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0. MOTIVATION

Let T be a free particle in R®. We want to study its motion in special relativity. If we denote its (relativistic)
mass, Energy and momentum by m, E and p, respectively, then we have the relation

(0.1) E = 4/c2p? + m2c*,

where ¢ denotes the speed of light.

Now we want to additionally study T quantum mechanically which means we have to describe T by a wave
function ¢ = 7 : R x R3 5 (t,x) = ¢(t,x) € C. Here, the associated function (t,x) + |¢(t,x)|* € R is the
density of the probability law that the particle T can be found at x at time t. The energy and momentum are
no longer scalars associated with T but become unbounded operators acting on appropriate Hilbert spaces of
wave functions,

_ 0P
(0.2) By =ihp-
py = —ihgrad .

If one wants to combine the relativistic equation (0.1) with the quantum mechanical description (0.2), one
concludes that wave functions must (formally) satisfy the equation

ih%—lf =\ C2h2A + m>ctyp,

where A denotes the Laplacian A = — Z?Zl @ Jox2. We thus face the problem of finding the square root of a second order
differential operator. Setting all constants to 1 (as mathematicians like to do), we specifically want to find the
square root D = /A of the Laplacian. There are many ways in which this can be done, e.g., via the functional
calculus, but for many reasons it is desirable that D be a differential operator itself. This means of course that
D must be of first order. We take the ansatz
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The requirement D? = A holds if and only if

M=r=rn=-1 and  yy+77=0, fori#j.
These equations do not posses a solution in C. They do, however, if we allow the ; to be elements of some

algebra. The smallest algebra that contains elements satisfying these relations is the one of complex 2 x 2-
matrices. Specifically, the matrices

(i 0 (0 -1 (0 i
M= o —i)’ T2 = 1 0 ’ 3= i 0

do satisfy above equations. Now D becomes an operator acting on C2-valued functions, i.e. elements of
C!(IR3,C?), and the equation D? = A has to be understood component-wise.

This discussion was specific to R®. In the following lecture, we will learn how to define the Dirac operator
D on (almost) any Riemannian manifold and study its basic properties.

1. BAsICS
1.1. Lie groups.

Definition 1.1. A Lie group is a C®-manifold G which is also a group with the property that
GxG>s(a,b)—a-beG
GsawaleG
are smooth.
Example 1.2. (i) (R", +), (C", +), (C\{0} = C¥,").

(ii) (S' = {el'|te R} c C*,).

(ii1) If G, H are Lie groups, then G x H is a Lie group with the product manifold and product group structure.

(iv) (GL(n;C),-) since GL(n; C) is an open subset of(C”2 ~ R2" and matrix multiplication and inversion are polyno-
mials in the entries of matrices, hence smooth. More generally, for any finite-dimensional (unital) R-algebra <7, the
set o™ of units of <7 is canonically a Lie group.

(v) Any subgroup / submanifold of any Lie group G which also happens to be a submanifold / subgroup. For G =

GL(n; H) the most prominent examples are: GL(n;R), SL(n; C), SL(n;R), U(n), O(n), Sp(n), SU(n), SO(n).
The groups O(n), U(n) and Sp(n) are special cases of the following more general construction: Let K be either IR,
CorHands : K" x K" — K a bi-/sesquilinear, nondegenerate (skew-)symmetric / (skew-)hermitian form. Then
O(s) :={Ae M(n,m;K) |s(AX,AY) =s(X,Y) forall X,Y € K"} is a Lie group.

(vi) The Heisenberg group

t
Hyyy1 = {'y(x,y,z) = ((1) gn ;) |x,yeR",z€e ]R} c GL(m; R).
0 0 1
As a manifold, Hy,, 1 is diffeomorphic to R*"*1. Group product and inversion are given by
(%Y, 2) (U, 0,w) = y(x + 1,y + 0,2+ W + X, Vpudl)
Y, y,2) 7 = (=2, Y, 2+ X Ypual) -

Definition 1.3. (i) Forae Gthemap L, : G 3b — a-b € G is called left-translation by a. L, is a diffeomorphism
with inverse L7 = L,—1. Analogously, R, : G 3 b~ b-a € G right-translation by a.
(ii) A vector field X € V(G) is called left-invariant : <

(XoL,=d(Ls)oX VaeG,
ie., Xgp = d(La)pXp forall a,b € G. In other words, X is Ly-related to itself forall a € G.

Remark 1.4. The space of left-invariant vector fields on G is canonically identified with T,G, the tangent space to G at
the identity:

T.G 3 X > (vector field }N(given by X, = d(L;)eXe)
T.G 3 Y, < Y € {left-invariant vector fields on G}
These two maps are vector space isomorphisms and inverses of each other.

Lemma 1.5. If X, Y are left-invariant vector fields on G, then [X, Y] is again a left-invariant vector field.
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Proof. Leta € G. Then X is L,-related to itself, and so is Y. Hence, [X, Y] is L,-related to itself. O

Corollary and Definition 1.6. (i) A Lie algebra over R is a real vector space V together with a bilinear map
[-,-] : V x V — V which is alternating and satisfies the Jacobi identity, i.e., [X,Y] = —[Y, X] and [X,[Y, Z]] +
Y, [Z, X]]+[Z,[X, Y]] =0forall X,Y,Z e V.
(ii) The vector space g of left-invariant vector fields on G is by Lemma 1.5 a Lie algebra over R.

Remark 1.7. The tangent space T.G is canonically identified with g by Remark 1.4. This means that T,G inherits a Lie
algebra structure from g!

Bxplicitely: If X, Y € T,G, then [X, Y] := [left-inv. ext. X of X, left-inv. ext. Y of Y],.
One often encouters the notation g = T,G, which should always be understood in the above sense.

Lemma 1.8. Let X be a left-invariant vector field on G and Y its flow. If @', (e) is defined for all t € (—e, €), then so is
@l (a), and we have

Oly(a) = a- Dy (e).

Proof. We need to check that t — a - @ (e) is an integral curve of X starting in a. We have
d d d
3 (@ Px(0) = 3 (La®x(€))) = d(La)gi (o) 7, Px(€)
= d(La)ai (o) Xt (e) = Xaty(e) -
where the second equality follows from the chain rule and the last one from X being left-invariant. g

Corollary 1.9. Any left-invariant vector field X on G is complete, i.e., D (a) is defined for all t € R and all a € G.

Proof. Let e > 0be as in Lemma 1.8 and let a € G. Suppose that
to := sup{t | Px(a) is defined at least until ¢} < 0.

Letb := @é‘g_c/ *(a). By the previous lemma, DL (b) is defined at least for t € (—¢, tg +£/2), which is a contradiction
to our assumption ¢y < 0. O

Definition 1.10. (i) A Lie group homomorphism f : G — H is a smooth group homomorphism between Lie
groups G and H.
(ii) A (real / quaternionic) representation is a Lie group homomorhism f : G — GL(V), where V is a complex (real /
quaternionic) vector space.
(iif) A one-parameter subgroup in G is a Lie group homomorphism a : (R, +) — G, i.e., a is smooth and satisfies
a(s+t) = a(s)-a(t) forall s, t € R.

Proposition 1.11. The map {1-parameter subgroups in G} 3 a — &(0) € T, G is a bijection.
Proof. Define
A:T,G = g3 X~ (t— d(e)) € {1-parameter subgroups in G}
T.G 3 &(0) <= « € {1-parameter subgroups in G} : ¥.

e YoA =id: %|t=0<l>§<(e) = X,.
e Ao¥Y = id: We have to show that « is indeed the integral curve of the left-invariant vector field
associated with &(0):

a(t) = c(iis|5=olx(t +5s) = c?s|5=0a(t) ~a(s) = d(Ly(r))e(0)

= (left-invariant vector field associated with &(0)) () -
O

Notation 1.12. The Lie exponential map e : g — G maps X € T,G = gtoeX := &} (e). Thus, t — X = O}y (e) =
<I>§((e) is the 1-parameter subgroup in G associated with X as in Proposition 1.11.
Proposition 1.13. If X, Y € g, then

d d

X, Y], = — “ tX sY 71‘X'
X Y]e dt\t=0d5\5=oe © e
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Note that for fixed t = tg, s — e'Xe’Xe X is a curve in G starting in e € G, hence t %bzoetxesxe*tx isa

curve in T,G.
Proof. Denote by L the Lie derivative. By its definition, we have
d ¢ d d —t ;
X, Y] = (LxY), = &\t:od (D% )@%(e) Yo! (o) = au:o@p:o@’( o P} o P (e).
By Lemma 1.8 we have
DY (PY(Pk(e)) = PY (P (™)) = DY (DY (e - €) = DY (™ - P (e))

tX —tr Y tX . sY —tX
et -dy(e”) =e" e’ e

O

Example 1.14. Let G = &/* for a finite-dimensional, associative unital R-algebra <7 (e.g., &/ = M(n,n;C) with
o/* = GL(n; C) or & = End(V) with o/* = GL(V)), e = 1, the multiplicative identity in o/, C € T,.G = o/, A€ G.
Note that for small t, 1, + tC € o/* by the Neumann series.

d
d(La).C = a|t:OLA(1'W +1tC) = AC.

Hence, the left-invariant vector field XC associated with C is given by X§ = A - C.
Next, we compute the Lie bracket of C,D € T.G = /. We have

d d

C D D C C D D C
[C,D] = [X", X"]e = d(X7)e X, —d(X7)e X, = At jimo” QartC) ~ a\t=0X(lﬂ¢+tD)
=C-D-D-C,

where we have interpreted XC and XP as maps from the open set «7* C o to o/ = RY™¥  hence their Lie bracket is
given by the difference of their directional derivatives with respect to each other.

At last, we compute the Lie exponential map of G. For C € T,G, the algebra exponential map t — exp(tC) = 1, +
tC +14(tC)% + .. . is a 1-parameter subgroup in G (exp((s +t)C) = exp(sC) - exp(tC)) with d/dt|t:O exp(tC) = C, so
it must be the one associated with C:

e!C = exp(tC).
The above formulae for [C, D] and e'C also hold for any Lie subgroup of G!

Lemma 1.15. Let ® : G — H be a Lie group homomorphism.

(i) ®(e!X) =X forgllte R, X € T,G.
(ii) [dP.X,ddD.Y] = dP.[X, Y], hence d®.T,G — T.G is a Lie algebra homomorphism, i.e., a vector space
homomorphism which preserves Lie brackets.

Proof. (i) We are done when we show that the left hand side is indeed a 1-parameter subgroup in H with
the correct initial vector: ®(eTHX) = d(esX . eX) = d(e5X) - D (e!X) with initial vector %| o D(e™) =

dPe( G ,_ge') = dPeX.

(ii)
d d _ @ d d B
d®. X . dd.Y] = — - td®, X sd®. X —tdd. X 2 “ d X d sY P X
[d®e X, b Y] dt\t=0d5\5=oe € ¢ dt |t=0ds [s=0 ()P (e”)P(e™)
d d d d
-2 go. (= XV o—tX) _ g, (£ & £X \sY ,—tX
dt |i=0 e<d35=oe € e\ dfjcodspso” © ¢
=do,([X,Y]),

where we have used Proposition 1.13 in the first and last step.

Definition 1.16. (i) Forae Glet I, := L,oR; ' : G3bw~ a-b-a~! € G be conjugation by a.
(ii) Forae Glet Ad, :=d(l;)e: g = T.G - T,G = g.
(iti) For X e gletadx :=[X,-]:g3Y — [X,Y] € g.

Remark 1.17. (i) I, is a Lie group automorphism, i.e., a diffeomorphism and a group automorphism. Moreover,
Aut(G) is a Lie group and G 3 a — 1, € Aut(G) is a Lie group homomorphism.
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(ii) Ad, : g — g is by Lemma 1.15(ii) a Lie algebra automorphism. Moreoever, Ad : G 5 a — Ad, € Aut(g) <
GL(g) is a Lie group homomorphism, where GL(g) is the Lie group of linear transformations of the vector space(!)

g.
(iii) By the Jacobi-identity, we have adx[Y,Z] = [[X, Y], Z] + [Y,[X, Z]] = [adx Y, Z] + [Y,adx Z]. That is, adx :
g — g is a Lie algebra derivation, i.e., a vector space endomorphism ¢ € End(g) with ¢[X,Y] = [¢X,Y] +
[X, 9Y]. Moreover, ad : g 3 X — adx € Der(g) is a Lie algebra homomorphism, where the Lie bracket on Der(g) is

given by [¢, Y] = pop —p o g and ad[x y] = adx o ady — ady cadx = [adx, ady].

Lemma 1.18. Let X,Y € g = T,G. Then
d

— Ad,ix = ady .
dtje=o " aex

In particular,
d(Ad), = ad .

Proof.

d d d d d

L Addxy=S & Yy & 8 X oY X I v gy
dt|i=0 e dt|t=0ds|s=0 ex(€) c1t|t:ools|s:0e ¢ e [ ] =adx

Corollary 1.19. Apply Lemma 1.15(i) to ® := Ad : G — Aut(g) < GL(g):

Adgix = e!dAdeX

e

_ otadx _ exp(tady) = id +t ad, +t2/2ad%( +....
Summary.

ad <
g —25 Der(g) — End(g)

le' \Le'=exp le'=exp
c

G —24 Aut(g) —=~ GL(g)

1.2. Clifford Algebras.

Definition 1.20. Let K be a field with char K # 2, V a finite-dimensional K-vector space and q a quadratic form on V.
We call (C, 1) a Clifford algebra for (V, q) if

(i) C isan associative, unital K-algebra.
(ii) 1: V — Cis a K-linear map with

1(v)? = —q(v) - ¢ forallve V.
(iit) If Ais any associative, unital K-Algebra for which there is a map j : V. — A with
(1.1) j(v)2 =—q(v)-1y forallveV,

then there exists a unique K-algebra homomorphism ]N C — A such that
C ~
N
j

Proposition 1.21. For any (V,q) there exists a Clifford algebra (C, 1) unique up to canonical isomorphism. Moreover, 1
is injective and {1c} v (V) € C generates C.

Vv A

is commutative.

Proof. Let us first show uniqueness of the Clifford algebra. This is a standard argument using the universal
property Definition 1.20(iii). Suppose we are given two Clifford algebras (C,:) and (C’, /). By definition, there
exist unique maps 7: C' — C with 7o/ = rand / : C — C' with /o1 = /. The map io/ : C — C satisfies
Toldor=Tol =1 Using Definition 1.20(iii) a third time, now with A = C and j = 1, we see that idc oz = 1. By
uniqueness, we have 7o // = idc. Analogously, / o7 = ide. Hence, (C, ) is unique up to canonical isomorphism.
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Next, we show that (C, 1) actually exists. Let 7(V) = @~ V& be the tensor algebra of V. Define Z as the

two-sided ideal generated by the set

{v@v+q(v)|ve V}
and C := T(V)/Z. Let = : T(V) — C be the canonical projection and define ¢ : V — T (V) 5 C, the
concatenation of the injection V — 7 (V) and the projection 7.

Since 7 is a two-sided ideal, C inherits an associative, unital algebra structure from 7 (V). Furthermore, by
the very definition of C and , we have 1(v)? = —q(v) - ¢ forallv e V.

Let now be j : V — A be linear map into an associative, unital K-algebra with (1.1). By the universal
property of the tensor algebra, j extends uniquely to a K-algebra homomorphism j : 7(V) — A. Since j
satisfies (1.1), we have Z < ker j. Hence, j descends uniquely to a map ]~ C — A satisfying 70 L=7.

To show that « is injective, it suffices to prove that V. nZ = {0}. This is a simple argument by induction
over the degree of tensors. Finally, since 7 (V) is generated by Vand 1€ K = ve’, Cis generated by (V) and
1c. 0

Remark 1.22. (i) We will from now on denote the unique Clifford algebra associated with (V,q) by (C¢(V, q),1) and
view V as a subspace of CL(V, q) by virtue of 1. Moreoever, we will write 1 € CL(V, q) instead of Ly ).
(ii) If b : V x V € (v,w) — 12(q(v + w) — g(v) — q(w)) € K denotes the symmetric bilinear form associated with q,
we have

‘v-w+w-v=—2b(v,w)-l forallv,weV‘

in CU(V,q). In particular, if V has K-dimension n and (e, . .., ey) is a basis of V that diagonalizes b, then

2

e; =—q(e;) forall i=1,...,n and ei-ej+ej-e=0 forall 1<i#j<n.

Definition 1.20(iii) says that C¢(V, q) is the smallest associative, unital algebra containing V and satisfying these
relations.

(iii) Let V, W be K-vector spaces, equipped with quadratic forms q and r, respectively. Applying Definition 1.20(iii)
to 1y o f for a K-linear map f : V. — W which satisfies f*r = q (i.e. r(f(v)) = q(v) for all v € V) shows
that f extends uniquely to an algebra homomorphism f : CU(V,q) — CU(W,r). The uniqueness assertion in
Definition 1.20(iii) also implies that, given another linear map g : W — U into a vector space U with a quadratic

form s which satisfies g*s = r, we have go f = 3o f.
Definition 1.23. Let V be a K-vector space and q : V — K a quadratic form with associated symmetric bilinear form
b:VxV K

(i) Denote by o € Aut(Cl(V,q)) the unique continuation of —idy € O(b). Explicitely, a : C((V,q) — CL(V, q) is the
unique K-linear map which satisfies

w(vg vy v) = (1) - a(v2) - - a(vp) = (=D)koy -0y -+ 0 forall kelNg,vy,...,00€V.

In particular, a? =id.
(ii) Fori = 0,1 define CL(V,q) := {xeClV,q)|a(x) = (—1)ix}, ie., CL(V,q)" is the (—1)'-eigenspace of a, and

CU(V,q) = CUV, g @ CUV, )"
Multiplication in C¢(V, q) satisfies

Cclv, q)l . Cf(V/q)] c Cg(qu)i-‘rj mod 2

Remark 1.24. (i) A K-algebra Awithasplitting A = A° @ Al such that multiplication in A obeys the rule A'- Al €
Ai*1 s called a Z,-graded algebra. We call A° the even part and A the odd part of A and we call deg x := i
the degree of x € A'. Note that A is always a subalgebra of A.
(ii) Given two Zy-graded K-algebras A and B, their tensor product A® B is the K-algebra whose underlying K-vector
space is the vector space tensor product A® B with multiplication a®b-a' @b’ = a-a’ @b - V. Unfortunately, A®
B is in general not a Zy-graded algebra. To produce a Zy-graded algebra, we use the Z;-graded tensor product
A®B whose underlying vector space is again the vector space tensor product A ® B and whose multiplication is
defined on pure tensors of pure degree by

(1.2) a®b-d @b = (—1)destdegd’y gl ap.p
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The Z,-grading of AQB is given by

(A®B)’ = A’@B° + A' @B,

(A®B)' = A @B'+ A'@B°.
Proposition 1.25. Let V be a K-vector space with quadratic form q and associated symmetric bilinear form b. Assume
we are given a b-orthogonal splitting V = V1 @ V3, i.e., b(v1,v2) = 0 for all v1 € Vq,v9 € V, (equivalently q(v1 +v3) =
q(v1) + g(v2)). Then there is a natural isomorphism of Clifford algebras

CU(V,q) — CL(V1,q)®CE(V2, 02),
where q; := q|y, : V; — Kis the restriction of q to V.
Proof. Definej : V= Vi@V, 301+ —» 11®1+1®0; € Cé(Vl,ql)@)CE(Vz, g2). Then, we have for all
11+ eVidW, by (1.2)
j(v1 +02)2 =(n®l+ 1®Uz)2 = U%@l +1®u+11 Qv —11®vy =—4(v1)-1®1—g(rr)1®1
= —q(v1 +02)1®1.

Hence, by Definition 1.20(iii), j extends uniquely to an algebra homomorphism ]N CU(V,q) — CL(V1,q1)RCL(Va, q2).

To see that fis bijective, we construct the inverse homomorphism. Let g; : V; — C{(V, q),i = 1,2, be the concate-
nation of the inclusion V; < V and the inclusion V < C{(V, q). Then g; extends to an algebra homomorphism
g :Cl(Vi,q;) — CL(V,q). Themap g : CU(V1,91)RCU(Va,q2) 2 x®@y > §1(x) - 22(y) € CL(V,q) is the inverse off
It suffices to check this on pure tensors of vectors from V; and V5, as those generate C/(Vy,q1)®CE(V5, g2) and

hence determine g uniquely.
O

Definition 1.26. Let V' be a K-vector space and q a quadratic form on V. Let t : T(V) — T (V) be the K-linear map
given on pure tensors by

i’(Ul ®Z)2®...®0k) = Z)k®l)k,1 ®...®Ul .
Then t preserves the ideal Z from the proof of Proposition 1.21 and thus descends to a K-linear map
tieewv,q) - cev,g),
the transpose. Note that -' is an algebra antiautomorphism, i.e., (x-y)' = y'-x for all x,y € C{(V,q), and an
involution, i.e., (x')' = x for all x € CL(V, q).
With an eye on Riemannian manifolds we are interested in two particular Clifford algebras.

Notation 1.27. Let g, : R" 3 x = Y | x? € R be the standard positive definite quadratic form on R" and q5 : C" >
ze 3y le € C the standard quadratic form on C". We let

o Cl, =CUR", gn),

o Cly =ClC",45).

Remark 1.28. It follows from Definition 1.20(iii) that the complexification C¢,, @R C of Cl;,, together with the complex
extension of qy, is isomorphic to Cly. In particular, from now on we will view C¢y, as a subalgebra of Cl,, and think of
Cly, as Cly, with complex coefficients.

Proposition 1.29. There are algebra isomorphisms Cl, = C£9 | and Cl, = CL) ;.

Proof. Let (ey,...,e,+1) be the standard basis of R"*!. Define f : R" — CEgH by

fle):=—ei-eyp1 forall 1<i<mn,
and linear extension. For x = I ; x;¢; € R"” we have

n n

2
n
2
flx)™ = (_inei'en+l> = Z XiXj€j €yl €yl = — Z XiXj€j-€jent1 - ntl
i=1

ij=1 ij=1
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By the universal property of Clifford algebras, f extends to an algebra homomorphism j? : Cly — CO_ .

Evaluating f on a vector space basis of C/;; shows thgt it is an isomorphism (see Exercise no. 7). Finally, the
isomorphism C/,, = C/Y _, is the complexification of f. O
Theorem 1.30. For all m € IN there are algebra isomorphisms

Dy, 1 Clyyy — M(2,2,C)@M(2,2,C)®...Q M(2,2,C) = M(2",2™;C),
Popt1 : Clomr = (M(2,2,0)®...@M(2,2,C)) @ (M(2,2,0)®...®M(2,2,C)) = M(2",2";C) ® M(2",2";C),

given as follows. Let E := Ep, U := (1 0 ), V= <0 1), W= <0 _1>. For1 < j < mdefine

0 —i i 0 i 0
pom : C*" 3 e5j 4 HW@W@"@W@#z@E@”'@E’
j-th slo

Pom :CM" 36> WOW®...QWQVR®E®...®F
j-th slot
and extend linearly. Then, o (x)? = —qS, (x) - 1 for all x € C*" and by the universal property of Clifford algebras,
¢Pom extends to an algebra homomorphism $yy,, which turns out to be an isomorphism. To obtain Dy, 41, we define

(P2 (e)), Pam(ej)), l<j<2m,

:sz-i-l N
P2m+1 7€ {(iW@...@W,—iW@...@W), j=2m+1,

and proceed analogously.

Definition 1.31. Let K = R, C and let A be a finite-dimensional, associative and unital K-algebra.

(i) A representation of A is a K-algebra homomorphism p : A — Endi (V), where V is a finite-dimensional K-
vector space. In this situation, V is also called an A-module. If the representation p is fixed, we shall write
x-v:=p(x)(v).

(ii) Given two representations p : A — End(V) and ¥ : A — End(W), their direct sum is the representation
p@x: A— End(V@W), given by p®x(x)(v+ w) = p(x)(v) + x(x)(w).

(iii) A representation p : A — End(V) is called reducible if it is a direct sum p = p1 ® p2 : A — End(Vy @ V,) with
Vi # {0}, i = 1,2. In other words, p is reducible if V splits into a nontrivial direct sum V = V1 @ V, such that
p(x)(V;) €V forall x € A, j =1,2. If p is not reducible, we call it irreducible.

(iv) Two representations p : A — End(V), k¥ : A — End(W) are called equivalent or isomorphic if there exists a
K-vector space isomorphism F : V. — W such that p(x) = F"'ox(x) o F forall x € A.

(v) We define modules, direct sums, irreducibility and equivalence analogously for representations of Lie groups.

Remark 1.32. If p : A — End(V) is any representation of A, then p can be decomposed into a direct sum p =
01D ...®px of irreducible representations p; : A — End(V;). Indeed, we simply apply Definition 1.31(iii) recursively.
This process must end by finite-dimensionality of V.

For the next theorem, we need an important element in the Clifford algebras C¢,, respectively C/,,.

Definition 1.33. Fix an orientation of R" and let (eq, ..., e,) be an oriented orthonormal basis w.r.t. (-, Ypu1. Define
the volume element wy, € C¢;, by

wp:i=e - e ey,
and the complex volume element w$ € C¢,, by

wg = il.(n+l)/2jel .e ey = il.(n+])/2jw .

s
Here, | x| denotes the largest integer which is smaller or equal to x € R.

Theorem 1.34. There exists, up to equivalence, exactly one irreducible representation Cly,, — Endc(V), where dime V =
2™, There are, up to equivalence, exactly two irreducible representations p : Clyy, 11 — Endc(V), where dim V' = 2™.
These can be distinguished by the action of the complex volume element w$, 41 Le., either p(ws, 1) = +idor

p(wgm+1) = —id.

Proof. By Theorem 1.30, Cly,, is isomorphic to M(2™,2™;C). It is a classical fact that the only irreducible
representation of M(2",2™;C) is the standard one, given by matrix multiplication.

Again by Theorem 1.34, C/y,,41 is isomorphic to M(2",2",;C) @ M(2™,2™;C). The two different represen-
tations are given by the standard representation of the first, respectively second, direct summand on C2".

For the proof of p(w§,, 4+1) = Tid and that these are inequalivalent representations, see Exercise no. 10. [J
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Proposition 1.35. Let ®y,, @ Cly,, — M(2™,2™;C) = End(C?") be the irreducible representation given in Theo-
rem 1.30 and F : Cly,,_1 — C{3, the algebra isomorphism from Proposition 1.29. Then the representation Py, o F
Clyy1 —> M(2™,2",C) = End(sz) is (equivalent to) the direct sum of the two irreducible representations of Clyy, 1.

Proof. See Exercise 11. g
1.3. The Spin group, its Lie algebra and representations.
Notation and Remarks 1.36. Recall that the set of units CC;; of Cly, is a Lie group with Lie algebra Cl,,.
Definition 1.37. (i) The Clifford group I';, of C¢,, is the closed subgroup of Cl}; given by
Iy, := {x eCla(x)-v-x"LeR" forallve ]R”} :
(ii) Define the continuous group homomorphism Ay, : I'y — GL(n; R) by
An(x)(0) := a(x) - v-x"L.
(iii) The norm of C¢,, is the map
N:Clyaxm x-a(x’) =x-ax)ecl,.

Remark 1.38. (i) The maps «,-' : Cl,, — Cly, leave T, invariant. Indeed, if x € Ty, then a(x) - v - x~leR" for all
v € R" and by definition of a we have

w(a(x)-v-a(x) ' = —a(a(x))-a(@)-a(x) = —a(a(x)-v-x ) =a(x)-v-x e R”

for all v € R" and analogously for -'.
(ii) Note that for x € R" we have N(x) = x - a(x!) = x - a(x) = —x - x = g, (x) = ||

Lemma 1.39. The kernel of the group homomorphism Ay, : I'y — GL(1;R) is ker A, = R* - 1.

Proof. Let x € ker A,. Then by definition a(x) -v-x ! = v for all v € R", which is equivalent to
a(x)-v=v-x forall veR".

We decompose x into its even and odd part, x = 2 + x! with x € Cfi,. Then the above statement is equivalent
to

(1.3) XX v=0-2" and —x'-v=0v-x' forall veR".

0

Let (eq,...,e;) be the standard basis of R"”. We express x" as a linear combination of the basis vectors from

Exercise 7 and write
X’ =a+teb,
where a € Cf9,b € Cf} and neither a nor b contain a term with a factor e;. We apply the first relation in (1.3) to
v = e7 and obtain
(a+e1b)er = e1(a+eqd).
Since a has even degree and contains no term with a factor e; we have ae; = eja. Analogously, we have
e1b = —beq. Hence,
a+eb=a—eb,

which in turn implies e;b = 0 and x° contains no term with a factor e;. By applying the same argument to ¢;,
i=2,...,n we conclude that x° is a linear combination of the elements from Exercise no. 7 no term of which
contains a factor ¢;, i.e., WeR-1.

Proceeding analogously with the second relation in (1.3) shows x! € R - 1. But since 1 € Cf3 we must have
x! =0.Hencex =x e R-1nT, =R*-1. O

Lemma 1.40. If x € I'y, then N(x) € R* and the restriction N, : Ty — R* is a group homomorphism with
N(a(x)) = N(x) forall x € T,.

Proof. Let x € T),. Then a(x)-v-x~! € R" for all v € R”. Since the transpose acts as the identity on R", we
get (x')™1-v-a(x)! = a(x)-v-x71 Thus, v = 2 - a(x) v (a(x)' - x)71 = a(a(x) - x)-0- (a(x)! - x)~' which
implies that a(x)! - x € kerA,,. By Remark 1.38(i), y = a(x)! € T, and by what we just showed a(y)! -y =
a(a(x)))t - a(x)" = x-a(x)! = N(x) € ker A,,. By the last lemma, N(x) € R* - 1.

To show that N restricted to I';, is a homomorphism, note that R - 1 is central in C¢,,. Hence, for x,y € ', we
have N(x-y) = x-y-a(x-y)' = x-y-a(y)’ - a(x) = xN(y)a(x)' = x-a(x)'N(y) = N(x)N(y).

At last, we have N(a(x)) = a(x) - a(a(x))" = a(x-a(x)) = a(N(x)) = N(x). O
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Proposition 1.41. We have
(i) R™\{0} < Ty,
(i) for x € R™\{0}, Ay(x) € GL(1;R) is the reflection about the hyperplane x+ and A,(T,) < O(n), the orthogonal
Qroup.
Proof. Let x € R™\{0}. By Lemma 1.39, A,,(x) = A, (||x| - m) = An(nz—”), which is why we can assume w.l.o.g.
that ||x| = 1. Choose an orthonormal basis (e; = x,ep,...,e,) of R". Then, for v = > ; a;e; we have by the
Clifford relations

n n n
An(x)(0) = An(e1) <2 aiei) = Ylan(er) ei-ey' == > ajer ;e
i=1 i=1 i=1
n n
= —ae] — 2 aeq - e -e;l = —aqe + Z a;e; e R".
i=2 i=2
In particular, A, (x) is the reflection about x- and ||, (x)(v)| = [v].
Now let x € I’ be arbitrary. Then

[An(x)0]* = N(Au(x)0) = N(a(x) -0-x7") = N(a(x)) - N(o) - N(x™") = N(x) - N(v) - N(x) = N(0) = [o]*.
Hence, A, (x) € O(n). O

Definition 1.42. The Pin group Pin(n) < CC;; is the kernel of N : T, — R*. The Spin group Spin(n) is the group
Pin(n) n C.

Theorem 1.43. (i) The Pin and Spin groups are Lie groups explicitely given by
Pin(n) = {vy-vp-- v |v; e R?, |u;| =1,0 <i <k keNp},
Spin(n) = {v1 - vz~ ox | v; € R, |Jvsl| = 1,0 < i < k k€ No}.

(i) An|pin(n) : Pin(n) — O(n) is a surjective Lie group homomorphism with kernel {£1}.
(iii) (An|pin(n)) ™" (SO(n)) = Spin(n).
(iv) Spin(n) is connected for n > 2.

Proof. Recall that any orthogonal map A € O(n) can be written as the concatenation A, o. ..o Ay, of reflections
Ay, about hyperplanes vl-J-, where v; € R" with |v;| = 1. By Proposition 1.41 and the definition of Pin(n),
v1---v¢ € Pin(n) and Ay (v1---0k) = Au(v1)---Au(v) = Ay 0...0 Ay = A. Furthermore, the kernel of
An|Pin(n) 1s ker Ay nker N = {x € R*-1[N(x) = 1} = {+1}, which also shows the explicit expression for
Pin(n).

Recall also that the group SO(n) < O(n) can be characterized as the group of maps which can be written as
the concatenation of an even number of reflections. This shows (iii) and the explicit expression for Spin(n).

To see that Pin(#n) is a Lie group, recall that I', is a closed subgroup of the Lie group C¢;;. It is a theorem
(see, e.g., [Lel3]) that any algebraic subgroup of a Lie group which is topologically closed is automatically a
Lie group in its own right. This makes I';, into a Lie group and N : I';, — IR* a Lie group homomorphism. Now
Pin(n) is the kernel of N, which makes it a topologically closed algebraic subgroup and therefore a Lie group.
Similarly, Spin(n) is the inverse image of the Lie group SO(n) and therefore, again, a topologically closed
algebraic subgroup, hence a Lie group. The map Ay pin(,) is the concatenation of multiplication, inversion and
the (restriction of the) linear map «, hence smooth and therefore a Lie group homomorphism.

In light of (iii), it suffices to connect —1 to 1 with an arc in Spin(n) to see (iv). Such an arc is

c: [0, 7] 3t cos(t) +sin(t)e; - e = (sin §eq — cos Sep)(sin seq + cos Se;) € Spin(n).

Remark 1.44. We will henceforth only be interested in the Spin group and will from now on view A, as a map
A=Ay : Spin(n) — SO(n)
g (@ a(g) v-g7l =g-vg).

For the next proposition, recall that the Lie group C/}; is an open subset of C¢,,. Hence, T;C¢}; = Cl,,. Since
Spin(n) is a submanifold of C¢};, T; Spin(n) is a subspace of C/y,.
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Proposition 1.45. The tanget space to Spin(n) at 1 is
Ty Spin(n) = spang{e;-¢; |1 <i<j<n} SCly.
Proof. For1 < i < j < n, consider the curve
7 :R 3t cos(t) +sin(t)e; - ej = (sin se; — cos 5ej)(sin 5e; + cos se;) € Spin(n) < Cly, .
We have ¥(0) = 1 and %‘ _oY(t) = ei-e;. This shows "2". By Exercise 7, the stated subset of C/, clearly
has dimension %n(n —1). But from Theorem 1.43, we already know that dim T Spin(n) = dim Spin(n) =
dim SO(n) = %n(n —1), showing "c”. 0
Corollary 1.46. The Lie algebra of Spin(n) is
spin(n) = spang{e;-e;|1 <i<j<n} S Cly
with the Lie bracket [x,y] =x-y—y-x.

Proof. Following Example 1.14, one checks that the Lie algebra of C/}; is C¢, equipped with the Lie bracket
[x,y] = x -y —y - x. The Lie algebra of Spin(n) then inherits this Lie bracket. g

Proposition 1.47. The differential A, = dA. : Ty Spin(n) = spin(n) — so(n) = Tg, SO(n) is an isomorphism
explicitely given by
A6 - ej) = ZXgl.,gj ,
where Xe, ¢, are the maps from Exercise 6.
Proof. Since A : Spin(n) — SO(n) is a surjective Lie group homomorphism between Lie groups of equal

dimension, its differential at 1 must be an isomorphism. We consider again for 1 < i < j < n the path
7 : R 3t cos(t) + sin(t)e; - e; € Spin(n). Note that v(t)~1 = y(—t). Hence, for v = Y}_; vrex € R" we have

d d _
Axlei-ej)(0) = a“:OA(W(t))(U) = a“:O’Y(f) vy (t) !
d
= altzov(t)-v-y(—t) =¢ € V—0¢- €
= vi(ei-ej-ei—e;-e;-e)) +vj(e-ej-ej—ej-ei-ep) + ), vklei-ej-ex —ep-ei-e;)
ki

= ZZJZ'EJ' — ZUjei = 2(7]1'8]' — U]'ei) = 2X€i/g]v’v .

Definition 1.48. The (complex) fundamental spin representation of Spin(n) is the Lie group homomorphism
Kkn : Spin(n) — GL(Z,)
given by restricting an irreducible complex representation Cl,, — End(%,) to Spin(n) < Cl, < C{9 < Cl,. We call

%, the spinor module and an element s € £, a spinor.

Proposition 1.49. When n is odd the definition of the complex spin representation is independent of which irreducible
representation of Cy, was used. In particular, it is well-defined. Moreover, when n is odd, x, is irreducible.
When n is even, there is a decomposition
kn =K ®K, , K Spin(n) — GL(ZZ)
into irreducible representations x;F called the positive respectively negative half-spin representations. Accordingly,
the modules ¥.F are the positive respectively negative half-spinor modules.

Proof. Letn = 2m + 1. Recall from Theorem 1.34 that C¢;,,;1 has two irreducible representations p; : Cly,, 11 —
GL(V), i = 1,2, which can be distinguished by pl(wgmﬂ) = +id and pz(wgmﬂ) = —id. Since « is an
algebra automorphism of Cl;,,41, p2 o & is also a representation of Cly,, 11 with p; o zx(wgm 1) = pz(—wgm 1) =
—p2(w$ +1) = +id, so p1 and p; o a are equivalent. Now recall that ce, 41 is the (+1)-eigenspace of a, hence

p1 and p; are equivalent when restricted to C£3,, IRy
By Proposition 1.29 there is an algebra isomorphism F : Cly,, — C£3, 41+ Since pjo F : Clyy, — GL(V)

is a nontrivial complex representation of C/5,, of dimension 2", it must be the unique irreducible one, hence

= 0; is an irreducible representation of C/9 .
P ="Picy, ., p 2m+1
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To see that p|gpin(2p 1) is an irreducible Lie group representation, assume that p|gpin(2i+4 1) Splits into the
direct sum of two nontrivial representations, i.e., there exists a nontrivial splitting V' = W; @ W, such that
p(x)(W;j) € W; for all x € Spin(2m + 1). By Exercise 6 and Theorem 1.43(i), Spin(2m + 1) contains an additive
basis ¢; e, e, 1 < i <ip < ... <iy < 2m+1of CEgmH. Since p is the restriction to Spin(2m + 1)
of an irreducible representation of CEQZ, not all of these basis elements leave W; invariant, i.e., there exists
1<ip <ip <...<iy <2m+1andje {1,2} such that p(e; -e;, e, )(W;) & W;. A contradiction. Hence,
Pspin(2m+1) is an irreducible representation of Spin(2m + 1).

Now let n = 2m. There is exactly one irreducible representation p : Clp,, — GL(V) of Cly,. If we restrict

p to C£9,, then Proposition 1.35 tells us that P|ce splits into the direct sum of two inequivalent irreducible

representations. We argue as in the case n = 2m + 1 that their restrictions to Spin(2m) < C¢9,  are irreducible
Lie group representations. U

Remark 1.50. The fundamental spin representation is not induced by a representation of SO(n) (through A). Indeed,
—1 € Spin(n) and x,(—1) = —idyx,, while for every representation p : SO(n) — GL(V) we have p o A(—=1) = p(E;) =
idy.

Proposition 1.51. Let p : Cl,, — GL(V) be an irreducible representation of the complex Clifford algebra Cly. Then
there exists an inner product {-,-y on V such that

(1.4) o(x)(v), p(x)(w)) = (v, w) forall xeR" <€ Cl, with |x|=1 andall v,weV.

In particular,
(i) multiplication by unit vectors is skew-symmetric, i.e., for all x € R" with |x|| = 1 and all v,w € V we have

{p(x)(v), wy = (p(x)*(0), p(x)(w)) = (p(x?)(0), p(x)(w)) = —(v, p(x)(w)),
(ii) there exists a Spin(n)-invariant inner product (-, -) on Xy, i.e., {x,(g)(0), x:(g) (7)) = {0, T) for all g € Spin(n)
and o, T € Xy. In short: x, : Spin(n) — U(Z,).

Proof. Since p is an irreducible representation, there exists a linear isomorphism F : V — 2" such that
p() = Flo®,(-)oFincase n = 2mor p(-) = F1omo®,(-)oFif n = 2m + 1, where ®, is the algebra
isomorphism from Theorem 1.30 and 77;, i = 1, 2, the projection on the first respectively second factor.

We define the inner product <, -) on V to be the pullback (v, w) := (F(v), F(w)) of the standard hermitian
inner product

2
(a,b) =), aib;
i=1
on C2 Then (1.4) follows from the matrices U, V and W from Theorem 1.30 being unitary. O

Definition 1.52. (i) A Clifford multiplication is a complex linear map
n:R'®L, - %,
XQo - x-0:=ux®0)
which satisfies
x-(y-o)+y-(x-0)=-2xyy-0c forall x,yeR",ceX,.
(ii) Two Clifford multiplications pu1, uy : R" ® X, — X, are equivalent if there exists a vector space isomorphism
F: %, — X, such that
(x®0) = F Y (u(x®F(0)))  forall xeR"oceZ,.

Proposition 1.53. If n is even then there exists up to equivalence exactly one Clifford multiplication. If n is odd there exist
up to equivalence exactly two Clifford multiplications one of which is the negative of the other. They can be distinguished
by the action of the complex volume element S, i.e., they satisfy

WS =il e (e (L (en - 0))) = +0 forall ceXy,.

Proof. Ifp : C¢;;, — End(Z,) is anirreducible representation then y(x ® o) := p(x)(c) is a Clifford multiplication.
This shows existence and in case 7 is odd that there are two Clifford multiplications which can be distinguished
by the action of the complex volume element.

To see uniqueness, let it : R" ® X,, — X, be a Clifford multiplication. Define p : R” — End(Z;) by p(x)(0) :=
u(x®@0). Then p(x)? = —|x|?-idy,. Hence, p extends uniquely to an algebra homomorphism p : C/,; —
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End(Z,) and by complexification to an algebra homomorphism p : C¢, — End(Z,). Since dim¥, = 2", 5
must be an irreducible representation. This completes the proof. O
Corollary 1.54. Every Clifford multiplication satisfies

(i) {x-o,x-T)y={0,Tyand

(ii) {x-0,Ty = —{0,x-T)
forall x e R" with |x| = 1 and all 0, T € %, where {-, -) is the Spin(n)-invariant inner product on %,,.
Remark 1.55. The group Spin(n) acts on ¥, by the fundamental spin representation x, : Spin(n) — U(Z,) and

on R" by A : Spin(n) — SO(n). If we form the tensor product R" @ ¥, then Spin(n) acts thereon via the tensor
representation

A®ky : Spin(n) - UR" ®Z,)
g (x®0 = A(g)(x) @Ku(8)(0)) .-
Proposition 1.56. Every Clifford multiplication y : R" ® ¥, — L, is Spin(n)-equivariant, i.e., we have
ARy () (x®0)) = k() (H(x ®0)) forall geSpin(n),xe R",ceXL,.
Put differently, the diagram
R'QY, ¥,

i ARy, i Kn

R"®%, L>Zn

is commutative.
Remark. The following proof actually shows: If we choose one representative y from the given equivalence class of

Clifford multiplications, then there exists precisely one representative «,, of the equivalence class of the fundamental spin
representation such that y is Spin(n)-equivariant w.r.t. A ® x,, and k.

Proof. The Clifford multiplication p satisfies u(x ® o) = p(x)(c) where p : C¢, — End(%,) is an irreducible
representation. We also have « = p|gyin(,)- The claim is now a straightforward calculation:

HA®@Kn()(x @) = p(A(Q)(X) ®Kn(8)(0) = (g - x- g~ ®p(8)(7))
=p(g- 287 ) (p(®)@) = p(g-x-87")(@) = p(g - x)(0) = p(g) o p(x)(0)
= xn(8)(H(x®0)).
g
Remark 1.57. Since there is no ambiguity about how Spin(n) acts on ¥, (via x,) respectively R" (via A), we can

abbreviate notation and simply write go respectively gx for all g € Spin(n), x € R" and o € Z,,.
The equivariance of Clifford multiplication can now be stated very concisely:

gx-go =g(x-0) forall geSpin(n),xe R",ceXL,.
In fact, using this shorthand notation, the proof of Proposition 1.56 becomes very short:
grgr=g x-g7lgr=g-x-0=g(x0).
Note, however, that it is not easy to unravel what exactly is happening here.

2. INTERMEZZO: GAUGE THEORY

Definition 2.1. Let P be a smooth manifold and G a Lie group.
(i) A (right-)action of G on P is a smooth map
PxG>(pg)—p-gePl
such that
e p-e=pforall pe Pand
e (p-g)-h=p-(g-h)forallg,he Gand pe P.
For g € G themap Ry : P € p + p-g € P is called right-translation by g. Ry is a diffeomorphism with inverse
Rgl = Rg—l.
(ii) A right action of G on P is
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o freeif p-g = pforpe Pand g € Gimplies g = e, i.e., the only right translation that has fixed points is R,
o transitive if for all p,q € P there existsa g € G such thatp-g = ¢,
e simply-transitive if it is free and transitive, i.e., if for all p,q € P there exists precisely one g € G such that
p-8=4
Example 2.2. Let V be a real n-dimensional vector space and let P := {v = (v1,...,v,) € V""|vis a basis of V}. Then
P is a smooth manifold of dimension n?. The group G = GL(n;R) acts on P from the right by

n n
PxG>s((wA)—»v-A= (ZAi,1Ui,---,ZAi,nvi) ep.
i=1 i=1

Indeed, we have v - E, = v forallve Pand ifve P, A, B € GL(n;R) then

n

n n n n n
(U . A) -B = (Z Ai,lvi, ceny Z Ai,nvi> -B = (Z Bj,1 Z Ai,jvi/ ooy Z B]',n Z Ai,]-vl-)
i=1 j=1 j=1 i=1

i=1 i=1

n n

= Z Ai,ijrlvi, ceey Z Ai,ij,nvi =0- (A . B) .
ij=1 ij=1

The action is smooth since it is a polynomial in the entries of its arquments. Moreover, it is easy to see that the action is

simply-transitive.

Definition 2.3. Let G be a Lie group and M a smooth manifold.

(i) A G-principal fibre bundle over M is a triple (P, rtp; G) consisting of a manifold P, a smooth map rtp : P — M
and a right-action of G on P such that
(a) 7Tp is surjective,
(b) the action of G on P is free,
(c) wp(p) = ntp(q) if and only if there exists g € G such that p- g =g,
(d) for every x € M there exists an open neighborhood U < M containing x and a section of P on U, i.e., a smooth
map sy : U — P such that 71, o sy = idy.

(ii) Let (P,7tp; G) and (Q, to; G) be G-principal fibre bundles over M. A smooth map ® : P — Q is called G-
principal fibre bundle morphism if
(a) mgo® = mpand
(b) @ is (G-)equivariant, i.e., we have ®(p - g) = P(p) - gforallpe Pand g € G.

(iii) The G-principal fibre bundles P and (Q are isomorphic, denoted P =~ Q, if there exists a

G-principal fibre bundle isomorphism, i.e., a bijective G-principal fibre bundle morphism ® : P — Q.

Remark 2.4. (i) By Definition 2.3(i)(b) and (c) G acts simply-transitively on every fibre Py := n;l (x) of P over M.
(ii) If there is no danger of confusion we will refer to the total space P of a G-principal fibre bundle (P, 7tp; G) as the
principal fibre bundle.

Example 2.5. Let M be a smooth manifold and G a Lie group. Define the manifold P := M x G with tp : P 3 (x, p) —
x € M and the G-action on P by multiplication of G from the right on the second factor. Then (P, 7tp; G) is a G-principal
fibre bundle called the trivial G-principal fibre bundle over M.

Example 2.6. Let M be a smooth n-dimensional manifold. For x € M define
GL(M)y :={vx = (v1,...,vn) | vy is a basis of Ty M}
and let
GL(M) := | ] GL(M), .
xeM

Define the projection via

7T = ﬂGL(M) : GL(M) - M

Uy — X.

Note that if (U, ¢ = (xl,. .., X™)) is a coordinate chart of M, then for every x € U the associated frame sij(x) =

(01(x), ..., 0n(x)) € GL(M)x. The set GL(M) has a unique structure as a smooth manifold if one requires that all such
coordinate frames are smooth. This then turns mtgy vy : GL(M) — M into a smooth map.
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There is a G = GL(n; R)-right-action of GL(n;IR) on GL(M) as defined in Example 2.2. This action induces a
right-action of GL(n; R) on GL(M):

GL(M) x GL(n;IR) — GL(M)

n n
(2.1) (vx = (01,...,00),A) »> 0y - A = (Z Ai,lvi,...,z Ai,nvi> .
i=1 i=1

The principal fibre bundle (GL(M), tg (ar); GL(n; R)) is called the frame bundle of M.
Every additional structure on the manifold M defines a subbundle of GL(M).

Example 2.7. Let M again be a smooth n-dimensional manifold.
(i) Assume that M is oriented. Let G = GL™ (1;R) = {A € GL(n;R) | det A > 0} and define

GLt (M) := {vy € GL(M)y | vy is a positively oriented basis of TyM, x € M} .

We define a GL™ (n;R) right-action on GL* (M) as the restriction of the GL(n;R)-action on GL(M). With
TGLt (M) = TTGLIM) | GL* (MY the tuple (GLT (M), nGL+(M);GL+(n;]I{)) is then a GL™ (n;R)-principal fibre
bundle called the bundle of positively oriented frames.

(ii) Let g be a Riemannian metric on M. Define

O(M) :=0O(M, g) := {vy € GL(M)y | vy is an orthonormal basis of (TxM, gx)} .

Analogously to before, we let 7oy : O(M) 3 vx — x € M and define an O(n)-right-action on O(M) by
restricting the GL(n; R)-action on GL(M). Then the O(n)-principal fibre bundle (O(M), topry; O(n)) is called
the bundle of orthonormal frames of M.

(ii)) Combining the previous two examples leads us to the SO(n)-principal fibre bundle of
positively oriented orthonormal frames of M. That is, assume M is oriented and let g be a Riemannian metric
on M. Define

SO(M) :=SO(M, g) := {vx € GL(M)y | vy is a positively oriented orthonormal basis of (TxM, gx)}

and 7tsoary + SO(M) 3 vy = x € M. Formula (2.1) defines an SO(n)-right-action on SO(M) turning
(SO(M), tso(py; SO(n)) into a principal fibre bundle.

A generalization of the notion of G-principal fibre bundle morphism is the following.

Definition 2.8. Let (P, tp; G) be a G-principal fibre bundle over M and f : H — G a Lie group homomorphism.
An f-reduction of P is a pair (Q, ®) consisting of an H-principal fibre bundle (Q, 7to; H) over M and a smooth map
® : Q — P such that

(i) mpo® = g and

(ii) ©(q-h) = D(q)- f(h) forallge Q, he H.

Properties (i) and (ii) can be summarized by saying that the diagram

QxH—=Q

o [N
PxG——P—"F>
is commutative.
If we are in the situation that H € G is a Lie subgroup and f = 1 : H — G is the inclusion, then we also call any

f-reduction (Q, f) an H-reduction of P or a reduction of P to H.

Example 2.9. Any of the principal fibre bundles from Example 2.7 together with the inclusion + : H — GL(n;R),
H = GL™*(n;R),O(n),SO(n), is an H-reduction of the frame bundle GL(M).

Definition 2.10. Let K = R or K = C and M a smooth manifold.
(i) A K-vector bundle of rank k < oo over M is a triple (E, rtg; V) consisting of a smooth manifold E, a smooth map
nig : E — M and a k-dimensional K-vector space V such that
(a) mg is surjective,
(b) Ey:= mg(x)~ 1 is K-linearly isomorphic to V for all x € M and
(c) for all x € M there exists an open neighborhood U < M of x and k pointwise linearly independent local
sections of E over U, i.e., there exist k smooth maps s, ...,s; : U — E such that
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(1) mgos;j=idy forallj=1,... kand

(2) (s1(y),...,sk(y)) is a basis of E,, for all y € U.

In case K = IR we call E a real vector bundle and in case K = C a complex vector bundle.
(ii) We denote the space of local sections of E over an open set U € M by I'(U, E), i.e.,

I'(U,E) = {s: U — E|sissmoothand g os = idy} .
In the particular case U = M we call the elements of T'(U, E) just sections of E or sometimes global sections of
E.
(iii) For sections s1,...,sx : U — E as in (i)(c) we call the smooth map s = (s1,...,5¢) : U — E* a (local) frame for
E. In case U = M, we call s a global frame for E.
(iv) Let E, F be two K-vector bundles over M. A smooth map ® : E — F is a vector bundle homomorphism if
(a) mpo® = g and
(b) @, : Ex — Fy is K-linear for all x € M.
We call ® a vector bundle isomorphism if it is invertible and then we call E and F isomorphic.

Example 2.11. Let M be a smooth manifold.

(i) Let V be a k-dimensional K-vector space. Define E := M x Vand ng : E = M xV 3 (x,v) —» x € M. If we
define

(x,0) + (x,w) := (x,v+w),
A (x,0):=(x,A-0)

forallx e M,v,we Vand A € K, then (E, tg; V) is a rank k vector bundle over M. We call E the trivial vector
bundle with fibre V over M, or simply trivial.
The sections T'(M, E) are smooth maps s : M — E = M x V satisfying rtg o s(x) = x, hence they are of the
form s(x) = (x,v(x)) for some v e C*(M, V).
(ii) The tanget bundle TM of M is a real vector bundles of rank k = dim M over M. The sections I'(M, TM) of TM
are precisely the smooth vector fields V(M).

Remark 2.12. Note that the space of sections I'(M, E) of the K-vector bundle E over M is a modul over the ring
C®(M;K) of smooth K-valued functions on M. Here, the sum of two sections and the product of a smooth function
and a section of E are defined pointwise, i.e., for f € C*(M,K) and s,t € T'(M, E) the sections s + t, fs € T(M, E) are
defined by

(s+t)(x):

(fs)(x) :

s(x) +t(x) € Eyx,

f(x)s(x) € Ex

forall x e M.

In linear algebra we learn how to construct new vector spaces out of given ones, e.g., the dual vector space,

the direct sum or tensor product of two vector spaces. These constructions carry directly over to vector bun-
dles.

Definition 2.13. (i) Let (E, tg; V) and (F, tp; W) be two K-vector bundles of rank k and 1, respectively, over M.
The Whitney-Sum of E and F is the K-vector bundle (E @ F, tgqyr; V @ W), where

E®F := U E,®F,
xeM

and

TTEQF - E®F 3 (Ex,fx) — xe M.
Ifx e Mand U,V < M are neighborhoods of x such that there are local frames s = (s, ...,s) : U — E¥ and
t=(t,...,4): V> F!, then the k + | maps

sl‘w,...,sk‘W:W—»EgE@F, tl‘w,...,i’”W:W—)F(;E@F

where W := U n 'V, are a pointwise linearly independent. The requirement that all these collections of maps are
smooth equips E @ F with a unique topology and a smooth structure, which then turns mggr into a smooth map.
(ii) As above, let (E, tg; V') and (F, rtp; W) be two K-vector bundles of rank k and 1, respectively, over M. We consider
the set
EQF:= U Ex ®k Fx
xeM
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with the projection
TTEQF - E®F 92€;®f,]( — xe M.
ij
For local frames s of E and t of F as above, the k - | maps
ujj:W—->EQ®F i= 1,...kandj=1,...,1
with
uij(y) = si(y) ®tiy) forall yeW,
are pointwise linearly independent. The requirement that all such maps constructed out of local frames of E and
F are smooth turns E ® F uniquely into a smooth manifold and mtggr into a smooth map. The vector bundle

(E®F, mgr; V @ W) is called the tensor product of E and F.
(iii) Let (E, rtg; V') be a K-vector bundle. We consider the set

E*:= | EX
XeEM
and the projection
mpx t E¥ 30, > x€ M.
Ifs = (sq,...,s¢) : U— EFisalocal frame of E, then we define the dual frame ¢ = (¢1,..., ¢;) : U — (E*)F by
requiring that
(p1(x),-- -, @i(x))
is the basis of EY dual to the basis (s1(x), . ..,sx(x)) of Ex, for all x € U. That is, ¢;(x)(sj(x)) = d;; forall x € U.
The requirement that all such dual frames are smooth turns E* uniquely into a smooth manifold and g« into a
smooth map. The vector bundle (E*, rtg«; V*) is the dual vector bundle of E.

(iv) Let (E, tg; V) be a complex vector bundle over M and let V be the complex conjugate vector space. That is, V is the
abelian group V together with the scalar multiplication C x V 3 (z,v) — z - v € V. We consider the set

- B
xeM
with projection
mg:Esex > xeM.
Any local frame s = (s1,...,s;) : U — EF defines a a local frame s : U — E. Thus, E directly inherits the
topology and smooth structure from E. The vector bundle (E, rtg; V) is the complex conjugate vector bundle of

In case (E, 7tg; V) is a real vector bundle we define (E, wg; V) := (E, tg; V).
(v) There exist many more constructions like Hom(E, F), AE, ...

Remark 2.14. (i) In case of the tangent bundle T M of a smooth manifold M, the dual bundle TM¥, called cotangent
bundle, is denoted T* M. Note also that in case of the tangent and cotangent bundle we denote the individual fibres
by TyM and T} M instead of T My and T* My, respectively.

(ii) Note that the above operations ®,®, *, . . . induce associated operations on the corresponding sections. For example,
ifseT(M,E)and t e T(M,F), then s®t € T (M, E®F) is the section defined by (s ®t)(x) := s(x) ® t(x).

Example 2.15. We consider the real vector bundle T*M ® T*M. An element b € (T*MQT*M)y = TiMQ Ty M
(x € M) can be thought of as a bilinear form, i.e., given v, w € Ty M we have b(v, w) € R. As usual, we call b symmetric
if b(v,w) = b(w, v) for all v,w € T,y M and positive definite if b(v,v) > 0 for all v € T, M\{0}. A Riemannian metric g
on M is nothing but an element of I (M, T* M ® T* M) that is pointwise symmetric and positive definite. In other words,
g is a pointwise inner product depending smoothly on the basepoint.

More generally than the example of a Riemannian metric, we have the notion of a bundle metric.

Definition 2.16. Let (E, rtg; V) be a real or complex vector bundle over M. A bundle metric on E is a section {-,-) €
T(E* @ E") which is pointwise an inner product, that is, pointwise symmetric and positive definite (K = R) respectively
hermitian and positive definite (K = C).

Remark 2.17. Just as for Riemannian metrics, a simple arqument using a partition of unity shows that any vector
bundle carries a bundle metric.

So far, we have introduced two different types of fibre bundles, namely principal fibre bundles and vector
bundles. The next definition connects these two seamingly different worlds.
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Definition 2.18. Let M be a smooth manifold, (P, tp; G) a G-principal fibre bundle over M and p : G — GL(V) a real
or complex representation of G on V. Define the set

E:=PxpV:i=PxnVi=GxV/~
where the equivalence relation ~ is given by

(p,0) ~ (p-g,p(8 1)) forallgeG,
the projection 7tg : E 5 [p,v] = 7tp(p) € M, and on each fibre Ex = Px X ¢ oy V the vector space structure

ulp, vl +vip,w] == [p,uv+vw] forall peP,o,weV,uvekK.

We equip E with a topology and smooth structure by requiring that if s : U — P is a local section of P and v e C*(U, V),
then U 3 x — [s(x),v(x)] € E is smooth. The real (V real) resp. complex (V complex) vector bundle (E, 7tg; V) is the
vector bundle associated with P and p.

Remark 2.19. With respect to the construction in the last definition, the operations @, ®, *,Hom, . .. on vector bundles
correspond exactly to the operations denoted by the same symbols on representations.

Example 2.20. Let M be a smooth manifold, GL(M) the frame bundle of M and p : GL(n;R) — GL(IR") the standard
representation. Then

@ : GL(M) x, R" - TM
n
(51, 5u), (x1,. o, 20) ] > D) xis
i=1

is a vector bundle isomorphism. If p* : GL(n;R) — GL((IR™)*) is the representation dual to p, i.e., p*(g)(I)(x) =
I(p(g~Y)x) forall ] e (R™)* and x € R", then

¥ : GL(M) xpx (R")* — T*M
n
[(Slr e /Sn)/ (yl/ cee /yi’l)] = Z yiai ’
i=1

where (071, ...,0y) is the basis dual to (sq, .. .,sn), is a vector bundle isomorphism.

Proposition 2.21. Let M be a smooth manifold, (P, tp; G) a G-principal fibre bundle over M and p : G — GL(V) a
representation. If there exists a G-invariant inner product {:,-) on V then on the vector bundle E = P x, V associated
with P and p there exists a bundle metric given by

e, frE, = (o,w),
where e = [p,v] and f = [p, w] for some p € Py.

Proof. We have to show that the bundle metric is well-defined, i.e., independent of the chosen representatives.
Let g € Py and let ¢ € G be the unique element such that g = p - g. Then we have by definition e = [p,v] =

[P 808~ )(®)] = [9,0(87)(®)] and f = [p,w] = [p-&,p(g™")(w)] = [q,p(g™")(w)]. Since the inner product
on V is G-invariant, we have (v, w) = {o(g™1)(v), p(¢~!)(w)). Hence, the bundle metric is well-defined. O

Definition 2.22. Let (E, rtg; V) be a K-vector bundle over M.
(i) A K-linear map
V :T(M,E) > T(M, T*M®E)
is called covariant derivative / connection on E if
V(fs)=df®s+f Vs forall feC*M,K),sel(ME).

Ifs e I'(M,E) and X € V(M), then the section Vxs := Vs(X) € I'(E) is called covariant derivative of s in
direction X.
(ii) If E comes with a bundle metric, a covariant derivative V in E is called metric if

X{s, t)y ={Vxs,t)+{s5, Vxt)
forall X € V(M),s,t € I'(M,E). Here, (s, ty € C*(M) is the function (s, t)(x) := {s(x), t(x))E,.
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Example 2.23. The Levi-Civita connection of a Riemannian manifold (M, {-,-) = g) is the unique covariant derivative
VEC on E = TM given by the Koszul formula

(VxY,Z) = % (XY, ZY+YZ,Y)—-Z, XD+ (X, Y], 2>+ {[Z,X],Y)—([Y, Z], X)) .

The Levi-Civita connection is metric and, moreover, torsionfree, i.e., T(X,Y) := VxY - VyX —[X,Y] =0.
Note that the torsion tensor T can in general only be defined on the tangent bundle and not on an arbitrary vector
bundle E.

3. SPIN GEOMETRY

Definition 3.1. Let (M, g) be an oriented Riemannian manifold.

(i) A spin-structure on M is a pair (P, 7r) consisting of a Spin(n)-principal fibre bundle (P, 7tp; Spin(n)) over M
and a smooth 2-sheeted covering map 7 : P — SO(M, g) such that
(a) Tt50(M,g) © 7T = TTp and
(b) n(p-g) = nt(p)-Ag) forall p € Pand g € Spin(n) with A : Spin(n) — SO(n) the Lie group homomorphism

from Section 1.3.

In other words, a spin-structure on M is a A-reduction of the bundle SO(M, g) of oriented orthonormal frames of
M. We can summarize properties (a) and (b) by saying that the diagram

P x Spin(n) —— P
J/HXA iN
. 7TSO(1)
SO(M, g) x SO(n) —= SO(M) ——> M

is commutative.

(ii) Two spin-structures (Py, 1) and (P2, 1p) on M are called equivalent if there exists a Spin(n)-principal fibre
bundle isomorphism ® : Py — Py such that 1y = 15 o ®.

(iii) If there exists a spin-structure on a Riemannian manifold (M, g), we call M spin.

Remark 3.2. Note that two equivalent spin-structures (Py, 111 ) and (P2, 112) on M provide isomorphic Spin(n)-principal
fibre bundles Py and P,. However, the converse is not true. There do exist oriented Riemannian manifolds (M, g) having
two inequivalent spin-structures (Py, rty) and (Py, 713) such that Py and P, are isomorphic as abstract Spin(n)-principal
fibre bundles over M.

Example 3.3. Let M = R". By identifying T,IR" with R" for each x € R", we can equip R" with the Riemannian
metric g given by the Euclidean inner product,

(v, w) :=(v,wy forall xeR",v,we TR"=R",

and its standard orientation given by requiring that the canonical basis (e, . . ., en) of TxR" = R" is positively oriented.
The bundle SO(R", g) of oriented orthonormal frames is trivial, i.e., is given by

SO(R",g) = R" x SO(n),

where we have identified an OONB (vy,...,vy,) of R" with the matrix A € SO(n) whose i-th column is v;. A spin-
structure for (R", g) is now given by (P, rt) with

P =TR" x Spin(n)
and
r: P =R" xSpin(n) - R" x SO(n) = SO(R", g)
(x,8) = (x,A(g)) -
Example 3.4. We consider the unit sphere S* € R"*1 with its round standard metric g, i.e.,
gx(v,w) = (o,wy forall xeS",v,we T,S" < T,R""! =R"",
where (-, ) is the Euclidean inner product. By our identification TyR"+! = R"+1, x e R"*1, we have

T,S" = x+ = {v e R"" | (v, x) = 0}.
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The orientation we endow S™ with is defined by requiring any basis (v1,...,v,) of TxS™ to be oriented if and only if
(01, . ..,0n,x) is an oriented basis of R"*1. It follows that for any positively oriented orthonormal basis (vy,...,vy) of
TxS", (v1,...,vn, X) is an oriented orthonormal basis of R"*1. Thus, the bundle SO(S") is given by

SO(§") =S0(n +1),
where we have identified the OONB (vy, ..., vy, X) of R"tY with the matrix A in SO(n + 1) having v4,...,vn, x as
columns, with projection
71'50(511) : SO(SH) = SO(TZ + 1) d Sn
(v1,-.., 00, xX) =A—x=A-¢,41.

The right-action of SO(n) on SO(S™) = SO(n + 1) is given by the right-multiplication of SO(n + 1) on itself precom-
posed with the inclusion

1:50(n) > SO(n+1)

A 0
Ar—)(o 1>.

Associated with the inclusion 1 is an inclusion T : Spin(n) — Spin(n + 1), which can be constructed as follows. The
inclusion R" =~ R" x {0} — R"*! induces an inclusion Cl,, — Cl,,1 (the image of which is the algebra generated by
e1, ..., en), which, by restriction, induces an inclusion T : Spin(n) — Spin(n + 1). It follows from the construction of
the map A from Section 1.3 that Ay41(1(g)) = t(An(g)) for all g € Spin(n).

To construct our spin-structure for S™ we set P := Spin(n + 1). The right-action of Spin(n) on P is given by right-
multiplication of Spin(n + 1) on itself precomposed with the inclusion 1. We set T := Ayq1 : P = Spin(n +1) —
SO(n +1) = SO(S") and define the projection mtp : P — S" which makes P into a principal fibre bundle over S"
by 7tp := Ttgo(sny © Ant1. Now (P, 7) is a spin-structure for S". We summarize the situation in two commutative
diagrams:

P =Spin(n +1) P x Spin(n) oldxD P
\L)\nJrl \L)‘nJrl XAn l)‘rwl
mp=mso(smMnt1 |  SO(S") = SO(n + 1) SO(S™) x SO(n) ol SO(s™)
lnso(sn)
gn

Example 3.5. Let M = S' =~ [0,27]/{0,27t} with the metric it inherits from its embedding into C = R? and the
counterclockwise orientation. Since in dimension 1 there is only one positively oriented unit-vector in each tangent space,
we see that SO(S') = S'. Note that SO(1) = {1} and Spin(1) = {+1} = Z,. The first spin-structure we define is
Py := S! x Z; with the obvious projections and right-action of Z,. We call Py the trivial spin-structure on S!. There
is a second spin-structure on S'. Define P, := [0,27t] x Z3/ ~ where (0,+1) ~ (27, F1) with projection onto S'
7tp, ([x,g]) = x. We call P, the nontrivial spin-structure on S'. The two spin-structures are inequivalent.

Proposition 3.6. Let (M, g) be an oriented Riemannian manifold. Then the spin-structures on M are in natural 1:1-
correspondence with the 2-sheeted coverings of SO(M, g) which, in case n = 2, are nontrivial on the fibres of Ttso(p,¢)-

Proof. By definition, every spin-structure 77 : P — SO(M, g) is a two-sheeted covering of SO(M, g) which, for
n = 2, is nontrivial on the fibres of 7150y ¢y since 7t(p - §) = 7(p) - A(g).

Assume that n > 2 and let 77 : P — SO(M, g) be an arbitrary two-sheeted covering which is nontrivial on
the fibres of 71551 4)- W.l.0.g. we assume that M and thus SO(M, g) and P are connected. Define 7tp : P — M
by 7tp 1= Tt5o(a,q) © 7T- Let R : SO(M, g) x SO(n) — SO(M, g) be the right-action and define R : P x Spin(n) —
SO(M, g) by R(p,g) := R(7t(p), A(g)). Then, with R : 711 (P x Spin(n)) — 71(SO(M, g)) the induced map on
homotopy groups, we have

Ry (m1(P x Spin(n))) = Ra(m1(P) x 711 (Spin(n))) = Ra (704 (711(P)), A (71 (Spin(1)))))
= x(m1(P)) € 1 (SO(M, 8)),
since 711 (Spin(n)) is trivial. Hence, there exists a unique lift R : P x Spin(n) — P of R. One easily checks

that this is indeed a group action. We have thus turned (the fibre bundle) (P, 7tp) into a Spin(n)-principal fibre
bundle over M which, by assumption, is a spin-structure. g
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Remark 3.7. Not every Riemannian manifold allows a spin-structure. Examples are the even-dimensional real projective
spaces RIP2™, which are not orientable and so, in particular, not spin. Orientable examples, which are not spin, are the
even-dimensional complex projective spaces CIP?™. The easiest way to see this is the following theorem.

For every smooth manifold there exist certain characteristic classes w; € H i (M;Z,), called Stiefel-Whitney
classes. These are obstruction classes to the existence of everywhere linearly independent sections of the
tangent bundle: if w;(M) # 0, then there do not exist n — i + 1 everywhere linearly independent continuous
vector fields on M. In spin geometry, one is interested in the first and second Stiefel-Whitney class.

Theorem 3.8. Let M be a smooth manifold.
(i) M is orientable if and only if wy (M) = 0.
(ii) M is spin if and only if w1 (M) = 0 and wy(M) = 0 in the sense that for any choice of orientation and metric, there
exists a spin-structure. Moreoever, if M is spin then there is a (nonunique) 1:1-correspondence between inequivalent
spin-structures on M and elements of H'(M; Z5).

For the next definition recall the associated vector bundle construction from Definition 2.18.

Definition 3.9. (i) Let (M, g) be an oriented n-dimensional Riemannian manifold with spin-structure (P, 7). Let
Ky : Spin(n) — U(X,) be the fundamental spin-representation. The complex vector bundle
SM := P xy,

is called the spinor bundle of (M, g) and the spin-structure (P, 7).
(ii) A section s € I' (M, £M) is called a spinor field or, sloppily, a spinor.

Remark 3.10. (i) The spinor bundle > M has rank dim%.,, = 2l3, Moreover, since «,, is a unitary representation it
comes equipped with a canonical bundle metric as described in Proposition 2.21.

(ii) Recall that in case n = 2m the fundamental spin representation splits into the direct sum oy, = x5, @K, of the
positive respectively negative half-spin representations K;Lm : Spin(2m) — U(Z;Lm). To this splitting corresponds a
splitting of the spinor bundle (see Remark 2.19)

IM=S"M®X M,
where the vector bundles
YiM:= P x4+ oF
are called the bundles of positive respectively negative half-spinors. The sections s € T'(M, £+ M) are called
positive respectively negative half-spinors.

Remark 3.11. Recall that R" @R X, carries a canonical structure as a complex vector space where scalar multiplication
with complex numbers is given by multiplication on the second factor.
Analogously, the real tensor product TM ® XM carries a canonical C-vector bundle structure.

Definition 3.12. Let (M, g) be an oriented Riemannian manifold with a spin-structure (P, i) and let ©M be the asso-
ciated spinor bundle. A Clifford multiplication is a vector bundle homormorphism of complex vector bundles
u:TMQLIM — XM
VRQ0C— V-0
satisfying
v-(w-o)+w-(v-0) =-2g(v,w)-c forall xeM,v,we TyM,0ceLM,.
Proposition 3.13. Let (M, g) be a Riemannian spin manifold with spin-structure (P, 1t) and let ZM be the associated
spinor bundle.

(i) If nis even there exists exactly one Clifford multiplication. If n is odd there exist exactly two Clifford multiplications
which are the negative of each other. They can be distinguished by the action of the complex volume element, i.e., we
have either

WG o=l e ey (L (en-0)) =0 forall xeM,oeEM,,

or
wg-az—a forall xe M,oeXM,,
where (e, . .., en) is an OONB of Ty M.

(ii) Any Clifford multiplication satisfies
v-o,Ty=—(o,v-T)y forall xeM,veTM,0,T€eXM;.
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Proof. To proof (i), we first note that the tangent bundle TM is associated to the spin-structure (P, 7r) via the
representation A : Spin(n) — SO(n). More precisely, the vector bundle homomorphism

Px,R" > TM
n
[p, (x1, .. ‘/x‘rl)t] - Z X 7t(p)i
i=1

is an isomorphism. Here, for p € Py we have t(p) = (7(p)1, ..., m(p)n) € SO(M, g)x. Alluding to Remark 2.19
again, it follows that the vector bundle TM ® £M is associated to P and the representation A ® «;, : Spin(n) —
GL(R" ® %) through the isomorphism

P X @x, (R"®%,) » TM®ZM
n
[p.x®0] = ) xim(p)i®[p,0].
i=1

If i : R"®X, — X, is any Clifford multiplication as in Definition 1.52, we define the Clifford multiplication
H:TMQ®XIM = P x)g, (R"®L;) = P xy, Ly = XM
[p.x®0] = [pji(x®@0)] = [p,x-0].

We have to check that y is well-defined, i.e., is independent of the chosen representative. For this, let p, g € Py
and let ¢ € Spin(n) be the unique element such that g = p - g. Then we have

[px®@0c]=[p-g&(A®Ka) (g Nx®0)] = [7,A(g ) (x) ®Kn(g ) ()]
and

[pi(x®0)] = [p- & xa(g™H(x ®0))] = [, Ka(g™ ) (H(x ®))].
From Proposition 1.56 we know that
Kn(g D ((x ®0)) = fi((A@Kn) (g™ (x®0)) = FUA (™)) @Ku(8™")(0))
so that
[P, f(x®0)] = [9,%0(s ™) (A(x ®0))] = [, AT (X) ®Kn(g™) ()]

as required.
All statements now follow from Proposition 1.53 and Corollary 1.54. 0

Remark 3.14. (i) In case the dimension n of M is odd, we will always fix the Clifford multiplication for which the
complex volume element acts by +ids .
(ii) We extend the Clifford multiplication to vector and spinor fields, that is, for X € V(M) and ¢ € T'(M, ZM) we let
X - ¢ be the spinor field defined by

(X @)y :=Xx-@(x) forall xeM.
All relations holding pointwise then also hold as field equations, e.g., we have
X-(Y-9)+Y - (X-¢)=-29(X,Y)-¢ forall X, YeV(M),¢el'(MEM).
Theorem 3.15. There exists a metric connection V = V= : T(M, M) — T'(M, T* M ® M) on ZM satisfying
(3.1) VE(Y-9)=VxY-9+Y -Vie forall X,YeV(M), ¢eTl(MIM).
The connection V* is called spinor connection or Levi-Civita connection.

Remark. In fact, V* is the unique metric connection satisfying (3.1). Unfortunately, we will have to content ourselves
with the existence of V.

Proof. Let (P, 7r) be our spin-structure with which XM is associated.
Step 1: For any local sections : M € U — P let (eq1,...,e,) := mwos : U — SO(M, g) be the projected local
OONB. For any ¢ € I'(U,XM), given by ¢ = [s, v] for some v € C*(U,%,), define

1 n
(3.2) x¢ =[5 X(@)]+ 7 Diei-Vieig
i—1

forany X € V(M). Obviously, V* is C-linear with respect to ¢, C* (U, C)-linear w.r.t. X and satisfies the Leibniz
rule.
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Step 2: We show that (3.2) is independent of the section s. Let s, t be local sections of P, which are, without loss
of generality, defined on the same open set W € M. We let ¢ : W — Spin(#n) be the unique smooth map which
satisfies

t=s-0
and v, w € C*(W, L,) such that ¢ = [s,v] = [t,w]. Then
[s,0] = [s - 0, k(o) (0)] = [t,w].
We consider the first term on the right-hand side of (3.2). We have
X(w) = X(kn(0™)(0)) = (d(kn 007 X)(0) + 100 () (X(0))

Since Spin(n) < C/};, we have d(L¢)X = ¢ - X respectively d(R¢)X = X - g (cf. Example ??) and using Exercise
16 we see that

(d(rn 00 )X) ()

(drey odinv o doX)(v) = —xn(d(L,-1) 0 d(Rg-1)doX)(v)
—in (0 (doX)o ) (0) = —ru(0Ka(doX 07 (0),

so that

[t, X(w)] = [s- 0, —kn(0 ™ Dicp(doX - 071 () + K, (071 (X (0))]
(3.3) =[5, X(0)] =[5,k (doX - 0~ 1)(0)].

In order to obtain an expression for doX - ¢! we will first calculate A, (doX - o~ !). Denote A = (Ajj) =Aoo:
W — SO(n). Let 7y : (—¢,€) — M be a curve with ¢(0) = x € W and 7/(0) = X € TyM. Then

Ae(doX -0 = & Mgor(t) o)) = S

o o TSI

:di Aoq(t) - Al = dAX - A!

where the X, ., are the matrices from Exercise 5. By Proposition 1.47 we now have

n
D X(Ap)Ajei-ej.
i,j,k=1

(3.4) doX .ot =

Sl

Next, we consider the second term on the right-hand side of (3.2). Recall that the tangent bundle is (isomor-
phic to ) the vector bundle P x, IR" associated with the principal fibre bundle P of our spin-structure and the
representation A. With (ey,...,e,) = mosand (fy,...,f;) = 7w ot the projected local OONBs, we have for each
i=1,...,n,

fi=1[te]=1[s-0,e]=1s, AMo)ej] =s, Aei] = [ 2 A]le]] = i Ajils, ef]
k=1

n
= D Ajiej,

k=1
which implies

n

n
ViEEi =) ViE(Ajie)) = > X(Aji)ej + Z A;iViCe;.
j=1 j=1 j=1
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Hence,

n
D VEfip= D) Ajej- ( (Ai)ex + AV ek)) ¢

i=1 i,jk=1
= >, X(Aw)Ajiej-ec- 9+ Y, AjiAgej- Ve ¢
ijk=1 ij k=1
= |5Kn Z (Akz)Ajze] 23 Z A]zAkle] vX €.
i,jk=1 ijk=1

Since A~ = A’ we have 2. AjiAxi = 0 and using (3.4) we obtain

n
Z f; - V%(Cfi - =4[5, k,(doX -0 )] + Z e - V%(Cei -,
i=1 i=1
which in turn, using (3.3), implies

»J:M—\

11’1
12 Xel‘P

Zn: Vit

Step 3: We have to show that our connection is metric and satisfies (3.1). To see that V is metric, lets : U — P
be a local section with (eq,...,e;) = mos: U — SO(M, g) the accompanying OONB, ¢ = [s,v], ¢ = [s,w] €
I'(U, M) withv,w € C*(U,X%,) and X € TyM. Then, by definition of the bundle metric, see Proposition 2.21,
we have

Xp ) = Xv,w) = (X(v), w) + (v, X(w)) =[5, X(0)], ) + (@, [s, X(w)]).
Using the skew-symmetry of Clifford multiplication, that the Levi-Civita connection is metric and the Clifford
relations, we see that

(e-V X el @ P)+<{p, - V ey ={e- Vlf(cei 2 V])“(Cel- e @)
= —2g(e;, VX" e:)9, 9,
which vanishes since
0 = Xg(e; e;) = 2g(e;, ViCe;).
Hence,

X, ) =[5, X(0)], ¥) + {9, [s, X(w)]) = Vx @, ¥) + {9, Vx9).
To see that V satisies (3.1) we let Y = [s,y] € I'(U, TM) with y € C*(U,R"). Observe that

=[s,y] = [szn:yiei Zn] i[s el = 3 g(Y,e)e;
= i=1 i=1
and
Y- =1[s,y][s0] = [sxa(y)(v)].
Thus
(3.5) Vx(Y - @) =[5, X(kn(y)(0))] + i Diei-Viei-Y-g.
i=1

The first term on the right-hand side is
X(n(y)(v) = X(Kkn(y)) () + xa(y)(X(0)) = xa(X(y))(0) + Kn(y)(X(0))

n

= D X(yi)Kn(en) (@) + (1) (X(0) = D] X(g(e, Y))kn(er)(0) + xn(y) (X(2)),

i=1 i=1
so that

(3.6) [s, X (rn(y Zn: gle, Y))ei-o+Y-[s,X(v)].
i=1
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Using the Clifford relations, we see that the second term on the right-hand side of (3.5) is

n n
Zei-V%(Cei-Y-Qz—Zei- e, - ZZgVX e, Y)e,Y) ¢
i i= i=1

n n n
= Z Y-e;- Vlg(cei -p+2 Z g(e;, Y)V%(Cei - — 22 g(VI;(Cei, Yei-¢.
i=1 i=1 i=1
Since the Levi-Civita connection is metric, for each j = 1,...,n we have

n n

n
Zg(g(ez/ vX €, e Zg (e;, Y vX e, e;) Zg (e;, Y g(el,VX i) =8, VLC e))
i=1 i= i=1

n n
= = D g(Y, Vi e)glere)) = — D g(g(Y, ViCeyei ),

i=1 i=1

—_

which implies

| =

n n
42 Xez Y- q’_*Y Zel V el'(P‘"Zg(ei/Y)V%(Cei'(P'
i

=1 i=1 i=1
From this, (3.5) and (3.6) we obtain

n

n
Vx(Y-9) =D X(g(ei, Y))ei- 9+ > gle;, Y)Viei- 9+ Y- Vxo
i-1 i=1

n

= V¥ (Z g(ej, Y)ei> “9+Y Vxo
i=1

=VEY - p+Y-Vxo.

Remark 3.16. On any Riemannian manifold (M, g) there are vector bundle isomorphisms
b
™M —<ﬁ_> T*M
called musical isomorphisms which are given by the metric, i.e., for any x € M and X € T, M we have
T.M>3 X X" e T*M
with
X(Y) = gx(X, Y)
and
f=b"1.

Definition 3.17. Let (M, g) be a Riemannian spin manifold with spin-structure (P, 1), associated spinor bundle .M
and Clifford multiplication y : TM @ LM — XM. The Dirac operator D is the 1st order linear differential operator

T(M,=M) % T(M, T*M®@2M) 29, (M, TM @ =M) % T(M, =M).

Proposition 3.18. Let (eq,...,eu) be a local ONB. Then the Dirac operator is given by

n
D¢ = Z ei- Ve ¢
i=1

forall ¢ € T(M,LM). Moreover, we have

D(fg) = gradf-¢ + fD¢
forall fe C®(M,C)and ¢ € T(M,~M), where grad f := (df)*.
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Proof. Lete; = e? foralli=1,...,n. Then

n
V(P= Z€i®v€iq)/
i—1
so that
n n n
D¢ = po(§®id) <Z £i®v€i(f)> =W ( ei®Vei<P> =D Ve
i=1 = i=1

Using the formula we just proved, we see that

i=1

n n

D(fe) =Y ei-Ve(fp) =D ei- (ei()o+ fVeo) = Dl ei(flei- 9+ . e Ve,p = grad f - ¢ + fDg.
i=1 i=1 i=1 i=1
0

Definition 3.19. Let (M, §) be a Riemannian manifold.

(i) Denote by B(M) the Borel o-algebra of M, i.e., the smallest o-algebra containing all open sets of M. We define the
Riemannian measure / volume p := pg on M to be the measure which in every chart (U, x) is given by

dp = 4/det(g;;)dA,
where A is the (pulled back) Lebesgue-measure in (U, x) and
gij=g (%,%) for i,j=1,...,n,

are the components of the matrix of g associated with the coordinates (x!,..., x™).
(ii) Let (E, tg; V) be any K-vector bundle over M and ¢ € I'cwo (M, E). The support of ¢ is the set

suppg = {x € M| ¢(x) # 0}.

We say that ¢ is compactly supported if suppe is compact and denote the space of all compactly supported
sections by
Tcx (MG E) :={¢ € T'cx (M, E) | suppg is compact} .
In the case of E = TM we additionally introduce the notation
Ve(M) :=Tcx (M, TM).

Il
—
~
-
=
N

(iii) Suppose that (E, rtg; V') comes equipped with a bundle metric {-,-). We define the L?>-inner product (-, -) :
on I'cx (M, E) by

(@, 9)p2 = JM@, Pydpg

and the associated L>-norm |- | := | |2 by

92 == 1/(9, 9).

Remark 3.20. Note that I'c=(M; E) is in general not complete w.r.t. | - |2, i.e., the pair (Tcx (M; E),(-,-)) is only a
pre-Hilbert space.

Definition 3.21. Let (M, g) be a Riemannian manifold and X € V(M) a vector field. The divergence of X is the
function div X € C*® (M) given locally by

n
divX = ) g(e;, Ve, X) = trg(VX),
i=1
where (e1,...,en) is a local ONB.

The familiar Divergence Theorem from vector calculus generalizes to Riemannian manifolds and we state
it here without proof.

Theorem 3.22. Let (M, g) be a Riemannian manifold and X € V.(M). Then

J div Xdpg = 0.
M
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Notation and Remarks 3.23. We denote by TMC the complexification of the tangent bundle. Formally, this is the
complex vector bundle over M given by
™C = | J (T.M)©
xeM
where (TyM)€ = TyM ®R C is the complexification of TyM. Each element z € (TyM)< can be written as

z=0v+iw with v,weTT,yM.
We denote V&E)(M) =T ) (M, TM®) and call its elements complex (compactly supported) vector fields. Each
element Z € V(M) can be written in the form
Z=V+iW foruniqgue V,WeV(M).

We extend the Levi-Civita connection ¥V complex linearly to a connection of TMC, denoted by the same symbol, and we
do the same with the divergence. The Divergence Theorem is then of course also true for all complex compactly supported
vector fields.

Proposition 3.24. Let (M, g) be an oriented Riemannian spin manifold with a fixed spin-structure. Then the Dirac
operator is formally selfadjoint, i.e., we have

(Do, ¢) = (¢, D) forall ¢, ¢ € Tce(M,ZM).
Proof. Let p € M and (ey,...,e,) be an ONB defined in a neighborhood of p with (Ve;), = 0. Then at p we

have

<Dq)’ lp>P = Z<ez VE, ¢, lp>P = Z<v81 ¢, € l/J>

!
M= -

(( )p<(Pr€z ) — <, Ve 1P>p <(P/ei'vei¢>p)

Il
—_

((el)P<(p/el ) —<{g. e vel4’>p)

II
,M:

Il
—

M:

(ei)plp,ei - )+, D)y

Il
—

Denote with g€ the complex bilinear extension of ¢ to TM® and define a complex compactly supported vector
field X € V& (M) by the condition

§E(Xy, W) = —(@(x), W-p(x))y forall WeTeM,xe M.
Then

n n
divX(p) = ZgC Ve, X, ei)p Z ( e;) pg (X, e;) —gC(X, Veiei)p)
i=1 i=1
n

=D, (e) Z )P i 9,

i—1 i=1

from which we deduce
(Do, ) = div X +{¢, D).
The statement of the theorem now follows from the Divergence Theorem. O

Corollary 3.25. Let (M, §) be a compact Riemannian spin manifold with a fixed spin-structure. Then
ker D = ker D?.

Remark 3.26. We call any spinor ¢ € T(M, ZM) with D?>¢ = 0 harmonic and in case M is compact, this is equivalent
to De = 0.

proof of Corollary 3.25. We only need to show ker D? < ker D. Let ¢ € ker D?, i.e., D*¢ = 0. Then we also have
(D%¢, ¢) = 0. Hence,

0= (D*¢p,¢) = (Dg, Do) = fM<D<P,D4>>dVg-
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The integrand is a nonnegative, continuous function. We claim that it must be zero. Assume it is not, i.e., there
is a point p € M such that (D¢, Dg), > 0. By continuity, there is an open neighborhood of p on which this
function is positive. Since the Riemannian measure is of full support (every open set has positive measure),
the integral would be positive. A contradiction. Hence, (D¢, D¢y = 0 which implies D¢ = 0. O

For the next proposition recall that in even dimensions the spinor bundle splits as *M = ZtTM@ L™ M.
Hence, any section ¢ € (M, ZM) splits uniquely as ¢ = ¢+ + ¢~ with ¢+ e T(M, =+ M).

Proposition 3.27. Let (M?",g) be an even dimensional Riemannian spin manifold. Then the Dirac operator D :
I[(M,ZtTM)®T(M, 2~ M) > (M, M) @I (M, X~ M) splits as

0 D~
o-(2 2).
Proof. By the Clifford relations and skew-symmetry of Clifford multiplication, any unit vector e € T,y M induces
an isometric isomorphism
e: (BEM)y - (ZTM)y.

It follows from the local formula (3.2) that the spinor connection preserves I'( M, Yt M). The local formula from
Proposition 3.18 shows that the Dirac operator maps T'(M, 2= M) to T'(M, =+ M). 0

Corollary 3.28. The operators D* : T(M,2*M) — T(M, LT M) are formal adjoints of each other w.r.t. the corre-
sponding L?-products.

Definition 3.29. Let (M, §) be a Riemannian spin manifold with a fixed spin-structure and .M the associated spinor
bundle. Suppose we are given a complex vector bundle E over M with a bundle metric and a metric connection. We
consider the bundle Z.M @ E with its tensor product bundle metric, tensor product connection and the induced Clifford
multiplication y : TM @XM Q E — XM Q E. Then the operator

t®id®id r(

Df:T(M,SM®E) % (M, T*M®EMQE) M,TM®EIM®E) 5 T(M,EM®E)

is called twisted Dirac operator with coefficients in E.

Remark 3.30. If (M, g) is an even dimensional Riemannian spin manifold, then there is a natual splitting EM ® E =
(XtTMQ®E)® (X~ M®E) and a correspoding splitting of the twisted Dirac operator

0 D7
o= (or F)-
with D : T(M,2*M®E) —» I(M,E*M®E).

3.1. The Lichnerowicz formula. The goal of this section is to come back to the very first lecture and see that,
in a suitable sense, the square of the Dirac operator is a Laplacian. The corresponding formula is called the
Lichnenrowicz formula (see Theorem 3.37) and it shows that there is an interesting interplay between the
geometry of a manifold and the existence of harmonic spinors, i.e., solutions to the equation D?¢ = 0.

Let (M, g) be a Riemannian manifold. Recall the definition of the Riemannian curvature tensor

R(X,Y)Z = VxVyZ -VyVxZ - Vixy|Z,

the Ricci curvature tensor
n

Ric(X,Y) = )\ g(R(e;, X)Y, ¢;) = tr(U = R(U, X)Y),
i=1
and the scalar curvature

n n
scal = Z Ric(e;, e;) = trg((U, V) = Ric(U,V)) = Z g(R(ei e))ej, €;) -
i=1 ij=1
The Riemannian curvature tensor has the following symmetry properties,
R(X,Y)Z =—-R(Y,X)Z,
IR(X,Y)Z,W) = —g(R(X,Y)W,Z),

S(R(X,V)Z,W) =g(R(Z,W)X,Y),

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0.
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The last equation is 1st Bianchi-identity.

It follows from the symmetry properties of the Riemannian curvature tensor, that the Ricci tensor is sym-
metric, i.e., Ric(X,Y) = Ric(Y, X). It thus defines, by duality, a (pointwise) selfadjoint endomorphism field
ric,

g(ric(X),Y) = Ric(X,Y) .

Definition 3.31. Let M be a manifold and (E, 7tg; V) a K-vector bundle over M equipped with a connection VE :
[(M,E) — T(M, T*M ® E). We define the curvature tensor R of (E, VE) by

RM(X,Y)p = V§VYe — ViV~ Vixy ¢ forall X,Ye V(M) ¢el(ME).
Remark 3.32. A calculation completely analogous to the one for the Riemannian curvature tensor shows that RE is
indeed C*®-linear in all three arquments so that it is indeed a tensor, i.e., a section RF € Tce (M, T* M® T* M®End(E)),
and that it is antisymmetric in the first two arguments, i.e., RE(X, Y)o = —RE(Y, X)o forall X,Y € TyM, o € Ey,
x € M. Therefore, it can also be viewed as an endomorphism-valued two-form, RE e chm (M, End(E)).
Proposition 3.33. Let (M, §) be a Riemannian spin manifold with a fixed spin-structure (P, 7). Then

1

n
REM(X,Y)o 12 R(X,Y)e; -,

where (eq, ..., ey) is an ONB of the corresponding tangent space.

Proof. Let p e M and let (ey, ..., e,) be alocal OONB defined on a neighborhood U of p with (Ve;), = 0 for all
i=1,...,n Chooseasections: U — Psuchthat mos = (ey,...,e;). Let X,Y € V(M), v e C*(U,%L,) and let
@ = [s,v] e T'(U; ZM). Then we have (cmp. the proof of Theorem 3.15, Step 1)

ViVig = v2< Zel Vye; - )

=[5, X(Y(0))] + 1 D ei- Vxei [s, Y(0)] +1 ), Vi (e Vye; - 9)

i=1 i=

—_

Analogously, we have

n
ViVEe =[5, Y(X(0)]+1 ) ei- Vyei - [s, X(0)] + 1 ), (erz Vxei-¢+ei-VyVxei-¢+ei-Vxe: qu?)
i=1 i=1

and also
n
v[EX,Y]Q’ =[5, [X, Y](v)] + 411 Z i Vixylei: ¢,
so that, at the point p, we have

REM(Xp, Yp)(9(p)) = 1 D5 (ei)p - R(Xp, Yp)(ei)p - (),
i=1

as claimed. 0
Definition 3.34. Let (M, g) be a Riemannian manifold and (E, tg; V) a K-vector bundle over M, equipped with a

connection VE. The associated Bochner Laplacian, also called the connection Laplacian, is the linear second order
differential operator

AF :Tew (M, E) — Tewn (M, E)

¢ —i (VEVER-VE, .0)
i=1

where (eq,...,ey) is a local ONB. In case M is a spin manifold and E = XM is the spinor bundle associated with a
spin-structure, we call A¥ := A*M the spinor Laplacian.
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Proposition 3.35. Let (M, g) be a Riemannian manifold and (E, ig; V') a K-vector bundle with a bundle metric {-,-)
and a metric connection VE. Then the associated Bochner Laplacian satisfies

(A%, 9) = (VEg,VEy) forall ¢, €Tcy(ME).
In particular, AF is nonnegative and formally self-adjoint, i.e.,
(A%, 9) >0 and (Mg, y) = (¢, A7) forall @, €Tcx(ME).
ZI){emark. The expression |V ¢|? has to be read as follows. The Riemannian metric § induces a bundle metric g* on T* M
’ ¥ (w, B) = gx(a¥, 8% forall a,BeTiM,xe M.
The bundle metric g* is sometimes called the cometric. Now we can use the tensor product metric -, ) on T*M ®E
which is given on pure tensors by
(@0, BRT)®, = 8x (&, B)o, T)x forall w,peTiM,0,T€Ex,xeM.

Then |V ¢|? is the square of the corresponding L2-norm of V ¢.

Proof. As before, we fix a point p € M and choose a local ONB (ej, ..

., ey) defined on a neighborhood of p with
(Vej)p =0foralli =1,...,n. Then, at p, we have

n n

BEQ )y = =D Ve Ve o, h)p == ) (ez-<V5,.(P, ) —<(Vig, 5¢>)p
i=1 i=1

Z (ei p<v PP+ Z 8(ei, ej)p(Ve, @fvEl/’>P

i=1 ij=1

e, p<ve (PI¢>+ Z g 81r£])p<ve P, Vgl/)>p
ij=1

ez p<Ve @)+ Z (g ®V€l(p,£]®VE1,b>p
ij=1

|M: ||Ms ||M:

ez Ve p, ) +<{VP0, Vip)g, .

In case E is a real vector bundle, we deﬁne a compactly supported vector field X € V(M) by
8x(Xe, W) = <(Viy(x), ¥(x))x forall WeTM,xeM,

and in case E is complex we substitute g€ for ¢ to define X as a complex compactly supported vector field. In
both cases, a calculation analogous to the one in the proof of Proposition 3.24 shows that

n

div X(p Z ei)p(VED, ).

i=1
Hence, it follows from the Divergence Theorem that

(AFg, ) = (VEg, VEY).
Nonnegativity now follows by setting i = ¢ and formal selfadjointness of AF follows straightforwardly,

(AP, p) = (VE, VEY) = (VEY, VEg) = (AFy, ) = (9, AFp).

O

Corollary 3.36. In the situation of Proposition 3.35, every ¢ € T'cx (M, E) which is AF-harmonic, i.e., satisfies AF ¢ =
0, is parallel, i.e., satisfies VE(p =0.

Proof. Let ¢ € I'c (M, E) be harmonic. Since AEp = 0, we also have (AF g, ¢) = 0. By the last proposition,
— (8%, p) = (VE9,V¥q) = | (VP9 VEg)ds.

The same argument as in the proof of Corollary 3.25 shows that VE¢ = 0. O
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Theorem 3.37 (Lichnerowicz formula). Let (M, g) be a Riemannian spin manifold with a fixed spin-structure. Then
we have

Dz(pzAZ(p-l—%scal-(p forall @eT(M,ZM).

Proof. Let p € M and choose a local ONB (e, ..., e,) with (Ve;), = Oforalli =1,...,n. Then, at p, we have

n n
D¢ = Z ei+ Ve, (e]--Vejgo) = Z e (VEiEj'ij(P+€j'v5ng] ) Z ei-ej Ve, Ve @
ij=1 ij=1 ij=1
- Z Ve Vep+ e (vel.vej(p - Vg]Vgi(p> :
l<]

Since (Ve;), = 0 and [ei,e]-] p = (Vel.ej — Ve].el-) p = 0 (the Levi-Civita connection is, by definition, torsionfree),
this is equal to

n
— 21 (VeiVQi(P — Vvt’i@i (P) + Z e - 6]' . (Ve’.ng(P — Vg]-in(p — V[ei/g],] §9>
=

i<j

=A2(p+26i -ej-RZM(el,e])(p A2<p+ Z ei-ej+R ZM (ei €)@
i<j ,] 1
It remains to show that the second term on the right hand side is equal to 1/4scal ¢. By Proposition 3.33 this
term is

1 1

2 Z eiejex Rieiejlex-¢ = ¢ D1 g(R(eiejex,er)eiej-ex-er- ¢

1], =1 ijkl=1
n

Z( Z g(R(e;, ej)ex + R(ej, ex)e; + Rex, ei)ej er)e; - e - ey
1:1

ik
p-w. dist.

n

+ Z R(ei ej)ei er)e;ej-e;i-+ Z el,e]-)ej,el)ei-ej-ej->el-go.
i,j=1 i,j=1

By the first Bianchi-identity for the Riemannian curvature tensor, the first sum vanishes and we are left with

1 n n n
3 DD s(Reei,ep)erei)ej-ei-ei+ > g(R(ej,en)er e)e-ej-ej |- @
1=1 \ij=1 ij=1
1
Z Ric(e;, er)e; - e;- ¢ = —— ZRlC ej,ej)ej e @ = fsca1<p,
il=1 z 1

where we have used the symmetry properties of the curvature tensor, the Ricci curvature and the Clifford
relations. O

Remark 3.38. If we are considering the twisted spinor bundle *M & E over the spin manifold M, then the first part of
the proof of Theorem 3.37 shows that

(3.7) D2 = ATM®E | i3,
where R € T (M, End(EM ® E)) is given by

1
R(o) = Z e ej- RZM@E(el,e])( ),
1] 1

with (e1, ..., en) alocal ONB. Formula (3.7) is an example of a Weitzenbock formula, also called a Bochner identity.

Corollary 3.39. Let (M, g) be a connected, compact Riemannian spin manifold with fixed spin-structure. Assume that
scal > 0 and that there exists a point p € M such that scal(p) > 0. Then there do not exist any nontrivial harmonic
spinors, i.e., the equation

D¢ =0, peI'(M,ZM)
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has only the trivial solution.
Proof. Let ¢ € T(M, M) be a harmonic spinor. Then D?¢ = 0 and so

0= (D%p,¢) = (A%¢,¢) + }(scal ¢, 9),
that is,

~IVgP = ~(Vo, Vo) = ~(A%¢,¢) = (scal g, ¢) = %stcal lpl>dps
The right-hand side is nonnegative, so we must have V@ = 0. Since the spinor connection is metric, this
implies that ||¢|? is constant,
X|p|? = X<p, ) = (Vx@, 9> +{¢,Vxp) =0+0 forall XeTyM,xe M.
By assumption scal(p) > 0 which means we must have scal > 0 on an open neighborhood of p. This implies
|¢|? = 0 for otherweise the integral on the right hand-side was positive. g

3.2. Special Spinors and Geometry. We constructed the spinor bundle and its covariant derivative using the
metric and the Levi-Civita connection. This means that the geometry of the spinor bundle is closely related
to the geometry of the underlying manifold, a fact which can be seen in the formula for the curvature tensor
of XM or in the Lichnerowicz-formula. It comes as no surprise that the existence of spinors satisfying certain
field equations has strong geometric implications.

Definition 3.40. Let (M, g) be a Riemannian spin manifold with a fixed spin-structure. Then a spinor ¢ € T'(M,LM)
is called parallel if

Vo =0,
that is, if Vx¢ = 0 for all X € V(M).

Lemma 3.41. If M is connected and ¢ € T'(M, 2M) parallel, then the function ||¢|| is constant.
Proof. We have for every X € V(M),

X|¢l* = X{¢, 9> = (Vx9, 9) +{9, Vxp) = 0+0.

Hence, | ¢|? is constant and then so is | ¢|. O

Theorem 3.42. Let (M, g) be a connected Riemannian spin manifold with a fixed spin-structure. If there exists a
nontrivial parallel spinor ¢ € I'(M,ZM), then (M, g) is Ricci-flat, i.e., Ric = 0.

REM we have

Proof. Let ¢ € I'(M,X.M) be nontrivial and parallel. By definition of the curvature tensor
R¥M(X,Y)p =0 forall X,YeV(M).

Fix a point x € M, let (ey, ..., e;) be an ONB of TyM and X € T, M. A calculation similar to the one in the proof
of the Lichnerowicz formula yields

0= > ¢ R¥M(e;, X)p(x) = %ricx(X) - p(x).
i=1

The previous lemma assures ¢(x) # 0. Hence, ricy(X) = 0 for all X € Ty M, i.e., ric, = 0. O
A more general notion than that of a parallel spinor is given in the following definition.

Definition 3.43. Let (M, g) be a Riemannian spin manifold with a fixed spin-structure. A spinor ¢ € I'(M,XM) for
which there exists a number { € C such that

Vxp=(X-¢ forall XeV(M)
is called a Killing spinor with Killing number .

Remark 3.44. The defining equation for a Killing spinor is in general well overdetermined. Indeed, if M has dimension
n the spinor bundle has rank 2"?). Hence, locally, Vx¢ = {X - ¢ is a system of 21"2| equations in n variables. As we
will see in the following propositions, neccessary conditions for Killing spinors to exist are quite restrictive.

Proposition 3.45. Let (M, g) be a connected Riemannian spin manifold with a fixed spin-structure and ¢ € T'(M, LM)
a Killing spinor with Killing number { € C. Then

(i) if ¢ is nontrivial, then @(x) # 0 for all x € M,
(ii) D(¢) = —nle, i.e., ¢ is an eigenspinor for the Dirac operator with eigenvalue —ng.
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Proof. (i): Since we already handled the case of parallel spinors, we can assume { # 0. Let ¢ : (—¢,&) —» M be
any smooth curve and let ¢ : (—¢,¢) 3t — ¢(y(t)) € ZM. Since ¢ is a Killing spinor we then have

Y90 = (Vo9 = £7'(0) - () = L7/ (6)- (1),

i.e., ¢ satisfies a first order ordinary linear differential equation. By uniqueness of solutions of ODEs, (0) =
@(7(0)) = 0 would imply ¢ = 0. Since <y was arbitrary, this in turn implies ¢ = 0.
(ii): Locally, we have

n n
Do = Zei-vei(pz Zei-éei-(pz —nge.
i=1 i=1

Definition 3.46. Let (M, g) be a Riemannian manifold. A vector field X € V(M) is a Killing (vector) field if
Lxg=0,
where the Lie-derivative on 2-tensors is given by
(Lxh)(Y,Z) :=Xh(Y,Z) —h(LxY,Z)—h(Y,LxZ)
forall X,Y,Z € V(M).
Remark 3.47. The vector field X € V(M) is Killing if and only if

0=Xg(Y,Z)—-g(LxY,Z)—g(Y,LxZ) = g(VxY,Z) +g(Y,VxZ) - g([X, Y], Z) — g(Y,[X, Z])
=g(VxY,Z) +g(Y,VxZ) - g(VxY = VyX,Z) - g(Y,VxZ - VzX)
= g(vYX/ Z) +g(Y/ VZX) ’

ie, ifand only if Y — VyX is a skew-symmetric endomorphism of the tangent bundle.

Remark 3.48. Let (M, g) be a Riemannian manifold and assume for simplicity that M is compact. The diffeomorphism
group Diff(M) of M is an infinite-dimensional (Fréchet-) Lie group and V(M) together with the Lie-bracket [-,-] on
vector fields is its Lie algebra. This can be seen as follows. Suppose we are given a one-parameter group t — ! of
diffeomorphisms ®' of M with ®° = idpy. Then p — X, 1= d/dt|t:O(Dt(p) clearly is a vector field of M. On the other
hand, given any X € V(M), then, by compactness, X is complete, i.e., for any starting point p € M the flow % (p)
exists for all time t € R. In particular, t — ®% is a one-parameter group of diffeomorphisms with ®° = id .

Inside Diff(M) we have the isometry group

Isom(M, g) := {® € Diff(M) | d®Dx : (TxM, 8x) = (To(x)M, §a(x)) is an isometry for all x € M} .

This is a (finite-dimensional) Lie group as in Section 1.1. While for a generic Riemannian metric g on M the isometry
group Isom(M, g) will be trivial, there are Riemannian manifolds whose isometry group has dimension > 1. The most
prominent example is of course (S", grounq) Wwith isometry group Isom(S", grouna) = O(n +1). A noncompact example
is the hyperbolic plane (H, gp,), where H = {(x,y) € R? |y > 0} and Shyp = 1y2(dx? + dy?), with isometry group
Isom(H, gpyp) = PSL(2; R) acting by Mobius transformations.

A Killing field X is a vector field for which the associated flow @ is a one-parameter group of isometries of (M, ),
ie., for each t € R the map M 3 p — @ (p) € M is an isometry. Thus, the existence of a Killing field X € V(M) on a
Riemannian manifold (M, g) is equivalent to the assertion that the isometry group Isom(M, g) has positive dimension.
Killing fields are sometimes called infinitesimal isometries.

A typical Killing field on the round sphere can be obtained by differentiating the one-parameter group of rotations
around a fixed axis. An example of a Killing field on the hyperbolic plane is a% which corresponds to the one-parameter
group of translations along lines parallel to the x-axis.

Proposition 3.49. Let (M, g) be a connected Riemannian spin manifold with a fixed spin-structure and ¢ € T'(M,LM)
a Killing spinor with Killing number { € R. Then the vector field

X:= Z g, ej- preje V(M),
j=1

where (eq, ..., ey) is a local ONB, is a (possibly vanishing) Killing field of (M, g).
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Proof. Let p € M and (ey, ..., en) a local ONB in a neighborhood of p with (Ve;), = 0forallj =1,...,n. Let
Y € T,M. Then, at p, we have

VyX—l

M:

(Y ej- @)+, ;- 9)Vye;)

—.
Il
—_

||
M:

(<qu0, ej- ¢y +{p, Vy(ej- 9))) e

—.
Il

||
M:

((Vyg.ej- @) +<{@,Vyej- ) +{p,e;- Vy))) ¢

~.

- I
I M: -

(<Y pejp)+{9,e;-Y-9))) e

b%

(pej-Y-9p—Y e ppej,

-
I
R

so that

n n
§(VyX,Z) =10 Y g e; Y -9 =Y ;- 9)8(ej, Z) =10 D {9, 8(ej, Z)(ej- Y -9 —Y -¢j - ¢))
=1 =1
=i Z-Y -9=Y Z-9),
which is skew-symmetric in (Y, Z), i.e.,, Y — VyX is a skew-symmetric endomorphism of the tangent bundle
TM. By the last remark, X is a Killing field. O
Proposition 3.50. Let (M, g) be a connected Riemannian spin manifold with a fixed spin-structure. Assume there exists
a Killing spinor ¢ € I'(M, 2M) with Killing number { € C. Then we have:
(i) ric(X) = 4(n — 1)Z%X. In particular, (M, g) is an Einstein manifold with {*> = 1 (Scal ) and { € Ror € iR.

(ii) If ¢ # 0 then (M, g) is locally irreducible, i.e., no point admits a neighborhood U such that (U, g11) is isometric to
a Riemmanian product (V,gy) x (W, gw).

Proof. By definition of the curvature tensor we have
R¥M(X,Y)p = VxVy¢ = VyVx9 = Vixy)¢ = Vx((Y - 9) = Vy({X - 9) = {[X, Y]
=C(VxY-9+Y-Vx¢-VyX-9—-X-Vyp—[X, Y] ¢)
= (VY = VWX = [X,Y]) o+ (Y (X9 —X-CY-9)
=Y -X-X-Y)g.
As before we also have

n n n
ric(X)- @ = =2 Y ei- R*M(X,e))p = =202 Y i+ (ei- X = X -e))p = =202 D (ef - X — e X - €)@
i=1 i=1 ‘

n
= 272 Z:(el2 X407 X +29(X,e)ei)p = 4(n—1)*X - 9.
i=1

By Proposition 3.45(i), ¢ is nowhere zero, which implies ric(X) = 4(n — 1)7?X, or, equivalently, Ric(X,Y) =
4(n —1)7%g(X, Y). A straightforward calculation yields

n
scal = Z Ric(e;, ¢;) Z n—1)0%g(e;, e) = 4n(n —1)22.

To see (ii) assume U € M is open and that (U, g‘u) is isometric to the Riemannian product (V, gv) x (W, gw)
by an orientation preserving isometry f. We give (V x W, gyxw = gv @ gw) the spin-structure induced by f
so that the spinor bundles over U and V x W are isomorphic by a vector bundle isomorphism which preseres
bundle metrics and covariant derivatives. We now view ¢ as a spinor on V x W. Let (x,y) € Vx W, X €
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T,V\{0}, Y € T,W\{0}, so that X +Y € TLV@®T,W = T, ,)V x W. Then RV*W(X,Y)Z = 0 forall Z €
T.V®T,W.
From the above we have on the one hand

n
AWK, V) gl y) = 3 3 e RVW(X Yer g(x,y) =0
i=1
and on the other hand
R¥VM(X,Y)g(x,y) = (Y- X = X-Y)g(x,y).
Since ¢ # 0 and gy« w(X,Y) = 0 this implies
X-Y 9(x,y)=0.
But Clifford multiplication by a nonzero vector is an isomorphism (X - X - ¢(x,y) = —|X|?¢(x,y)), hence
¢(x,y) = 0, which contradicts Proposition 3.45(i). O
Corollary 3.51. Let (M, g) be a connected Riemannian spin manifold with a fixed spin-structure. Assume there exists a
Killing spinor ¢ € I'(M, 2M) with Killing number  # 0.
(i) If ¢ is real and (M, g) complete, then M is compact.

(ii) If { is imaginary, M is noncompact.

Proof. By the last proposition we have Ric = 4(n — 1)¢%g. If { is real, 4(n — 1){?> > 0, and Myers’ theorem
asserts that M is compact.

If { is imaginary, we have {?> < 0 and by Proposition 3.45(ii), ¢ is an eigenspinor of D? with eigenvalue
n?¢% < 0. Assuming M is compact implies

0 < (Dg,Dg) = (D*¢, 9) = n**(¢,9) <0,

a contradiction. Hence, M must be noncompact. U

Remark 3.52. In dimensions three every Einstein manifold has constant sectional curvature. In dimension four, one can
show that a Riemannian spin manifold possessing a nontrivial Killing spinor with nonzero Killing number has vanishing
Weyl tensor. Since such a manifold is an Einstein space, it follows that its sectional curvature is constant. Thus, Killing
spinors become interesting only in dimension > 5.

Remark 3.53. Our next goal is an eigenvalue estimate for the Dirac operator. Since the spinor Laplacian is a nonnegative

operator, the Lichnerowicz formula tells us that any eigenvalue A of the Dirac operator on a closed Riemannian manifold

(M, g) satisfies A2 > %, where scaly := infyeps scal(x). Indeed, let A be an eigenvalue of D with a corresponding

L?-normalized smooth eigenspinor ¢ € T(M,LM). On the one hand, we have
(D%, 9) = A(,9) = A%,
and on the other hand
(D¢, 9) = (A, @) + (% scal ¢, (p) > 1scaly(g, @) = 1 scaly .
As the next theorem shows, this inequality is not sharp and we can do better.

Theorem 3.54 (Friedich’s inequality). Let (M",g) be closed Riemannian spin manifold with fixed spin-structure.
Then every eigenvalue A of the Dirac operator D satisfies

n scalg

A% >
n—-1 4

Moreover, if A = +%, /-5 scaly is an eigenvalue of the Dirac operator with corresponding eigenspinor ¢, then ¢ is a
Killing spinor with Killing number $%4 / ﬁ scaly. In particular, the scalar curvature is constant.

Remark 3.55. Friedrich’s inequality is sharp. Indeed, equality is attained on, e.g., the sphere where we have scaly =
scal = n(n—1).
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Proof of Theorem 3.54. Let ¢ € C and consider the twisted connection

V9 :=Vxo—IX -9, @el(MEM),XeV(M).

n n
(V g,V i) = DUV 0, Ve 0) = D (Ve 0+ e 9, Ve, 0+ e @)
j=1 j=1

[l
> 5 TMM= M=

(<ve 9. Vo) +Te 0, Ve, @)+ LV ¢ )+ TXe 0,5 9))

(<ve 9. Vo9 — 59, Ve, @) = e Ver 0, 9) + X0, 9))

Vo, Vo) =g, Dy — LD, ¢) +nlp, ¢).
Integrating this yields
(3.8) (VE9,V C9) = (Vo, V) = 20(Dg, 9) +nZ*(¢,¢).
We also have
(D -9 =(D=0)(Dy—(¢) = D*¢—2(Dy +%¢
Integrating and using the Lichnerowicz formula and Proposition 3.35 we obtain
(D=0)%g, ) = (D¢ —20Dg + %9, ) = (Ag, ¢) + ((Yascal +0%)¢, ¢) — 2{(Dg, )
= (Vo, Vo) + ((ascal +0%)9, ) —20(Dg, ).

Let A be an eigenvalue of D with corresponding eigenspinor ¢ € I'(M, 2M). Set  := */n. From (3.8) we obtain

—AJn —An A? A? A2
(V=7 V <P)=(V¢,V¢)—27(¢,<p)+n;(fp/¢)=(V¢,V¢)—;(<p,¢)-

Combining this with (3.9) yields

(3.9)

2

(+-2) .01 = (@309 = (0,99 (35 +3) 0r0) 22 g0

n
. _ A% A2 1
= (V Vg,V g) + <nz - ) (¢, 9) + (scal , ).
Substracting A>(1 =)/u?(¢, @) from both sides we obtain
n—1 Y , scal
(3.10) P2, g) = (g, T g) + S (scal 9, 9) > (g, ),

which is the desired inequahty.
Now assume that A = i% /7241 scalg. Then we have equality in (3.10), which implies Vg =0, ie.,

¢ is a Killing spinor with Killing number 4/» = FJ ﬁ scaly and the scalar curvature is automatically

constant. O

APPENDIX A: TOPOLOGICAL SPIN STRUCTURES

Let GL4 (n;R) be the group of invertible n x n-matrices with real entries and positive determinant. The
group SO(n) € GLi(m;R) is a deformation retract. This can be seen by noting that the Gram-Schmidt-
algorithm GS : GL4 (n;IR) — SO(#n) is a continuous map and that 1 oGS : GL4 (n;R) — GL(1;R), where
1:S0(n) — GL4+(n;R) is the inclusion, is homotopic to the identity.

It follows that 71(GL4+(2;R)) = Z and 1 (GL4+(n > 3;R)) = Z. We denote with GL+(n;R) the double

cover group (which is the universal cover for n > 3) and with A : GL+ (n R) — GL1(n;R) the corresponding
covering map, which is automatically a Lie group homomorphism.

Definition 3.56. Let M be a smooth oriented manifold and denote with (GL+ (M), 7t + (M) GL4+(n;R)) the GL4 (n; R)-
principle fibre bundle of oriented frames of M.

(i) A topological spin-structure is a pair (P, 1) consisting of a GL;\(;ZIR)—principle fibre bundle (P, rtp; GL;TE]R))
over M and a two-sheeted covering 1t : P — GL4 (M) such that
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(a) TGL+(m) © 7T = TP,
(b) n(p-g) =n(p)-A(g) forallpe P,g € GL:I;ZIR).
PxGL,(m;R)— 7P
lnxA lN
R 7TGL 4 (M)
GL+ (M) X GL+(1’[,’ IR) —_— GL+ (7’[; ]R) — M
(ii) Two topological spin-structures (P, 711) and (P, 712) on M are equivalent if there exists a GLW;/]R)—principal

fibre bundle isomorphism ® : Py — P, such that 7tp, o ® = 7tp,.

Now let M be an oriented manifold with a topological spin-structure (P, 7t). We choose a Riemannian metric
g on M. The Riemannian metric induces a reduction of the bundle of oriented frames to the group SO(n),

P

|

GL (M) <——SO(M, g)

7TGL+ (M) \L /
TSO(M.,g)

M
Defining Q := Qf := 71 (SO(M, g)), we obtain a 2-sheeted covering,
P =8

ln |me

GL, (M) <=—SO(M, g)

7TGL+ (M) \L /
TSO(M.,g)

M

which is then automaically a spin-structure as in Definition 3.1, cmp. Proposition 3.6. From the above it is
evident that SO(M, g) is a deformation retract of GL4 (M) and one can show that Q3 is a deformation retract of
P. Setting the question of the existence of P aside, the choice of a spin-structure Q¢ thus uniquely determines
the topological spin-structure P and thereby a unique spin-structure Q" for every other Riemannian metric k.

The above raises the question why we do not define spin-structures as topological spin-structures. Unfor-

tunately, the group GL/E;/]R) does not posses any finite-dimensional representations that are not lifts from
GLi(m;R), [LM89, Ch. II, Lemma 5.23]. It is only after we reduce to the compact group SO(1; R) and cosider-
ing its compact double cover Spin(n) that we obtain the fundamental spin-representation.
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