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Abstract
Reduced Hsieh–Clough–Tocher elements are triangular C1-elements with
only nine degrees of freedom. Simple formulas for the basis functions
of reduced Hsieh–Clough–Tocher elements based on the edge vectors of
the triangle have been given recently for a barycentric splitting. We
generalise these formulas to the case of an arbitrary splitting point.
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1 Introduction

Some relevant problems such as the biharmonic problem or the plate problem
can be described by a partial differential equation of fourth order. The weak
formulation of any such problem features functions from the Sobolev space H2.
Thus, the functions themselves as well as their first and second generalised de-
rivatives have to be square-integrable over the considered domain. The natural
approach to solving such problems numerically by the finite element method is to
use conforming finite elements. This means that the FE basis functions belong
to a finite-dimensional subspace of the appropriate space H2. This is fulfilled for
FE basis functions which are globally C1-continuous.

One example of C1-continuous elements is the reduced Hsieh–Clough–Tocher
(rHCT) element, which goes back to [1]. It is a triangular element with piece-
wise cubic shape functions defined on three subtriangles. The shape functions
are constructed in such a way that the resulting global basis functions are C1-
continuous. The element uses the values of the function and both first derivatives
at all three vertices as degrees of freedom, which sums up to nine in total. Global
C1-continuity is achieved by inner C1-continuity and the condition that the re-
striction of the normal derivative of any shape function to any element edge has
to be linear with respect to the local line coordinate. The splitting into three
subtriangles may be based on an arbitrary interior point, which is called splitting
point.

There exist several approaches to the definition of rHCT shape functions. The
method given in [2] constructs the final functions with the desired properties from
basic master functions defined over the three subtriangles in several steps. The
goal of the current article is to generalise the formulas of [2], which are given for
a splitting based on the barycenter of the original triangle, to a splitting based
on an arbitrary interior point. We closely follow the methods used in [2] while
making the necessary changes. Formulas for an arbitrary splitting point have
already been given in [3] based on barycentric coordinates and Bernstein–Bezier
polynomials. The method presented here has the advantage of a relatively cheap
implementation.

2 Basic definitions

Consider a split of the original triangle T with the vertices
aj = [xj, yj]T, j = 1, 2, 3

based on an arbitrary interior point
as = [xs, ys]T ∈ intT.
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Figure 1: Triangle T with splitting

The three shape functions that belong to node aj of the triangle T are written as
a row vector

Ψj(a) = [ψ(0)
j (a), ψ(1)

j (a), ψ(2)
j (a)]

and the full vector of all nine shape functions takes the form

Ψ(a) = [Ψ1(a), Ψ2(a), Ψ3(a)]

at an arbitrary point a = [x, y]T. Shape functions with superscript (0) are related
to the function value at the corresponding node and those with superscripts (1)
and (2) are related to the function derivative with respect to x and y at the
corresponding node.

In order to shorten the following expressions, we introduce some abbreviations to
be used throughout the article. We use xi,j and yi,j to denote xi − xj and yi − yj,
respectively. This implies xi,j = −xj,i and yi,j = −yj,i. Furthermore, all indices
k, k − 1, k + 1 run from 1 to 3 and k ± 1 is always understood implicitly as

k ± 1 7→
(
(k ± 1− 1) mod 3

)
+ 1

to stay in the admissible index set {1, 2, 3}. Formulas that use k as an index are
valid for k = 1, 2, 3.

The outer edges of the element are denoted by Ek and the inner edges by fk.
Their orientation is as given in Figure 1, which leads to the formulas

Ek =
[
xk−1,k+1
yk−1,k+1

]
and fk =

[
xk,s
yk,s

]
.

The subtriangle containing Ek is denoted Tk. We define normals of the outer and
inner edges with the same length by

Nk = REk, nk = Rfk
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with the rotation matrix
R =

[
0 −1
1 0

]
.

3 Mapping to the reference triangle

Let each subtriangle Tk be mapped onto the reference triangle

T̂ = {[x̂, ŷ]T ∈ R2 : x̂ ≥ 0, ŷ ≥ 0, x̂+ ŷ ≤ 1}. (1)

The subtriangle Tk has the edges Ek, fk+1, and fk−1, see Figure 1. Let the splitting
point as be mapped to âs = [0, 0]T, the edge fk+1 to the x̂-axis and fk−1 to the
ŷ-axis.

Then the mapping takes the form

a = χTk
(â) = Jk â+ as, â = χ̂Tk

(a) = χ−1
Tk

(a) = J−1
k (a− as) for a ∈ Tk (2)

with the Jacobians

Jk = [fk+1
... fk−1] =

[
xk+1,s xk−1,s
yk+1,s yk−1,s

]
.

Their determinants are abbreviated as

µk = det Jk = xk+1,syk−1,s − xk−1,syk+1,s.

We now give two auxiliary relations that are used in the following sections. The
transposed inverse of a Jacobian can be written as

J−T
k = 1

µk
[−nk−1

... nk+1]. (3)

Furthermore, it holds

µkyk,s + µk+1yk+1,s + µk−1yk−1,s = 0,
µkxk,s + µk+1xk+1,s + µk−1xk−1,s = 0,

(4)

which can be shown simply by expanding terms.

In the following section, the shape functions are formulated with the help of basic
functions given on the reference triangle (1). Each of the three subtriangles is
mapped to the reference triangle by an affine linear mapping (2) like illustrated
in Figure 2.
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4 Construction of the rHCT shape functions

The final shape functions are constructed to fulfil three propositions.

1. The functions Ψ are cubic polynomials in each subtriangle, are continuous
within T , and fulfil

Ψj(ai) = [1, 0, 0] δij,

∇Ψj(ai) =
[
0 1 0
0 0 1

]
δij ∀ i, j = 1, 2, 3

with the Kronecker delta

δij =

1 i = j,

0 i 6= j.

2. The normal derivatives of all functions are linear along outer element edges
with respect to the local line coordinate.

3. The functions are C1-continuous inside T .

The ∇ symbol denotes the gradient operator

∇ =
[
∂

∂x
,
∂

∂y

]T

.

The final shape functions are defined with the help of basic functions and some
transformations in order to assure the above propositions in the following subsec-
tions. The propositions guarantee the global C1-continuity of the ansatz functions.
In the following subsections, the same methods as in [2] are applied step by step
to the more general setting here.

a1

a2
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as

E3

E1

E2

f1
f2

f3

T3

T2
T1

ŷ

0 â0 x̂

1
â2

1
â1

y

x

a = χT1(â)

Figure 2: Mapping between the reference triangle and T1
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4.1 The basic functions

Denote the vertices of the reference triangle T̂ by

â0 = âs =
[
0
0

]
, â1 =

[
1
0

]
, â1 =

[
0
1

]
.

The space of cubic polynomials over T̂ can be spanned by the ten functions

Φ̂0(â) = (1− x̂− ŷ)2 [1 + 2x̂+ 2ŷ, x̂, ŷ],
Φ̂1(â) = x̂2 [3− 2x̂, x̂− 1, ŷ],
Φ̂2(â) = ŷ2 [3− 2ŷ, x̂, ŷ − 1],
β̂(â) = x̂ŷ(1− x̂− ŷ).

(5)

They fulfil

β̂(âi) = 0 ∀ i = 0, 1, 2,
Φ̂j(âi) = [1, 0, 0] δij,

∇̂Φ̂j(âi) =
[
0 1 0
0 0 1

]
δij ∀ i, j = 0, 1, 2

with the formal derivatives with respect to the reference coordinates

∇̂ =
[
∂

∂x̂
,
∂

∂ŷ

]T

.

This property is similar to the desired Proposition 1, but uses ∇̂ instead of ∇.
The function β̂ is the cubic bubble function over T̂ .

4.2 Ensuring Proposition 1

We consider the basic functions Φ̂1 and Φ̂2 mapped to each subtriangle and scale
them in order to fulfil Proposition 1. Let the 3× 3 matrix

Hk =

 1 0 0
0
0 JT

k


for each k = 1, 2, 3. Define the initial basis Φinit

j , j = 1, 2, 3 within each subtriangle
Tk by

Φinit
k+1|Tk

(x̂) = Φ̂1(x̂)Hk,

Φinit
k−1|Tk

(x̂) = Φ̂2(x̂)Hk;

5



Φinit
k vanishes on Tk. In summary, we have the 9 initial basis functions Φinit

j , j =
1, 2, 3. The support of the three initial basis functions in Φinit

j consists only of the
two triangles Tj+1 and Tj−1. One easily checks that Proposition 1 is fulfilled. For
example, the gradient in Tk is transformed by

∇ = J−T
k ∇̂

and it holds

∇Φinit
k+1|Tk

(χ̂Tk
(ak+1)) = J−T

k

(
∇̂Φ̂1([1, 0]T)

)
Hk

= J−T
k

[
0 1 0
0 0 1

]
Hk

=
[
0 1 0
0 0 1

]

within Tk.

4.3 Ensuring Proposition 2

In each subtriangle, we add multiples of the bubble function β̂ mapped to this
subtriangle to fulfill Proposition 2. This does not interfere with Proposition 1
because the bubble function and its first derivatives are zero at all reference
vertices.

With special chosen vectors bjk ∈ R3, let

Φj|Tk
(x̂) = Φinit

j |Tk
(x̂) + β̂(x̂) (bjk)T

within Tk for j = k + 1 and j = k− 1. The vectors bk+1
k and bk−1

k are constructed
such that the normal derivatives along outer edges Ek

∂

∂Nk

Φj|Tk
= ∂

∂Nk

Φinit
j |Tk

+ ∂

∂Nk

β̂ (bjk)T

are linear along the edge. The edge Ek is mapped to [ŝ, 1 − ŝ]T ∈ T̂ , s ∈ [0, 1].
This fact and the auxiliary equation

nk−1 − nk+1 = R(fk−1 − fk+1) = REk = Nk
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yield
∂

∂Nk

β̂([ŝ, 1− ŝ]T) = NT
k J
−T
k

(
∇̂β̂([ŝ, 1− ŝ]T)

)
= NT

k J
−T
k

[
−1
−1

]
ŝ(1− ŝ)

= NT
k

1
µk

(−nk+1 + nk−1) ŝ(1− ŝ)
= 1

µk
NT
k Nk ŝ(1− ŝ)

= 1
µk
|Ek|2 ŝ(1− ŝ)

for the bubble function part and
∂

∂Nk

Φinit
k+1|Tk

([ŝ, 1− ŝ]T) = NT
k J
−T
k

(
∇̂Φ̂1([ŝ, 1− ŝ]T)

)
Hk

for the initial basis function part in the case j = k + 1. The matrix ∇̂Φ̂1 can be
calculated as

∇̂Φ̂1([ŝ, 1− ŝ]T) =
[
6 −3 2
0 0 −1

]
ŝ(1− ŝ) +

[
0 1 0
0 0 1

]
(1− ŝ).

Hence, the desired linear behaviour of Φk+1 is obtained for

(bk+1
k )T = − µk

|Ek|2
NT
k J
−T
k

[
6 −3 2
0 0 1

]
Hk

= [6ET
k fk−1

... 3µknT
k + 2fT

k−1]/|Ek|2.

For j = k − 1, one analogously obtains

(bk−1
k )T = [−6ET

k fk+1
... 3µknT

k + 2fT
k+1]/|Ek|2.

Thus, Proposition 2 is fulfilled and the C1-continuity between neighbouring ele-
ments is ensured.

4.4 Ensuring Proposition 3

It remains to ensure that the jumps of normal derivatives of the shape functions
vanish along all inner edges fi. Let the auxiliary functions Φ0 be defined by

Φ0|Tk
(x̂) = Φ̂0(x̂)Hk

on each subelement Tk. These functions vanish together with their gradients
along all outer edges Ek. Therefore, adding linear combinations of Φ0 does not
interfere with Propositions 1 and 2. We use the ansatz

Ψj = Φj + Φ0 Mj
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with 3× 3 matrices Mj and construct these such that all jumps of ∂
∂ni
Ψj vanish

along fi for all combinations of i and j.

In the following, the jumps of ∂
∂ni
Φj and ∂

∂ni
Φ0 are expressed as quadratic functions

in the local line coordinate ŝ representing edge fi. They can be written as

ŝ(1− ŝ)(t(j)i )T and ŝ(1− ŝ)sT
j ,

respectively, with vectors t(j)i , sj ∈ R3. With the definition of the matrices Tj
having the rows (t(j)i )T and S having the rows sT

i , we get the desired matrices Mj

as
Mj = −S−1Tj.

To calculate the jumps of ∂
∂ni
Φj, we start with i = j + 1. The edge fj+1 separates

the subtriangles Tj and Tj−1. In Tj the functions Φj vanish completely and it also
holds

∇Φinit
j |Tj−1 =

[
0 0 0
0 0 0

]

along fj+1. Thus, the jump in ∂
∂nj+1

Φj stems from the bubble function in Tj−1

only and reads [
∂

∂nj+1
Φj

]
fj+1

= −nT
j+1J

−T
j−1

(
∇̂β̂([0, ŝ]T)

)
(bjj−1)T.

We have used the minus sign because fj+1 is mapped to the ŷ-axis of T̂ in Tj−1;
later we use the plus sign when an edge is mapped onto the x̂-axis. From

∇̂β̂([0, ŝ]T) = ŝ(1− ŝ)
[
1
0

]

and (3) we obtain

(t(j)j+1)T = −nT
j+1J

−T
j−1

[
1
0

]
(bjj−1)T

= −nT
j+1

1
µj−1

[−nj+1
... nj]

[
1
0

]
(bjj−1)T

= |fj+1|2

µj−1
(bjj−1)T.

For i = j − 1, we analogously get

(t(j)j−1)T = |fj−1|2

µj+1
(bjj+1)T.
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from the same calculation within Tj+1.

The case i = j leads to longer terms. The jump reads[
∂

∂nj
Φj

]
fj

= nT
j

(
J−T
j−1

(
∇̂Φ̂1([ŝ, 0]T)

)
Hj−1 − J−T

j+1

(
∇̂Φ̂2([0, ŝ]T)

)
Hj+1

)

+ nT
j

(
J−T
j−1

(
∇̂β̂([ŝ, 0]T)

)
(bjj−1)T − J−T

j+1

(
∇̂β̂([0, ŝ]T)

)
(bjj+1)T

)
.

The difference of the bubble parts yields

ŝ(1− ŝ)
(
|fj|2

µj−1
bjj−1 + |fj|

2

µj+1
bjj+1

)T

with analogous calculations like in the above cases. The remaining part consists
of terms which are linear in ŝ and vanish as well as factors of ŝ(1− ŝ). These can
be written as

ŝ(1− ŝ)

nT
j

1
µj−1

[−nj+1
... nj]

[
6 −3 0
0 0 −1

] 
1 0 0
0 fT

j

0 fT
j+1



−nT
j

1
µj+1

[−nj
... nj−1]

[
0 −1 0
6 0 −3

] 
1 0 0
0 fT

j−1

0 fT
j




= ŝ(1− ŝ)
(

1
µj−1

[
− 6nT

j nj+1
... 3nT

j nj+1f
T
j − |fj|2fj+1

]
+ 1

µj+1

[
− 6nT

j nj−1
... 3nT

j nj−1f
T
j − |fj|2fj−1

])
.

From (4) follows
1

µj−1
nj+1 + 1

µj+1
nj−1 = − µj

µj−1µj+1
nj,

1
µj−1

fj+1 + 1
µj+1

fj−1 = − µj
µj−1µj+1

fj

and the above formula simplifies to

ŝ(1− ŝ) µj
µj−1µj+1

|fj|2[6 ... − 3fT
j + fT

j ] = ŝ(1− ŝ) µj
µj−1µj+1

|fj|2 (cj)T

with the abbreviation cj := [6 ... − 2fT
j ]T. All parts together lead to

t
(j)
j = |fj|

2

µj−1
bjj−1 + |fj|

2

µj+1
bjj+1 + |fj|2µj

µj+1µj−1
cj.

It remains to calculate the rows of S by evaluating the jumps of ∂
∂nj

Φ0 at fj,[
∂

∂nj
Φ0

]
fj

= nT
j

(
J−T
j−1

(
∇̂Φ̂0([ŝ, 0]T)

)
Hj−1 − J−T

j+1

(
∇̂Φ̂0([0, ŝ]T)

)
Hj+1

)
.
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Again we encounter a linear part which vanishes and factors of ŝ(1 − ŝ), which
can be written as

ŝ(1− ŝ)

nT
j

1
µj−1

[−nj+1
... nj]

[
−6 −3 0
−6 −2 −1

] 
1 0 0
0 fT

j

0 fT
j+1



−nT
j

1
µj+1

[−nj
... nj−1]

[
−6 −1 −2
−6 0 −3

] 
1 0 0
0 fT

j−1

0 fT
j




= ŝ(1− ŝ)
(

1
µj−1

[
6nT

j nj+1 − 6|fj|2
... (3nT

j nj+1 − 2|fj|2)fT
j − |fj|2fT

j+1

]
+ 1

µj+1

[
6nT

j nj−1 − 6|fj|2
... (3nT

j nj−1 − 2|fj|2)fT
j − |fj|2fT

j−1

])
.

Analogous transformations like above and the abbreviation µ+ := µ1 + µ2 + µ3
yield

. . . = ŝ(1− ŝ)
 −6 µj

µj−1µj+1
|fj|2 − 6( 1

µj−1
+ 1

µj+1
)|fj|2

(−3 µj

µj−1µj+1
|fj|2 − 2( 1

µj−1
+ 1

µj+1
)|fj|2 + µj

µj−1µj+1
|fj|2)fj


= ŝ(1− ŝ)|fj|2 µ+

µj−1µj+1
[−6 ... − 2fT

j ].

Therefore,
sT
j = |fj|2 µ+

µj−1µj+1
[−6 ... − 2fT

j ].

Note that a multiplication of all i-th rows of Tj and S with the same factor cancels
out in the system

Mj = −S−1Tj.

Thus, we may renew the definition of the rows of Tj and S by dividing all i-th
rows by |fi|2

µi−1µi+1
which yields the simplified matrices

S = −2µ+


3 fT

1

3 fT
2

3 fT
3


and

Tk = ek−1(µkbkk+1)T + ek+1(µkbkk−1)T + ek(µk−1b
k
k+1 + µk+1b

k
k−1 + µkc

k)T.

The ej in the formula for Tk denote the j-th unit vectors with (ej)i = δij.
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4.5 The final functions

The formulas for all shape functions on subtriangle Tk read

Ψk|Tk
= Φ̂0 HkMk,

Ψk+1|Tk
= Φ̂1 Hk + β̂ (bk+1

k )T + Φ̂0 HkMk+1,

Ψk−1|Tk
= Φ̂2 Hk + β̂ (bk−1

k )T + Φ̂0 HkMk−1

(6)

with the basic functions
Φ̂0(â) = (1− x̂− ŷ)2 [1 + 2x̂+ 2ŷ, x̂, ŷ],
Φ̂1(â) = x̂2 [3− 2x̂, x̂− 1, ŷ],
Φ̂2(â) = ŷ2 [3− 2ŷ, x̂, ŷ − 1],
β̂(â) = x̂ŷ(1− x̂− ŷ)

given on the reference triangle

T̂ = {[x̂, ŷ]T ∈ R2 : x̂ ≥ 0, ŷ ≥ 0, x̂+ ŷ ≤ 1}

and the auxiliary terms

Hk =

 1 0 0
0
0 JT

k

 =

1 0 0
0 xk+1,s yk+1,s
0 xk−1,s yk−1,s

 =

1 0 0
0 fT

k+1

0 fT
k−1

 ,
bk+1
k = 1

|Ek|2

 6ET
k fk−1

3µkNk + 2|Ek|2fk−1

 ,
bk−1
k = 1

|Ek|2

 −6ET
k fk+1

3µkNk + 2|Ek|2fk+1

 ,
ck =

[
6
−2fk

]
,

S = −2µ+


3 fT

1

3 fT
2

3 fT
3

 = −2µ+

3 x1,s y1,s
3 x2,s y2,s
3 x3,s y3,s

 ,
S−1 = − 1

6µ2
+

[
µ1 µ2 µ3

3N1 3N2 3N3

]
,

Tk = ek−1(µkbkk+1)T + ek+1(µkbkk−1)T + ek(µk−1b
k
k+1 + µk+1b

k
k−1 + µkc

k)T,

Mk = −S−1Tk.

In a finite element implementation, the ansatz functions are mainly needed for
the setup of the element stiffness matrix, which is usually done by Gaussian in-
tegration. The integration routine runs over all Gaussian points on the reference

11



triangle separately for all three subtriangles. The desired function and derivative
values at each Gaussian point are obtained with the above formula (6). All auxil-
iary terms are constant over the element. Therefore, they have to be calculated
only once for each element during the setup of the element stiffness matrix. This
leads to a relatively cheap implementation.
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