimension n = 1357, m = 7 inputs and p = 6 outputs. The solution
is computed on the time interval [0, 720]s with a time integration step size of
τ = 3.6s and an input u(t) = 50 ◦C describing the heating of the steel profile.
The Hankel singular values were truncated at a tolerance of 1e-5. As for the
first example, Figure 2 shows the reduced orders obtained by the different DLE
solvers (a), the Hankel singular values σ1, σ3, and σ6 (b), and the Hankel singular
values decay (c). Further, Figures 2(d) and 2(e) depict the output trajectories of
the full and the reduced-order models, as well as the associated relative errors,
respectively. In terms of their quality, these results are similar to those in the
example above. One can see that the Hankel singular values are again almost in-
variant with respect to the integration method used to compute the time-varying
system Gramians.

5.3 Example 3

In the third example, we consider the Burgers equation

ẋ(t, z) = ν
∂2

∂z2
x(t, z)− x(t, z)

∂

∂z
x(t, z) + u(t, z), (t, z) ∈ (0, T )× (0, 1),

x(t, 0) = 0, x(t, 1) = 0, t ∈ (0, T ),

x(0, z) = x0(z), z ∈ (0, 1).

(21)

A spatial discretization using finite differences yields a non-linear model equation.
In order to obtain a linear model a linearization around a pre-computed reference

11
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Figure 2: Steel profile: (a) dimensions of the reduced state at different times, (b)
the Hankel singular values σ1, σ3, and σ6 for the BDF methods of order
1, 2, 3, and 6 and the Rosenbrock schemes of order 1 and 2, (c) Hankel
singular values for the BDF method of order 1, (d) the outputs of the
full and the reduced-order models, and (e) relative errors in the output.
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Figure 3: Burgers equation: (a) dimensions of the reduced state at different times,
(b) the Hankel singular values σ1, σ3, and σ6 for the BDF methods of
order 1, 2, 3, and 6 and the Rosenbrock schemes of order 1 and 2, (c)
Hankel singular values for the BDF method of order 1, (d) the outputs
of the full and the reduced-order models, and (e) relative errors in the
output.
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trajectory xref is applied. The resulting linear time-varying model reads

Eẋ(t) = A(t) (x(t)− xref (t)) +Bu(t) + f(t, xref (t))

= A(t)x(t) +Bu(t) + f̃(t, xref (t)),

y = Cx(t)

(22)

with E = In and a time dependency given solely in A(t). For details on the
linearization and discretization the authors refer to [15] and the references given
therein. We consider a single-input-single-output system of dimension n = 2 500.
The matrix B ∈ Rn is constructed in a way such that the input acts on a grid
region of 1% of the grid nodes around the middle of the spatial domain (0, 1).
That is, Bi = 1 for i = floor(n

2
)± floor(0.01n) and zero, otherwise. Here, floor

denotes the MATLAB® built-in function that rounds the argument to the near-
est integer value towards zero. The matrix C ∈ R1×n observes the grid point 5
spatial steps to the right of the middle point, i.e., Ci = 1 for i = floor(n

2
) + 5 and

zero otherwise.

Note that the inhomogeneity f̃(t, xref ) in (22) does not affect the model reduc-
tion procedure. Following the procedure in [1] for tracking control based on a
common trick to handle inhomogeneities presented in e.g., [13], system (22) can
be reformulated into a state-space system (1) while the system matrices do not
change.

The model is simulated on the time horizon [0, 3]s with time step size τ = (2e-
2)s. The input is chosen to be u(t) = 2(sin(2πt) + 1), where u(t) ∈ [0, 4] for
t ∈ [0, T ]. The truncation tolerance for the HSVs was 1e-7. Analogously to the
previous examples, Figure 3 depicts the dimensions of the reduced order models
with respect to the DLE solution methods (a), the Hankel singular values σ1, σ3,
and σ6 (b), the HSV decay over time (c), the output trajectories of the full and
the reduced-order models (d), as well as the corresponding relative errors (e).
For some reason using the first-order Rosenbrock method results in an erroneous
behavior of the Hankel singular values. This might be the explanation for the
slightly worse fit of the corresponding reduced-order output and needs to be
investigated in the future.

6 Conclusion

In the paper, we have presented the BDF and Rosenbrock time integration me-
thods for the solution of the differential Lyapunov equations arising in the bal-
anced truncation square root method for linear time-varying dynamical systems.
Using a low-rank symmetric indefinite factorization for the solution and the in-
definite right-hand sides of the algebraic Lyapunov equations, that have to be

14



solved inside the time integrators, complex data and arithmetic can be avoided.
The numerical results show that the proposed integration methods yield satis-
factory approximation with respect to the relative errors in the system outputs
of the full and the reduced-order models. An interesting issue that needs to be
discussed in the future is the initial and final condition of the reachability and
observability Gramians, respectively. These conditions force the reduced state
x̂(t) to be zero at the temporal boundaries, i.e., x̂(0) = x̂(T ) = 0, even if the full
order state fulfills x(0) 6= 0 and x(T ) 6= 0. For practical computations it seems
to be necessary to embed the time horizon [0, T ] of interest in a sufficiently large
interval [0− δ, T + δ] with δ > 0.
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