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0. MOTIVATION

Let T be a free particle in R3. We want to study its motion in special relativity. If we denote its (relativistic)
mass, Energy and momentum by m, E and p, respectively, then we have the relation

E �
b

c2 p2 �m2c4 ,(0.1)

where c denotes the speed of light.
Now we want to additionally study T quantum mechanically which means we have to describe T by a wave

function ψ � ψT : R�R3 Q pt, xq ÞÑ ψpt, xq P C. Here, the associated function pt, xq ÞÑ |ψpt, xq|2 P R is the
density of the probability law that the particle T can be found at x at time t. The energy and momentum are
no longer scalars associated with T but become unbounded operators acting on appropriate Hilbert spaces of
wave functions,

Eψ � ih
Bψ

Bt
,

pψ � �ih grad ψ .
(0.2)

If one wants to combine the relativistic equation (0.1) with the quantum mechanical description (0.2), one
concludes that wave functions must (formally) satisfy the equation

ih
Bψ

Bt
�

a
c2h2∆�m2c4ψ ,

where ∆ denotes the Laplacian ∆ � �°3
i�1 B2{Bx2

i . We thus face the problem of finding the square root of a second order
differential operator. Setting all constants to 1 (as mathematicians like to do), we specifically want to find the
square root D � ?

∆ of the Laplacian. There are many ways in which this can be done, e.g., via the functional
calculus, but for many reasons it is desirable that D be a differential operator itself. This means of course that
D must be of first order. We take the ansatz

D �
3̧

i�1

γi
B
Bxi

.
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The requirement D2 � ∆ holds if and only if

γ2
1 � γ2

2 � γ2
3 � �1 and γiγj � γjγi � 0 , for i � j .

These equations do not posses a solution in C. They do, however, if we allow the γi to be elements of some
algebra. The smallest algebra that contains elements satisfying these relations is the one of complex 2 � 2-
matrices. Specifically, the matrices

γ1 �
�

i 0
o �i



, γ2 �

�
0 �1
1 0



, γ3 �

�
0 i
i 0



do satisfy above equations. Now D becomes an operator acting on C2-valued functions, i.e. elements of
C1pR3, C2q, and the equation D2 � ∆ has to be understood component-wise.

This discussion was specific to R3. In the following lecture, we will learn how to define the Dirac operator
D on (almost) any Riemannian manifold and study its basic properties.

1. BASICS

1.1. Lie groups.

Definition 1.1. A Lie group is a C8-manifold G which is also a group with the property that

G� G Q pa, bq ÞÑ a � b P G

G Q a ÞÑ a�1 P G

are smooth.

Example 1.2. (i) pRn,�q, pCn,�q, pCzt0u � C�, �q.
(ii) pS1 � teit | t P Ru � C�, �q.

(iii) If G, H are Lie groups, then G� H is a Lie group with the product manifold and product group structure.
(iv) pGLpn; Cq, �q since GLpn; Cq is an open subset of Cn2 � R2n2

and matrix multiplication and inversion are polyno-
mials in the entries of matrices, hence smooth. More generally, for any finite-dimensional (unital) R-algebra A , the
set A � of units of A is canonically a Lie group.

(v) Any subgroup / submanifold of any Lie group G which also happens to be a submanifold / subgroup. For G �
GLpn; Hq the most prominent examples are: GLpn; Rq, SLpn; Cq, SLpn; Rq, Upnq, Opnq, Sppnq, SUpnq, SOpnq.
The groups Opnq, Upnq and Sppnq are special cases of the following more general construction: Let K be either R,
C or H and s : Kn �Kn Ñ K a bi-/sesquilinear, nondegenerate (skew-)symmetric / (skew-)hermitian form. Then
Opsq :� tA P Mpn, n; Kq | spAX, AYq � spX, Yq for all X, Y P Knu is a Lie group.

(vi) The Heisenberg group

H2n�1 :�
$&%γpx, y, zq :�

��1 xt z
0 En y
0 0 1

�
 | x, y P Rn, z P R

,.- � GLpn; Rq .

As a manifold, H2n�1 is diffeomorphic to R2n�1. Group product and inversion are given by

γpx, y, zq � γpu, v, wq � γpx� u, y� v, z�w� xx, vyEuclq ,

γpx, y, zq�1 � γp�x,�y,�z� xx, yyEuclq .

Definition 1.3. (i) For a P G the map La : G Q b ÞÑ a � b P G is called left-translation by a. La is a diffeomorphism
with inverse L�1

a � La�1 . Analogously, Ra : G Q b ÞÑ b � a P G right-translation by a.
(ii) A vector field X P VpGq is called left-invariant :ô

X � La � dpLaq � X @a P G ,

i.e., Xa�b � dpLaqbXb for all a, b P G. In other words, X is La-related to itself for all a P G.

Remark 1.4. The space of left-invariant vector fields on G is canonically identified with TeG, the tangent space to G at
the identity:

TeG Q X ÞÑ pvector field rX given by rXa :� dpLaqeXeq
TeG Q Ye ÞÑY P tleft-invariant vector fields on Gu

These two maps are vector space isomorphisms and inverses of each other.

Lemma 1.5. If X, Y are left-invariant vector fields on G, then rX, Ys is again a left-invariant vector field.
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Proof. Let a P G. Then X is La-related to itself, and so is Y. Hence, rX, Ys is La-related to itself. □

Corollary and Definition 1.6. (i) A Lie algebra over R is a real vector space V together with a bilinear map
r�, �s : V �V Ñ V which is alternating and satisfies the Jacobi identity, i.e., rX, Ys � �rY, Xs and rX, rY, Zss �
rY, rZ, Xss � rZ, rX, Yss � 0 for all X, Y, Z P V.

(ii) The vector space g of left-invariant vector fields on G is by Lemma 1.5 a Lie algebra over R.

Remark 1.7. The tangent space TeG is canonically identified with g by Remark 1.4. This means that TeG inherits a Lie
algebra structure from g!

Explicitely: If X, Y P TeG, then rX, Ys :� rleft-inv. ext. rX of X, left-inv. ext. rY of Yse.
One often encouters the notation g � TeG, which should always be understood in the above sense.

Lemma 1.8. Let X be a left-invariant vector field on G and Φt
X its flow. If Φt

Xpeq is defined for all t P p�ε, εq, then so is
Φt

Xpaq, and we have

Φt
Xpaq � a �Φt

Xpeq .

Proof. We need to check that t ÞÑ a �Φt
Xpeq is an integral curve of X starting in a. We have

d
dt

�
a �Φt

Xpeq
� � d

dt
�

LaΦt
Xpeq

�q � dpLaqΦt
Xpeq

d
dt

Φt
Xpeq

� dpLaqΦt
Xpeq

XΦt
Xpeq

� Xa�Φt
Xpeq

,

where the second equality follows from the chain rule and the last one from X being left-invariant. □

Corollary 1.9. Any left-invariant vector field X on G is complete, i.e., Φt
Xpaq is defined for all t P R and all a P G.

Proof. Let ε ¡ 0 be as in Lemma 1.8 and let a P G. Suppose that

t0 :� suptt |Φ�
Xpaq is defined at least until tu   8 .

Let b :� Φt0�ε{2
X paq. By the previous lemma, Φt

Xpbq is defined at least for t P p�ε, t0� ε{2q, which is a contradiction
to our assumption t0   8. □

Definition 1.10. (i) A Lie group homomorphism f : G Ñ H is a smooth group homomorphism between Lie
groups G and H.

(ii) A (real / quaternionic) representation is a Lie group homomorhism f : G Ñ GLpVq, where V is a complex (real /
quaternionic) vector space.

(iii) A one-parameter subgroup in G is a Lie group homomorphism α : pR,�q Ñ G, i.e., α is smooth and satisfies
αps� tq � αpsq � αptq for all s, t P R.

Proposition 1.11. The map t1-parameter subgroups in Gu Q α ÞÑ 9αp0q P TeG is a bijection.

Proof. Define

Λ : TeG � g Q X ÞÑ pt ÞÑ Φt
Xpeqq P t1-parameter subgroups in Gu

TeG Q 9αp0q ÞÑα P t1-parameter subgroups in Gu : Ψ .


 Ψ �Λ � id: d
dt |t�0Φt

Xpeq � Xe.

 Λ � Ψ � id: We have to show that α is indeed the integral curve of the left-invariant vector field

associated with 9αp0q:

9αptq � d
ds |s�0

αpt� sq � d
ds |s�0

αptq � αpsq � dpLαptqqe 9αp0q
� pleft-invariant vector field associated with 9αp0qqαptq .

□

Notation 1.12. The Lie exponential map e� : gÑ G maps X P TeG � g to eX :� Φ1
Xpeq. Thus, t ÞÑ etX � Φ1

tXpeq �
Φt

Xpeq is the 1-parameter subgroup in G associated with X as in Proposition 1.11.

Proposition 1.13. If X, Y P g, then

rX, Yse � d
dt |t�0

d
ds |s�0

etXesYe�tX .
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Note that for fixed t � t0, s ÞÑ etXesXe�tX is a curve in G starting in e P G, hence t ÞÑ d
ds |s�0etXesXe�tX is a

curve in TeG.

Proof. Denote by L the Lie derivative. By its definition, we have

rX, Yse � pLXYqe �
d
dt |t�0

d
�
Φ�t

X
�

Φt
Xpeq

YΦt
Xpeq

� d
dt |t�0

d
ds |s�0

Φ�t
X �Φs

Y �Φt
Xpeq .

By Lemma 1.8 we have

Φ�t
X pΦs

YpΦt
Xpeqqq � Φ�t

X pΦs
YpetXqq � Φ�t

X pΦs
YpetX � eqq � Φ�t

X petX �Φs
Ypeqq

� etX �Φ�t
X pesYq � etX � esY � e�tX .

□

Example 1.14. Let G � A � for a finite-dimensional, associative unital R-algebra A (e.g., A � Mpn, n; Cq with
A � � GLpn; Cq or A � EndpVq with A � � GLpVq), e � 1A the multiplicative identity in A , C P TeG � A , A P G.
Note that for small t, 1A � tC P A � by the Neumann series.

dpLAqeC � d
dt |t�0

LAp1A � tCq � AC .

Hence, the left-invariant vector field XC associated with C is given by XC
A � A � C.

Next, we compute the Lie bracket of C, D P TeG � A . We have

rC, Ds � rXC, XDse � dpXDqeXC
e � dpXCqeXD

e � d
dt |t�0

XD
p1A�tCq �

d
dt |t�0

XC
p1A�tDq

� C � D� D � C ,

where we have interpreted XC and XD as maps from the open set A � � A to A � Rdim A , hence their Lie bracket is
given by the difference of their directional derivatives with respect to each other.

At last, we compute the Lie exponential map of G. For C P TeG, the algebra exponential map t ÞÑ expptCq � 1A �
tC� 1{2ptCq2 � . . . is a 1-parameter subgroup in G (exppps� tqCq � exppsCq � expptCq) with d{dt|t�0 expptCq � C, so
it must be the one associated with C:

etC � expptCq .

The above formulae for rC, Ds and etC also hold for any Lie subgroup of G!

Lemma 1.15. Let Φ : G Ñ H be a Lie group homomorphism.
(i) ΦpetXq � etdΦeX for all t P R, X P TeG.

(ii) rdΦeX, dΦeYs � dΦerX, Ys, hence dΦeTeG Ñ TeG is a Lie algebra homomorphism, i.e., a vector space
homomorphism which preserves Lie brackets.

Proof. (i) We are done when we show that the left hand side is indeed a 1-parameter subgroup in H with
the correct initial vector: Φpeps�tqXq � ΦpesX � etXq � ΦpesXq � ΦpetXq with initial vector d

dt |t�0ΦpetXq �
dΦep d

dt |t�0etXq � dΦeX.
(ii)

rdΦeX, dΦeYs � d
dt |t�0

d
ds |s�0

etdΦeXesdΦeXe�tdΦeX piq� d
dt |t�0

d
ds |s�0

ΦpetXqΦpesYqΦpe�tXq

� d
dt |t�0

dΦe

�
d
ds |s�0

etXesYe�tX


� dΦe

�
d
dt |t�0

d
ds |s�0

etXesYe�tX



� dΦeprX, Ysq ,

where we have used Proposition 1.13 in the first and last step.
□

Definition 1.16. (i) For a P G let Ia :� La � R�1
a : G Q b ÞÑ a � b � a�1 P G be conjugation by a.

(ii) For a P G let Ada :� dpIaqe : g � TeG Ñ TeG � g.
(iii) For X P g let adX :� rX, �s : g Q Y ÞÑ rX, Ys P g.

Remark 1.17. (i) Ia is a Lie group automorphism, i.e., a diffeomorphism and a group automorphism. Moreover,
AutpGq is a Lie group and G Q a ÞÑ Ia P AutpGq is a Lie group homomorphism.
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(ii) Ada : g Ñ g is by Lemma 1.15(ii) a Lie algebra automorphism. Moreoever, Ad : G Q a ÞÑ Ada P Autpgq �
GLpgq is a Lie group homomorphism, where GLpgq is the Lie group of linear transformations of the vector space(!)
g.

(iii) By the Jacobi-identity, we have adXrY, Zs � rrX, Ys, Zs � rY, rX, Zss � radX Y, Zs � rY, adX Zs. That is, adX :
g Ñ g is a Lie algebra derivation, i.e., a vector space endomorphism φ P Endpgq with φrX, Ys � rφX, Ys �
rX, φYs. Moreover, ad : g Q X ÞÑ adX P Derpgq is a Lie algebra homomorphism, where the Lie bracket on Derpgq is
given by rφ, ψs � φ � ψ� ψ � φ and adrX,Ys � adX � adY � adY � adX � radX , adYs.

Lemma 1.18. Let X, Y P g � TeG. Then
d
dt |t�0

AdetX � adX .

In particular,

dpAdqe � ad .

Proof.

d
dt |t�0

AdetX Y � d
dt |t�0

d
ds |s�0

IetX pesYq � d
dt |t�0

d
ds |s�0

etX � esY � e�tX 1.13� rX, Ys � adX Y .

□

Corollary 1.19. Apply Lemma 1.15(i) to Φ :� Ad : G Ñ Autpgq � GLpgq:

AdetX � etdAde X � et adX � exppt adXq � id�t adx �t2{2 ad2
X � . . . .

Summary.

g
ad //

e�

��

Derpgq
e��exp
��

� // Endpgq
e��exp
��

G Ad // Autpgq � // GLpgq
1.2. Clifford Algebras.

Definition 1.20. Let K be a field with char K � 2, V a finite-dimensional K-vector space and q a quadratic form on V.
We call pC, ιq a Clifford algebra for pV, qq if

(i) C is an associative, unital K-algebra.
(ii) ι : V Ñ C is a K-linear map with

ιpvq2 � �qpvq � 1C for all v P V .

(iii) If A is any associative, unital K-Algebra for which there is a map j : V Ñ A with

(1.1) jpvq2 � �qpvq � 1A for all v P V ,

then there exists a unique K-algebra homomorphism rj : C Ñ A such that

C
rj

��
V

ι

??

j // A
is commutative.

Proposition 1.21. For any pV, qq there exists a Clifford algebra pC, ιq unique up to canonical isomorphism. Moreover, ι
is injective and t1Cu Y ιpVq � C generates C.

Proof. Let us first show uniqueness of the Clifford algebra. This is a standard argument using the universal
property Definition 1.20(iii). Suppose we are given two Clifford algebras pC, ιq and pC1, ι1q. By definition, there
exist unique maps rι : C1 Ñ C with rι � ι1 � ι and rι1 : C Ñ C1 with rι1 � ι � ι1. The map rι � rι1 : C Ñ C satisfiesrι � rι1 � ι � rι � ι1 � ι. Using Definition 1.20(iii) a third time, now with A � C and j � ι, we see that idC �ι � ι. By
uniqueness, we haverι �rι1 � idC. Analogously, rι1 �rι � idC1 . Hence, pC, ιq is unique up to canonical isomorphism.
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Next, we show that pC, ιq actually exists. Let T pVq � À8
k�0 Vbk

be the tensor algebra of V. Define I as the
two-sided ideal generated by the set

tvb v� qpvq | v P Vu
and C :� T pVq{I . Let π : T pVq Ñ C be the canonical projection and define ι : V ãÑ T pVq πÑ C, the
concatenation of the injection V ãÑ T pVq and the projection π.

Since I is a two-sided ideal, C inherits an associative, unital algebra structure from T pVq. Furthermore, by
the very definition of C and ι, we have ιpvq2 � �qpvq � 1C for all v P V.

Let now be j : V Ñ A be linear map into an associative, unital K-algebra with (1.1). By the universal
property of the tensor algebra, j extends uniquely to a K-algebra homomorphism j : T pVq Ñ A. Since j
satisfies (1.1), we have I � ker j. Hence, j descends uniquely to a map rj : C Ñ A satisfying rj � ι � j.

To show that ι is injective, it suffices to prove that V X I � t0u. This is a simple argument by induction
over the degree of tensors. Finally, since T pVq is generated by V and 1 P K � Vb0

, C is generated by ιpVq and
1C. □

Remark 1.22. (i) We will from now on denote the unique Clifford algebra associated with pV, qq by pCℓpV, qq, ιq and
view V as a subspace of CℓpV, qq by virtue of ι. Moreoever, we will write 1 P CℓpV, qq instead of 1CℓpV,qq.

(ii) If b : V �V P pv, wq ÞÑ 1{2pqpv� wq � qpvq � qpwqq P K denotes the symmetric bilinear form associated with q,
we have

v �w�w � v � �2bpv, wq � 1 for all v, w P V

in CℓpV, qq. In particular, if V has K-dimension n and pe1, . . . , enq is a basis of V that diagonalizes b, then

e2
i � �qpeiq for all i � 1, . . . , n and ei � ej � ej � ei � 0 for all 1 ¤ i � j ¤ n .

Definition 1.20(iii) says that CℓpV, qq is the smallest associative, unital algebra containing V and satisfying these
relations.

(iii) Let V, W be K-vector spaces, equipped with quadratic forms q and r, respectively. Applying Definition 1.20(iii)
to ιW � f for a K-linear map f : V Ñ W which satisfies f �r � q (i.e. rp f pvqq � qpvq for all v P V) shows
that f extends uniquely to an algebra homomorphism rf : CℓpV, qq Ñ CℓpW, rq. The uniqueness assertion in
Definition 1.20(iii) also implies that, given another linear map g : W Ñ U into a vector space U with a quadratic
form s which satisfies g�s � r, we have �g � f � rg � rf .

Definition 1.23. Let V be a K-vector space and q : V Ñ K a quadratic form with associated symmetric bilinear form
b : V �V Ñ K.

(i) Denote by α P AutpCℓpV, qqq the unique continuation of � idV P Opbq. Explicitely, α : CℓpV, qq Ñ CℓpV, qq is the
unique K-linear map which satisfies

αpv1 � v2 � � � vkq � αpv1q � αpv2q � � � αpvkq � p�1qkv1 � v2 � � � vk for all k P N0, v1, . . . , vk P V .

In particular, α2 � id.
(ii) For i � 0, 1 define CℓpV, qqi :�  

x P CℓpV, qq | αpxq � p�1qix(, i.e., CℓpV, qqi is the p�1qi-eigenspace of α, and

CℓpV, qq � CℓpV, qq0 ` CℓpV, qq1 .

Multiplication in CℓpV, qq satisfies

CℓpV, qqi � CℓpV, qqj � CℓpV, qqi�j mod 2 .

Remark 1.24. (i) A K-algebra A with a splitting A � A0`A1 such that multiplication in A obeys the rule Ai �Aj �
Ai�j is called a Z2-graded algebra. We call A0 the even part and A1 the odd part of A and we call deg x :� i
the degree of x P Ai. Note that A0 is always a subalgebra of A.

(ii) Given two Z2-graded K-algebras A and B, their tensor product AbB is the K-algebra whose underlying K-vector
space is the vector space tensor product AbB with multiplication ab b � a1b b1 � a � a1b b � b1. Unfortunately, Ab
B is in general not a Z2-graded algebra. To produce a Z2-graded algebra, we use the Z2-graded tensor product
ApbB whose underlying vector space is again the vector space tensor product Ab B and whose multiplication is
defined on pure tensors of pure degree by

ab b � a1 b b1 � p�1qdeg b�deg a1a � a1 b b � b1 .(1.2)
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The Z2-grading of ApbB is given by

pApbBq0 � A0 b B0 �A1 b B1 ,

pApbBq1 � A0 b B1 �A1 b B0 .

Proposition 1.25. Let V be a K-vector space with quadratic form q and associated symmetric bilinear form b. Assume
we are given a b-orthogonal splitting V � V1 `V2, i.e., bpv1, v2q � 0 for all v1 P V1, v2 P V2 (equivalently qpv1 � v2q �
qpv1q � qpv2q). Then there is a natural isomorphism of Clifford algebras

CℓpV, qq Ñ CℓpV1, q1qpbCℓpV2, q2q ,

where qi :� q|Vi
: Vi Ñ K is the restriction of q to Vi.

Proof. Define j : V � V1 ` V2 Q v1 � v2 ÞÑ v1 b 1 � 1 b v2 P CℓpV1, q1qpbCℓpV2, q2q. Then, we have for all
v1 � v2 P V1 `V2 by (1.2)

jpv1 � v2q2 � pv1 b 1� 1b v2q2 � v2
1 b 1� 1b v2 � v1 b v2 � v1 b v2 � �qpv1q � 1b 1� qpv2q1b 1

� �qpv1 � v2q1b 1 .

Hence, by Definition 1.20(iii), j extends uniquely to an algebra homomorphism rj : CℓpV, qq Ñ CℓpV1, q1qpbCℓpV2, q2q.
To see that rj is bijective, we construct the inverse homomorphism. Let gi : Vi Ñ CℓpV, qq, i � 1, 2, be the concate-
nation of the inclusion Vi ãÑ V and the inclusion V ãÑ CℓpV, qq. Then gi extends to an algebra homomorphismrgi : CℓpVi, qiq Ñ CℓpV, qq. The map g : CℓpV1, q1qpbCℓpV2, q2q Q xb y ÞÑ rg1pxq � rg2pyq P CℓpV, qq is the inverse of rj.
It suffices to check this on pure tensors of vectors from V1 and V2, as those generate CℓpV1, q1qpbCℓpV2, q2q and
hence determine g uniquely.

□

Definition 1.26. Let V be a K-vector space and q a quadratic form on V. Let t : T pVq Ñ T pVq be the K-linear map
given on pure tensors by

tpv1 b v2 b . . .b vkq � vk b vk�1 b . . .b v1 .

Then t preserves the ideal I from the proof of Proposition 1.21 and thus descends to a K-linear map

�t : CℓpV, qq Ñ CℓpV, qq ,

the transpose. Note that �t is an algebra antiautomorphism, i.e., px � yqt � yt � xt for all x, y P CℓpV, qq, and an
involution, i.e., pxtqt � x for all x P CℓpV, qq.

With an eye on Riemannian manifolds we are interested in two particular Clifford algebras.

Notation 1.27. Let qn : Rn Q x ÞÑ °n
i�1 x2

i P R be the standard positive definite quadratic form on Rn and qC
n : Cn Q

z ÞÑ °n
i�1 z2

i P C the standard quadratic form on Cn. We let

 Cℓn � CℓpRn, qnq,

 Cℓn � CℓpCn, qC

n q.
Remark 1.28. It follows from Definition 1.20(iii) that the complexification Cℓn bR C of Cℓn, together with the complex
extension of qn, is isomorphic to Cℓn. In particular, from now on we will view Cℓn as a subalgebra of Cℓn and think of
Cℓn as Cℓn with complex coefficients.

Proposition 1.29. There are algebra isomorphisms Cℓn � Cℓ0
n�1 and Cℓn � Cℓ0

n�1.

Proof. Let pe1, . . . , en�1q be the standard basis of Rn�1. Define f : Rn Ñ Cℓ0
n�1 by

f peiq :� �ei � en�1 for all 1 ¤ i ¤ n ,

and linear extension. For x � °n
i�1 xiei P Rn we have

f pxq2 �
�
�

ņ

i�1

xiei � en�1

�2

�
ņ

i,j�1

xixjei � en�1 � ej � en�1 � �
ņ

i,j�1

xixjei � ej � en�1 � en�1

�
ņ

i,j�1

xixjei � ej �
�

ņ

i�1

xiei

�2

� x � x � �qnpxq � 1 .
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By the universal property of Clifford algebras, f extends to an algebra homomorphism rf : Cℓn Ñ Cℓ0
n�1.

Evaluating rf on a vector space basis of Cℓn shows that it is an isomorphism (see Exercise no. 7). Finally, the
isomorphism Cℓn � Cℓ0

n�1 is the complexification of rf . □

Theorem 1.30. For all m P N there are algebra isomorphisms

Φ2m : Cℓ2m Ñ Mp2, 2; Cq b Mp2, 2; Cq b . . .b Mp2, 2; Cq � Mp2m, 2m; Cq ,

Φ2m�1 : Cℓ2m�1 Ñ pMp2, 2; Cq b . . .b Mp2, 2; Cqq ` pMp2, 2; Cq b . . .b Mp2, 2; Cqq � Mp2m, 2m; Cq ` Mp2m, 2m; Cq ,

given as follows. Let E :� E2, U :�
�

i 0
0 �i



, V :�

�
0 i
i 0



, W :�

�
0 �i
i 0



. For 1 ¤ j ¤ m define

ϕ2m : C2m Q e2j�1 ÞÑ W bW b . . .bW bU b
j-th slot

Eb . . .b E ,

ϕ2m : C2m Q e2j ÞÑ W bW b . . .bW b V b
j-th slot

Eb . . .b E

and extend linearly. Then, ϕ2mpxq2 � �qC
2mpxq � 1 for all x P C2m and by the universal property of Clifford algebras,

ϕ2m extends to an algebra homomorphism Φ2m, which turns out to be an isomorphism. To obtain Φ2m�1, we define

ϕ2m�1 : C2m�1 Q ej ÞÑ
#
pϕ2mpejq, ϕ2mpejqq , 1 ¤ j ¤ 2m ,
piW b . . .bW,�iW b . . .bWq , j � 2m� 1 ,

and proceed analogously.

Definition 1.31. Let K � R, C and let A be a finite-dimensional, associative and unital K-algebra.
(i) A representation of A is a K-algebra homomorphism ρ : A Ñ EndKpVq, where V is a finite-dimensional K-

vector space. In this situation, V is also called an A-module. If the representation ρ is fixed, we shall write
x � v :� ρpxqpvq.

(ii) Given two representations ρ : A Ñ EndpVq and κ : A Ñ EndpWq, their direct sum is the representation
ρ` κ : A Ñ EndpV `Wq, given by ρ` κpxqpv�wq � ρpxqpvq � κpxqpwq.

(iii) A representation ρ : A Ñ EndpVq is called reducible if it is a direct sum ρ � ρ1 ` ρ2 : A Ñ EndpV1 `V2q with
Vi � t0u, i � 1, 2. In other words, ρ is reducible if V splits into a nontrivial direct sum V � V1 `V2 such that
ρpxqpVjq � Vj for all x P A, j � 1, 2. If ρ is not reducible, we call it irreducible.

(iv) Two representations ρ : A Ñ EndpVq, κ : A Ñ EndpWq are called equivalent or isomorphic if there exists a
K-vector space isomorphism F : V Ñ W such that ρpxq � F�1 � κpxq � F for all x P A.

(v) We define modules, direct sums, irreducibility and equivalence analogously for representations of Lie groups.

Remark 1.32. If ρ : A Ñ EndpVq is any representation of A, then ρ can be decomposed into a direct sum ρ �
ρ1 ` . . .` ρk of irreducible representations ρi : A Ñ EndpViq. Indeed, we simply apply Definition 1.31(iii) recursively.
This process must end by finite-dimensionality of V.

For the next theorem, we need an important element in the Clifford algebras Cℓn respectively Cℓn.

Definition 1.33. Fix an orientation of Rn and let pe1, . . . , enq be an oriented orthonormal basis w.r.t. x�, �yEukl. Define
the volume element ωn P Cℓn by

ωn :� e1 � e2 � � � en ,
and the complex volume element ωC

n P Cℓn by

ωC
n :� itpn� 1q{2ue1 � e2 � � � en � itpn� 1q{2uω .

Here, txu denotes the largest integer which is smaller or equal to x P R.

Theorem 1.34. There exists, up to equivalence, exactly one irreducible representation Cℓ2m Ñ EndCpVq, where dimC V �
2m. There are, up to equivalence, exactly two irreducible representations ρ : Cℓ2m�1 Ñ EndCpVq, where dim V � 2m.
These can be distinguished by the action of the complex volume element ωC

2m�1, i.e., either ρpωC
2m�1q � � id or

ρpωC
2m�1q � � id.

Proof. By Theorem 1.30, Cℓ2m is isomorphic to Mp2m, 2m; Cq. It is a classical fact that the only irreducible
representation of Mp2m, 2m; Cq is the standard one, given by matrix multiplication.

Again by Theorem 1.34, Cℓ2m�1 is isomorphic to Mp2m, 2m; Cq ` Mp2m, 2m; Cq. The two different represen-
tations are given by the standard representation of the first, respectively second, direct summand on C2m

.
For the proof of ρpωC

2m�1q � � id and that these are inequalivalent representations, see Exercise no. 10. □
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Proposition 1.35. Let Φ2m : Cℓ2m Ñ Mp2m, 2m; Cq � EndpC2mq be the irreducible representation given in Theo-
rem 1.30 and F : Cℓ2m�1 Ñ Cℓ0

2m the algebra isomorphism from Proposition 1.29. Then the representation Φ2m � F :
Cℓ2m�1 Ñ Mp2m, 2m; Cq � EndpC2mq is (equivalent to) the direct sum of the two irreducible representations of Cℓ2m�1.

Proof. See Exercise 11. □

1.3. The Spin group, its Lie algebra and representations.

Notation and Remarks 1.36. Recall that the set of units Cℓ�n of Cℓn is a Lie group with Lie algebra Cℓn.

Definition 1.37. (i) The Clifford group Γn of Cℓn is the closed subgroup of Cℓ�n given by

Γn :�
!

x P Cℓ�n | αpxq � v � x�1 P Rn for all v P Rn
)

.

(ii) Define the continuous group homomorphism λn : Γn Ñ GLpn; Rq by

λnpxqpvq :� αpxq � v � x�1 .

(iii) The norm of Cℓn is the map

N : Cℓn Q x ÞÑ x � αpxtq � x � αpxqt P Cℓn .

Remark 1.38. (i) The maps α, �t : Cℓn Ñ Cℓn leave Γn invariant. Indeed, if x P Γn, then αpxq � v � x�1 P Rn for all
v P Rn and by definition of α we have

αpαpxqq � v � αpxq�1 � �αpαpxqq � αpvq � αpxq�1 � �αpαpxq � v � x�1q � αpxq � v � x�1 P Rn

for all v P Rn and analogously for �t.
(ii) Note that for x P Rn we have Npxq � x � αpxtq � x � αpxq � �x � x � qnpxq � }x}2.

Lemma 1.39. The kernel of the group homomorphism λn : Γn Ñ GLpn; Rq is ker λn � R� � 1.

Proof. Let x P ker λn. Then by definition αpxq � v � x�1 � v for all v P Rn, which is equivalent to

αpxq � v � v � x for all v P Rn .

We decompose x into its even and odd part, x � x0 � x1 with xi P Cℓi
n. Then the above statement is equivalent

to

x0 � v � v � x0 and � x1 � v � v � x1 for all v P Rn .(1.3)

Let pe1, . . . , enq be the standard basis of Rn. We express x0 as a linear combination of the basis vectors from
Exercise 7 and write

x0 � a� e1b ,
where a P Cℓ0

n, b P Cℓ1
n and neither a nor b contain a term with a factor e1. We apply the first relation in (1.3) to

v � e1 and obtain
pa� e1bqe1 � e1pa� e1bq .

Since a has even degree and contains no term with a factor e1 we have ae1 � e1a. Analogously, we have
e1b � �be1. Hence,

a� e1b � a� e1b ,
which in turn implies e1b � 0 and x0 contains no term with a factor e1. By applying the same argument to ei,
i � 2, . . . , n, we conclude that x0 is a linear combination of the elements from Exercise no. 7 no term of which
contains a factor ei, i.e., x0 P R � 1.

Proceeding analogously with the second relation in (1.3) shows x1 P R � 1. But since 1 P Cℓ0
n we must have

x1 � 0. Hence x � x0 P R � 1X Γn � R� � 1. □

Lemma 1.40. If x P Γn, then Npxq P R� and the restriction N|Γn : Γn Ñ R� is a group homomorphism with
Npαpxqq � Npxq for all x P Γn.

Proof. Let x P Γn. Then αpxq � v � x�1 P Rn for all v P Rn. Since the transpose acts as the identity on Rn, we
get pxtq�1 � v � αpxqt � αpxq � v � x�1. Thus, v � xt � αpxq � v � pαpxqt � xq�1 � αpαpxqt � xq � v � pαpxqt � xq�1 which
implies that αpxqt � x P ker λn. By Remark 1.38(i), y � αpxqt P Γn and by what we just showed αpyqt � y �
αpαpxqtqt � αpxqt � x � αpxqt � Npxq P ker λn. By the last lemma, Npxq P R� � 1.

To show that N restricted to Γn is a homomorphism, note that R � 1 is central in Cℓn. Hence, for x, y P Γn, we
have Npx � yq � x � y � αpx � yqt � x � y � αpyqt � αpxqt � xNpyqαpxqt � x � αpxqtNpyq � NpxqNpyq.

At last, we have Npαpxqq � αpxq � αpαpxqqt � αpx � αpxqtq � αpNpxqq � Npxq. □
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Proposition 1.41. We have
(i) Rnzt0u � Γn,

(ii) for x P Rnzt0u, λnpxq P GLpn; Rq is the reflection about the hyperplane xK and λnpΓnq � Opnq, the orthogonal
group.

Proof. Let x P Rnzt0u. By Lemma 1.39, λnpxq � λnp}x} � x
}x} q � λnp x

}x} q, which is why we can assume w.l.o.g.

that }x} � 1. Choose an orthonormal basis pe1 � x, e2, . . . , enq of Rn. Then, for v � °n
i�1 aiei we have by the

Clifford relations

λnpxqpvq � λnpe1q
�

ņ

i�1

aiei

�
�

ņ

i�1

aiαpe1q � ei � e�1
1 � �

ņ

i�1

aie1 � ei � e�1
1

� �a1e1 �
ņ

i�2

aie1 � ei � e�1
1 � �a1e1 �

ņ

i�2

aiei P Rn .

In particular, λnpxq is the reflection about xK and }λnpxqpvq} � }v}.
Now let x P Γn be arbitrary. Then

}λnpxqv}2 � Npλnpxqvq � Npαpxq � v � x�1q � Npαpxqq � Npvq � Npx�1q � Npxq � Npvq � Npxq � Npvq � }v}2 .

Hence, λnpxq P Opnq. □

Definition 1.42. The Pin group Pinpnq � Cℓ�n is the kernel of N : Γn Ñ R�. The Spin group Spinpnq is the group
Pinpnq X Cℓ0

n.

Theorem 1.43. (i) The Pin and Spin groups are Lie groups explicitely given by

Pinpnq � tv1 � v2 � � � vk | vi P Rn, }vi} � 1, 0 ¤ i ¤ k, k P N0u ,

Spinpnq � tv1 � v2 � � � v2k | vi P Rn, }vi} � 1, 0 ¤ i ¤ k, k P N0u .

(ii) λn|Pinpnq : Pinpnq Ñ Opnq is a surjective Lie group homomorphism with kernel t�1u.
(iii) pλn|Pinpnqq�1pSOpnqq � Spinpnq.
(iv) Spinpnq is connected for n ¥ 2.

Proof. Recall that any orthogonal map A P Opnq can be written as the concatenation Av1 � . . . � Avk of reflections
Avi about hyperplanes vKi , where vi P Rn with }vi} � 1. By Proposition 1.41 and the definition of Pinpnq,
v1 � � � vk P Pinpnq and λnpv1 � � � vkq � λnpv1q � � �λnpvkq � Av1 � . . . � Avk � A. Furthermore, the kernel of
λn|Pinpnq is ker λn X ker N � tx P R� � 1 |Npxq � 1u � t�1u, which also shows the explicit expression for
Pinpnq.

Recall also that the group SOpnq � Opnq can be characterized as the group of maps which can be written as
the concatenation of an even number of reflections. This shows (iii) and the explicit expression for Spinpnq.

To see that Pinpnq is a Lie group, recall that Γn is a closed subgroup of the Lie group Cℓ�n . It is a theorem
(see, e.g., [Le13]) that any algebraic subgroup of a Lie group which is topologically closed is automatically a
Lie group in its own right. This makes Γn into a Lie group and N : Γn Ñ R� a Lie group homomorphism. Now
Pinpnq is the kernel of N, which makes it a topologically closed algebraic subgroup and therefore a Lie group.
Similarly, Spinpnq is the inverse image of the Lie group SOpnq and therefore, again, a topologically closed
algebraic subgroup, hence a Lie group. The map λn|Pinpnq is the concatenation of multiplication, inversion and
the (restriction of the) linear map α, hence smooth and therefore a Lie group homomorphism.

In light of (iii), it suffices to connect �1 to 1 with an arc in Spinpnq to see (iv). Such an arc is

c : r0, πs Q t ÞÑ cosptq � sinptqe1 � e2 � psin t
2 e1 � cos t

2 e2qpsin t
2 e1 � cos t

2 e2q P Spinpnq .

□

Remark 1.44. We will henceforth only be interested in the Spin group and will from now on view λn as a map

λ :� λn : Spinpnq Ñ SOpnq
g ÞÑ pv ÞÑ αpgq � v � g�1 � g � v � g�1q .

For the next proposition, recall that the Lie group Cℓ�n is an open subset of Cℓn. Hence, T1Cℓ�n � Cℓn. Since
Spinpnq is a submanifold of Cℓ�n , T1 Spinpnq is a subspace of Cℓn.
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Proposition 1.45. The tanget space to Spinpnq at 1 is

T1 Spinpnq � spanRtei � ej | 1 ¤ i   j ¤ nu � Cℓn .

Proof. For 1 ¤ i   j ¤ n, consider the curve

γ : R Q t ÞÑ cosptq � sinptqei � ej � psin t
2 ei � cos t

2 ejqpsin t
2 ei � cos t

2 ejq P Spinpnq � Cℓn .

We have γp0q � 1 and d
dt |t�0γptq � ei � ej. This shows ”�“. By Exercise 7, the stated subset of Cℓn clearly

has dimension 1
2 npn � 1q. But from Theorem 1.43, we already know that dim T1 Spinpnq � dim Spinpnq �

dim SOpnq � 1
2 npn� 1q, showing ”�“. □

Corollary 1.46. The Lie algebra of Spinpnq is

spinpnq � spanRtei � ej | 1 ¤ i   j ¤ nu � Cℓn

with the Lie bracket rx, ys � x � y� y � x.

Proof. Following Example 1.14, one checks that the Lie algebra of Cℓ�n is Cℓn equipped with the Lie bracket
rx, ys � x � y� y � x. The Lie algebra of Spinpnq then inherits this Lie bracket. □

Proposition 1.47. The differential λ� � dλe : T1 Spinpnq � spinpnq Ñ sopnq � TEn SOpnq is an isomorphism
explicitely given by

λ�pei � ejq � 2Xei ,ej ,

where Xei ,ej are the maps from Exercise 6.

Proof. Since λ : Spinpnq Ñ SOpnq is a surjective Lie group homomorphism between Lie groups of equal
dimension, its differential at 1 must be an isomorphism. We consider again for 1 ¤ i   j ¤ n the path
γ : R Q t ÞÑ cosptq � sinptqei � ej P Spinpnq. Note that γptq�1 � γp�tq. Hence, for v � °n

k�1 vkek P Rn we have

λ�pei � ejqpvq �
d
dt |t�0

λpγptqqpvq � d
dt |t�0

γptq � v � γptq�1

� d
dt |t�0

γptq � v � γp�tq � ei � ej � v� v � ei � ej

� vipei � ej � ei � ei � ei � ejq � vjpei � ej � ej � ej � ei � ejq �
¸

k�i,j

vkpei � ej � ek � ek � ei � ejq

� 2viej � 2vjei � 2pviej � vjeiq � 2Xei ,ej v .

□

Definition 1.48. The (complex) fundamental spin representation of Spinpnq is the Lie group homomorphism

κn : Spinpnq Ñ GLpΣnq
given by restricting an irreducible complex representation Cℓn Ñ EndpΣnq to Spinpnq � Cℓn � Cℓ0

n � Cℓn. We call
Σn the spinor module and an element s P Σn a spinor.

Proposition 1.49. When n is odd the definition of the complex spin representation is independent of which irreducible
representation of Cℓn was used. In particular, it is well-defined. Moreover, when n is odd, κn is irreducible.

When n is even, there is a decomposition

κn � κ�n ` κ�n , κ�n : Spinpnq Ñ GLpΣ�n q
into irreducible representations κ�n called the positive respectively negative half-spin representations. Accordingly,
the modules Σ�n are the positive respectively negative half-spinor modules.

Proof. Let n � 2m� 1. Recall from Theorem 1.34 that Cℓ2m�1 has two irreducible representations ρi : Cℓ2m�1 Ñ
GLpVq, i � 1, 2, which can be distinguished by ρ1pωC

2m�1q � � id and ρ2pωC
2m�1q � � id. Since α is an

algebra automorphism of Cℓ2m�1, ρ2 � α is also a representation of Cℓ2m�1 with ρ2 � αpωC
2m�1q � ρ2p�ωC

2m�1q �
�ρ2pωC

2m�1q � � id, so ρ1 and ρ2 � α are equivalent. Now recall that Cℓ0
2m�1 is the p�1q-eigenspace of α, hence

ρ1 and ρ2 are equivalent when restricted to Cℓ0
2m�1.

By Proposition 1.29 there is an algebra isomorphism F : Cℓ2m Ñ Cℓ0
2m�1. Since ρi � F : Cℓ2m Ñ GLpVq

is a nontrivial complex representation of Cℓ2m of dimension 2m, it must be the unique irreducible one, hence
ρ � ρi|Cℓ0

2m�1
is an irreducible representation of Cℓ0

2m�1.



12 SEBASTIAN BOLDT

To see that ρ| Spinp2m�1q is an irreducible Lie group representation, assume that ρ| Spinp2m�1q splits into the
direct sum of two nontrivial representations, i.e., there exists a nontrivial splitting V � W1 ` W2 such that
ρpxqpWjq � Wj for all x P Spinp2m� 1q. By Exercise 6 and Theorem 1.43(i), Spinp2m� 1q contains an additive
basis ei1 � ei2 � � � ei2k , 1 ¤ i1   i2   . . .   i2k ¤ 2m � 1 of Cℓ0

2m�1. Since ρ is the restriction to Spinp2m � 1q
of an irreducible representation of Cℓ0

n, not all of these basis elements leave Wj invariant, i.e., there exists
1 ¤ i1   i2   . . .   i2k ¤ 2m � 1 and j P t1, 2u such that ρpei1 � ei2 � � � ei2kqpWjq � Wj. A contradiction. Hence,
ρSpinp2m�1q is an irreducible representation of Spinp2m� 1q.

Now let n � 2m. There is exactly one irreducible representation ρ : Cℓ2m Ñ GLpVq of Cℓ2m. If we restrict
ρ to Cℓ0

2m, then Proposition 1.35 tells us that ρ|Cℓ0
2m

splits into the direct sum of two inequivalent irreducible

representations. We argue as in the case n � 2m� 1 that their restrictions to Spinp2mq � Cℓ0
2m are irreducible

Lie group representations. □

Remark 1.50. The fundamental spin representation is not induced by a representation of SOpnq (through λ). Indeed,
�1 P Spinpnq and κnp�1q � � idΣn while for every representation ρ : SOpnq Ñ GLpVq we have ρ � λp�1q � ρpEnq �
idV .

Proposition 1.51. Let ρ : Cℓn Ñ GLpVq be an irreducible representation of the complex Clifford algebra Cℓn. Then
there exists an inner product x�, �y on V such that

(1.4) xρpxqpvq, ρpxqpwqy � xv, wy for all x P Rn � Cℓn with }x} � 1 and all v, w P V .

In particular,
(i) multiplication by unit vectors is skew-symmetric, i.e., for all x P Rn with }x} � 1 and all v, w P V we have

xρpxqpvq, wy � xρpxq2pvq, ρpxqpwqy � xρpx2qpvq, ρpxqpwqy � �xv, ρpxqpwqy ,

(ii) there exists a Spinpnq-invariant inner product x�, �y on Σn, i.e., xκnpgqpσq, κnpgqpτqy � xσ, τy for all g P Spinpnq
and σ, τ P Σn. In short: κn : Spinpnq Ñ UpΣnq.

Proof. Since ρ is an irreducible representation, there exists a linear isomorphism F : V Ñ C2tn{2u
such that

ρp�q � F�1 � Φnp�q � F in case n � 2m or ρp�q � F�1 � πi � Φnp�q � F if n � 2m � 1, where Φn is the algebra
isomorphism from Theorem 1.30 and πi, i � 1, 2, the projection on the first respectively second factor.

We define the inner product x�, �y on V to be the pullback xv, wy :� pFpvq, Fpwqq of the standard hermitian
inner product

pa, bq �
2n{2¸
i�1

aibi

on C2tn{2u
. Then (1.4) follows from the matrices U, V and W from Theorem 1.30 being unitary. □

Definition 1.52. (i) A Clifford multiplication is a complex linear map

µ : Rn b Σn Ñ Σn

xb σ ÞÑ x � σ :� µpxb σq
which satisfies

x � py � σq � y � px � σq � �2xx, yy � σ for all x, y P Rn, σ P Σn .
(ii) Two Clifford multiplications µ1, µ2 : Rn b Σn Ñ Σn are equivalent if there exists a vector space isomorphism

F : Σn Ñ Σn such that

µ1pxb σq � F�1pµ2pxb Fpσqqq for all x P Rn, σ P Σn .

Proposition 1.53. If n is even then there exists up to equivalence exactly one Clifford multiplication. If n is odd there exist
up to equivalence exactly two Clifford multiplications one of which is the negative of the other. They can be distinguished
by the action of the complex volume element ωC

n , i.e., they satisfy

ωC
n � σ :� itpn� 1q{2ue1 � pe2 � p. . . pen � σqqq � �σ for all σ P Σn .

Proof. If ρ : Cℓn Ñ EndpΣnq is an irreducible representation then µpxbσq :� ρpxqpσq is a Clifford multiplication.
This shows existence and in case n is odd that there are two Clifford multiplications which can be distinguished
by the action of the complex volume element.

To see uniqueness, let µ : Rn bΣn Ñ Σn be a Clifford multiplication. Define ρ : Rn Ñ EndpΣnq by ρpxqpσq :�
µpx b σq. Then ρpxq2 � �}x}2 � idΣn . Hence, ρ extends uniquely to an algebra homomorphism rρ : Cℓn Ñ
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EndpΣnq and by complexification to an algebra homomorphism rρ : Cℓn Ñ EndpΣnq. Since dim Σn � 2tn{2u, rρ
must be an irreducible representation. This completes the proof. □

Corollary 1.54. Every Clifford multiplication satisfies
(i) xx � σ, x � τy � xσ, τy and

(ii) xx � σ, τy � �xσ, x � τy
for all x P Rn with }x} � 1 and all σ, τ P Σn, where x�, �y is the Spinpnq-invariant inner product on Σn.

Remark 1.55. The group Spinpnq acts on Σn by the fundamental spin representation κn : Spinpnq Ñ UpΣnq and
on Rn by λ : Spinpnq Ñ SOpnq. If we form the tensor product Rn b Σn, then Spinpnq acts thereon via the tensor
representation

λb κn : Spinpnq Ñ UpRn b Σnq
g ÞÑ pxb σ ÞÑ λpgqpxq b κnpgqpσqq .

Proposition 1.56. Every Clifford multiplication µ : Rn b Σn Ñ Σn is Spinpnq-equivariant, i.e., we have

µpλb κnpgqpxb σqq � κnpgqpµpxb σqq for all g P Spinpnq, x P Rn, σ P Σn .

Put differently, the diagram

Rn b Σn
µ //

λbκn
��

Σn

κn

��
Rn b Σn

µ // Σn

is commutative.

Remark. The following proof actually shows: If we choose one representative µ from the given equivalence class of
Clifford multiplications, then there exists precisely one representative κn of the equivalence class of the fundamental spin
representation such that µ is Spinpnq-equivariant w.r.t. λb κn and κn.

Proof. The Clifford multiplication µ satisfies µpx b σq � ρpxqpσq where ρ : Cℓn Ñ EndpΣnq is an irreducible
representation. We also have κ � ρ| Spinpnq. The claim is now a straightforward calculation:

µpλb κnpgqpxb σqq � µpλpgqpxq b κnpgqpσqq � µpg � x � g�1 b ρpgqpσqq
� ρpg � x � g�1qpρpgqpσqq � ρpg � x � g�1 � gqpσq � ρpg � xqpσq � ρpgq � ρpxqpσq
� κnpgqpµpxb σqq .

□

Remark 1.57. Since there is no ambiguity about how Spinpnq acts on Σn (via κn) respectively Rn (via λ), we can
abbreviate notation and simply write gσ respectively gx for all g P Spinpnq, x P Rn and σ P Σn.

The equivariance of Clifford multiplication can now be stated very concisely:

gx � gσ � gpx � σq for all g P Spinpnq, x P Rn, σ P Σn .

In fact, using this shorthand notation, the proof of Proposition 1.56 becomes very short:

gx � gσ � g � x � g�1 � gσ � g � x � σ � gpx � σq .

Note, however, that it is not easy to unravel what exactly is happening here.

2. INTERMEZZO: GAUGE THEORY

Definition 2.1. Let P be a smooth manifold and G a Lie group.
(i) A (right-)action of G on P is a smooth map

P� G Q pp, gq ÞÑ p � g P P

such that

 p � e � p for all p P P and

 pp � gq � h � p � pg � hq for all g, h P G and p P P.

For g P G the map Rg : P P p ÞÑ p � g P P is called right-translation by g. Rg is a diffeomorphism with inverse
R�1

g � Rg�1 .
(ii) A right action of G on P is
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 free if p � g � p for p P P and g P G implies g � e, i.e., the only right translation that has fixed points is Re,

 transitive if for all p, q P P there exists a g P G such that p � g � q,

 simply-transitive if it is free and transitive, i.e., if for all p, q P P there exists precisely one g P G such that

p � g � q.

Example 2.2. Let V be a real n-dimensional vector space and let P :� tv � pv1, . . . , vnq P Vn | v is a basis of Vu. Then
P is a smooth manifold of dimension n2. The group G � GLpn; Rq acts on P from the right by

P� G Q pv, Aq ÞÑ v � A �
�

ņ

i�1

Ai,1vi, . . . ,
ņ

i�1

Ai,nvi

�
P P .

Indeed, we have v � En � v for all v P P and if v P P, A, B P GLpn; Rq then

pv � Aq � B �
�

ņ

i�1

Ai,1vi, . . . ,
ņ

i�1

Ai,nvi

�
� B �

�� ņ

j�1

Bj,1

ņ

i�1

Ai,jvi, . . . ,
ņ

j�1

Bj,n

ņ

i�1

Ai,jvi

�

�

�� ņ

i,j�1

Ai,jBj,1vi, . . . ,
ņ

i,j�1

Ai,jBj,nvi

�
� v � pA � Bq .

The action is smooth since it is a polynomial in the entries of its arguments. Moreover, it is easy to see that the action is
simply-transitive.

Definition 2.3. Let G be a Lie group and M a smooth manifold.
(i) A G-principal fibre bundle over M is a triple pP, πP; Gq consisting of a manifold P, a smooth map πP : P Ñ M

and a right-action of G on P such that
(a) πP is surjective,
(b) the action of G on P is free,
(c) πPppq � πPpqq if and only if there exists g P G such that p � g � q,
(d) for every x P M there exists an open neighborhood U � M containing x and a section of P on U, i.e., a smooth

map sU : U Ñ P such that πp � sU � idU .
(ii) Let pP, πP; Gq and pQ, πQ; Gq be G-principal fibre bundles over M. A smooth map Φ : P Ñ Q is called G-

principal fibre bundle morphism if
(a) πQ �Φ � πP and
(b) Φ is (G-)equivariant, i.e., we have Φpp � gq � Φppq � g for all p P P and g P G.

(iii) The G-principal fibre bundles P and Q are isomorphic, denoted P � Q, if there exists a
G-principal fibre bundle isomorphism, i.e., a bijective G-principal fibre bundle morphism Φ : P Ñ Q.

Remark 2.4. (i) By Definition 2.3(i)(b) and (c) G acts simply-transitively on every fibre Px :� π�1
P pxq of P over M.

(ii) If there is no danger of confusion we will refer to the total space P of a G-principal fibre bundle pP, πP; Gq as the
principal fibre bundle.

Example 2.5. Let M be a smooth manifold and G a Lie group. Define the manifold P :� M�G with πP : P Q px, pq ÞÑ
x P M and the G-action on P by multiplication of G from the right on the second factor. Then pP, πP; Gq is a G-principal
fibre bundle called the trivial G-principal fibre bundle over M.

Example 2.6. Let M be a smooth n-dimensional manifold. For x P M define

GLpMqx :� tvx � pv1, . . . , vnq | vx is a basis of Tx Mu
and let

GLpMq :�
¤

xPM

GLpMqx .

Define the projection via

π :� πGLpMq : GLpMq Ñ M
vx ÞÑ x .

Note that if pU, φ � px1, . . . , xnqq is a coordinate chart of M, then for every x P U the associated frame sUpxq :�
pB1pxq, . . . , Bnpxqq P GLpMqx. The set GLpMq has a unique structure as a smooth manifold if one requires that all such
coordinate frames are smooth. This then turns πGLpMq : GLpMq Ñ M into a smooth map.
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There is a G � GLpn; Rq-right-action of GLpn; Rq on GLpMqx as defined in Example 2.2. This action induces a
right-action of GLpn; Rq on GLpMq:

GLpMq �GLpn; Rq Ñ GLpMq

pvx � pv1, . . . , vnq, Aq ÞÑ vx � A �
�

ņ

i�1

Ai,1vi, . . . ,
ņ

i�1

Ai,nvi

�
.(2.1)

The principal fibre bundle pGLpMq, πGLpMq; GLpn; Rqq is called the frame bundle of M.

Every additional structure on the manifold M defines a subbundle of GLpMq.
Example 2.7. Let M again be a smooth n-dimensional manifold.

(i) Assume that M is oriented. Let G � GL�pn; Rq � tA P GLpn; Rq | det A ¡ 0u and define

GL�pMq :� tvx P GLpMqx | vx is a positively oriented basis of Tx M, x P Mu .

We define a GL�pn; Rq right-action on GL�pMq as the restriction of the GLpn; Rq-action on GLpMq. With
πGL�pMq � πGLpMq|GL�pMq

, the tuple pGL�pMq, πGL�pMq; GL�pn; Rqq is then a GL�pn; Rq-principal fibre
bundle called the bundle of positively oriented frames.

(ii) Let g be a Riemannian metric on M. Define

OpMq :� OpM, gq :� tvx P GLpMqx | vx is an orthonormal basis of pTx M, gxqu .

Analogously to before, we let πOpMq : OpMq Q vx ÞÑ x P M and define an Opnq-right-action on OpMq by
restricting the GLpn; Rq-action on GLpMq. Then the Opnq-principal fibre bundle pOpMq, πOpMq; Opnqq is called
the bundle of orthonormal frames of M.

(iii) Combining the previous two examples leads us to the SOpnq-principal fibre bundle of
positively oriented orthonormal frames of M. That is, assume M is oriented and let g be a Riemannian metric
on M. Define

SOpMq :� SOpM, gq :� tvx P GLpMqx | vx is a positively oriented orthonormal basis of pTx M, gxqu
and πSOpMq : SOpMq Q vx ÞÑ x P M. Formula (2.1) defines an SOpnq-right-action on SOpMq turning
pSOpMq, πSOpMq; SOpnqq into a principal fibre bundle.

A generalization of the notion of G-principal fibre bundle morphism is the following.

Definition 2.8. Let pP, πP; Gq be a G-principal fibre bundle over M and f : H Ñ G a Lie group homomorphism.
An f -reduction of P is a pair pQ, Φq consisting of an H-principal fibre bundle pQ, πQ; Hq over M and a smooth map
Φ : Q Ñ P such that

(i) πP �Φ � πQ and
(ii) Φpq � hq � Φpqq � f phq for all q P Q, h P H.

Properties (i) and (ii) can be summarized by saying that the diagram

Q� H

Φ� f
��

� // Q

Φ
��

πQ

��
P� G � // P

πP // M

is commutative.
If we are in the situation that H � G is a Lie subgroup and f � ι : H ãÑ G is the inclusion, then we also call any

f -reduction pQ, f q an H-reduction of P or a reduction of P to H.

Example 2.9. Any of the principal fibre bundles from Example 2.7 together with the inclusion ι : H Ñ GLpn; Rq,
H � GL�pn; Rq, Opnq, SOpnq, is an H-reduction of the frame bundle GLpMq.
Definition 2.10. Let K � R or K � C and M a smooth manifold.

(i) A K-vector bundle of rank k   8 over M is a triple pE, πE; Vq consisting of a smooth manifold E, a smooth map
πE : E Ñ M and a k-dimensional K-vector space V such that
(a) πE is surjective,
(b) Ex :� πEpxq�1 is K-linearly isomorphic to V for all x P M and
(c) for all x P M there exists an open neighborhood U � M of x and k pointwise linearly independent local

sections of E over U, i.e., there exist k smooth maps s1, . . . , sk : U Ñ E such that
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(1) πE � sj � idU for all j � 1, . . . , k and
(2) ps1pyq, . . . , skpyqq is a basis of Ey for all y P U.
In case K � R we call E a real vector bundle and in case K � C a complex vector bundle.

(ii) We denote the space of local sections of E over an open set U � M by ΓpU, Eq, i.e.,

ΓpU, Eq � ts : U Ñ E | s is smooth and πE � s � idUu .

In the particular case U � M we call the elements of ΓpU, Eq just sections of E or sometimes global sections of
E.

(iii) For sections s1, . . . , sk : U Ñ E as in (i)(c) we call the smooth map s � ps1, . . . , skq : U Ñ Ek a (local) frame for
E. In case U � M, we call s a global frame for E.

(iv) Let E, F be two K-vector bundles over M. A smooth map Φ : E Ñ F is a vector bundle homomorphism if
(a) πF �Φ � πE and
(b) Φ|Ex : Ex Ñ Fx is K-linear for all x P M.
We call Φ a vector bundle isomorphism if it is invertible and then we call E and F isomorphic.

Example 2.11. Let M be a smooth manifold.
(i) Let V be a k-dimensional K-vector space. Define E :� M �V and πE : E � M �V Q px, vq ÞÑ x P M. If we

define

px, vq � px, wq :� px, v�wq ,

λ � px, vq :� px, λ � vq
for all x P M, v, w P V and λ P K, then pE, πE; Vq is a rank k vector bundle over M. We call E the trivial vector
bundle with fibre V over M, or simply trivial.

The sections ΓpM, Eq are smooth maps s : M Ñ E � M �V satisfying πE � spxq � x, hence they are of the
form spxq � px, vpxqq for some v P C8pM, Vq.

(ii) The tanget bundle TM of M is a real vector bundles of rank k � dim M over M. The sections ΓpM, TMq of TM
are precisely the smooth vector fields VpMq.

Remark 2.12. Note that the space of sections ΓpM, Eq of the K-vector bundle E over M is a modul over the ring
C8pM; Kq of smooth K-valued functions on M. Here, the sum of two sections and the product of a smooth function
and a section of E are defined pointwise, i.e., for f P C8pM, Kq and s, t P ΓpM, Eq the sections s� t, f s P ΓpM, Eq are
defined by

ps� tqpxq :� spxq � tpxq P Ex ,

p f sqpxq :� f pxqspxq P Ex

for all x P M.

In linear algebra we learn how to construct new vector spaces out of given ones, e.g., the dual vector space,
the direct sum or tensor product of two vector spaces. These constructions carry directly over to vector bun-
dles.

Definition 2.13. (i) Let pE, πE; Vq and pF, πF; Wq be two K-vector bundles of rank k and l, respectively, over M.
The Whitney-Sum of E and F is the K-vector bundle pE` F, πE`F; V `Wq, where

E` F :�
¤

xPM

Ex ` Fx

and
πE`F : E` F Q pex, fxq ÞÑ x P M .

If x P M and U, V � M are neighborhoods of x such that there are local frames s � ps1, . . . , skq : U Ñ Ek and
t � pt1, . . . , tlq : V Ñ Fl , then the k� l maps

s1|W , . . . , sk|W : W Ñ E � E` F , t1|W , . . . , tl |W : W Ñ F � E` F

where W :� U X V, are a pointwise linearly independent. The requirement that all these collections of maps are
smooth equips E` F with a unique topology and a smooth structure, which then turns πE`F into a smooth map.

(ii) As above, let pE, πE; Vq and pF, πF; Wq be two K-vector bundles of rank k and l, respectively, over M. We consider
the set

Eb F :�
¤

xPM

Ex bK Fx
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with the projection
πEbF : Eb F Q

¸
i,j

ei
x b f j

x ÞÑ x P M .

For local frames s of E and t of F as above, the k � l maps

ui,j : W Ñ Eb F i � 1, . . . , k and j � 1, . . . , l

with
ui,jpyq � sipyq b tjpyq for all y P W ,

are pointwise linearly independent. The requirement that all such maps constructed out of local frames of E and
F are smooth turns E b F uniquely into a smooth manifold and πEbF into a smooth map. The vector bundle
pEb F, πEbF; V bWq is called the tensor product of E and F.

(iii) Let pE, πE; Vq be a K-vector bundle. We consider the set

E� :�
¤

xPM

E�x

and the projection
πE� : E� Q αx ÞÑ x P M .

If s � ps1, . . . , skq : U Ñ Ek is a local frame of E, then we define the dual frame φ � pφ1, . . . , φkq : U Ñ pE�qk by
requiring that

pφ1pxq, . . . , φkpxqq
is the basis of E�x dual to the basis ps1pxq, . . . , skpxqq of Ex, for all x P U. That is, φipxqpsjpxqq � δi,j for all x P U.
The requirement that all such dual frames are smooth turns E� uniquely into a smooth manifold and πE� into a
smooth map. The vector bundle pE�, πE� ; V�q is the dual vector bundle of E.

(iv) Let pE, πE; Vq be a complex vector bundle over M and let V be the complex conjugate vector space. That is, V is the
abelian group V together with the scalar multiplication C�V Q pz, vq ÞÑ z � v P V. We consider the set

E :�
¤

xPM

Ex

with projection
πE : E Q ex ÞÑ x P M .

Any local frame s � ps1, . . . , skq : U Ñ Ek defines a a local frame s : U Ñ Ek. Thus, E directly inherits the
topology and smooth structure from E. The vector bundle pE, πE; Vq is the complex conjugate vector bundle of
E.

In case pE, πE; Vq is a real vector bundle we define pE, πE; Vq :� pE, πE; Vq.
(v) There exist many more constructions like HompE, Fq, ΛlE, . . .

Remark 2.14. (i) In case of the tangent bundle TM of a smooth manifold M, the dual bundle TM�, called cotangent
bundle, is denoted T�M. Note also that in case of the tangent and cotangent bundle we denote the individual fibres
by Tx M and T�x M instead of TMx and T�Mx, respectively.

(ii) Note that the above operations `,b, �, . . . induce associated operations on the corresponding sections. For example,
if s P ΓpM, Eq and t P ΓpM, Fq, then sb t P ΓpM, Eb Fq is the section defined by psb tqpxq :� spxq b tpxq.

Example 2.15. We consider the real vector bundle T�M b T�M. An element b P pT�M b T�Mqx � T�x M b T�x M
(x P M) can be thought of as a bilinear form, i.e., given v, w P Tx M we have bpv, wq P R. As usual, we call b symmetric
if bpv, wq � bpw, vq for all v, w P Tx M and positive definite if bpv, vq ¡ 0 for all v P Tx Mzt0u. A Riemannian metric g
on M is nothing but an element of ΓpM, T�Mb T�Mq that is pointwise symmetric and positive definite. In other words,
g is a pointwise inner product depending smoothly on the basepoint.

More generally than the example of a Riemannian metric, we have the notion of a bundle metric.

Definition 2.16. Let pE, πE; Vq be a real or complex vector bundle over M. A bundle metric on E is a section x�, �y P
ΓpE�b E�q which is pointwise an inner product, that is, pointwise symmetric and positive definite (K � R) respectively
hermitian and positive definite (K � C).

Remark 2.17. Just as for Riemannian metrics, a simple argument using a partition of unity shows that any vector
bundle carries a bundle metric.

So far, we have introduced two different types of fibre bundles, namely principal fibre bundles and vector
bundles. The next definition connects these two seamingly different worlds.
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Definition 2.18. Let M be a smooth manifold, pP, πP; Gq a G-principal fibre bundle over M and ρ : G Ñ GLpVq a real
or complex representation of G on V. Define the set

E :� P�ρ V :� P�pG,ρq V :� G�V{ �
where the equivalence relation � is given by

pp, vq � pp � g, ρpg�1qpvqq for all g P G ,

the projection πE : E Q rp, vs ÞÑ πPppq P M, and on each fibre Ex � Px �pG,ρq V the vector space structure

µrp, vs � νrp, ws :� rp, µv� νws for all p P P, v, w P V, µ, ν P K .

We equip E with a topology and smooth structure by requiring that if s : U Ñ P is a local section of P and v P C8pU, Vq,
then U Q x ÞÑ rspxq, vpxqs P E is smooth. The real (V real) resp. complex (V complex) vector bundle pE, πE; Vq is the
vector bundle associated with P and ρ.

Remark 2.19. With respect to the construction in the last definition, the operations `,b, �,Hom, . . . on vector bundles
correspond exactly to the operations denoted by the same symbols on representations.

Example 2.20. Let M be a smooth manifold, GLpMq the frame bundle of M and ρ : GLpn; Rq Ñ GLpRnq the standard
representation. Then

Φ : GLpMq �ρ Rn Ñ TM

rps1, . . . , snq, px1, . . . , xnqts ÞÑ
ņ

i�1

xisi

is a vector bundle isomorphism. If ρ� : GLpn; Rq Ñ GLppRnq�q is the representation dual to ρ, i.e., ρ�pgqplqpxq �
lpρpg�1qxq for all l P pRnq� and x P Rn, then

Ψ : GLpMq �ρ� pRnq� Ñ T�M

rps1, . . . , snq, py1, . . . , ynqs ÞÑ
ņ

i�1

yiσi ,

where pσ1, . . . , σnq is the basis dual to ps1, . . . , snq, is a vector bundle isomorphism.

Proposition 2.21. Let M be a smooth manifold, pP, πP; Gq a G-principal fibre bundle over M and ρ : G Ñ GLpVq a
representation. If there exists a G-invariant inner product x�, �y on V then on the vector bundle E � P�ρ V associated
with P and ρ there exists a bundle metric given by

xe, f yEx :� xv, wy ,

where e � rp, vs and f � rp, ws for some p P Px.

Proof. We have to show that the bundle metric is well-defined, i.e., independent of the chosen representatives.
Let q P Px and let g P G be the unique element such that q � p � g. Then we have by definition e � rp, vs �
rp � g, ρpg�1qpvqs � rq, ρpg�1qpvqs and f � rp, ws � rp � g, ρpg�1qpwqs � rq, ρpg�1qpwqs. Since the inner product
on V is G-invariant, we have xv, wy � xρpg�1qpvq, ρpg�1qpwqy. Hence, the bundle metric is well-defined. □

Definition 2.22. Let pE, πE; Vq be a K-vector bundle over M.
(i) A K-linear map

∇ : ΓpM, Eq Ñ ΓpM, T�Mb Eq
is called covariant derivative / connection on E if

∇p f sq � d f b s� f �∇s for all f P C8pM, Kq, s P ΓpM, Eq .

If s P ΓpM, Eq and X P VpMq, then the section ∇Xs :� ∇spXq P ΓpEq is called covariant derivative of s in
direction X.

(ii) If E comes with a bundle metric, a covariant derivative ∇ in E is called metric if

Xxs, ty � x∇Xs, ty � xs,∇Xty
for all X P VpMq, s, t P ΓpM, Eq. Here, xs, ty P C8pMq is the function xs, typxq :� xspxq, tpxqyEx .
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Example 2.23. The Levi-Civita connection of a Riemannian manifold pM, x�, �y � gq is the unique covariant derivative
∇LC on E � TM given by the Koszul formula

x∇XY, Zy � 1
2
pXxY, Zy �YxZ, Yy � ZxY, Xy � xrX, Ys, Zy � xrZ, Xs, Yy � xrY, Zs, Xyq .

The Levi-Civita connection is metric and, moreover, torsionfree, i.e., TpX, Yq :� ∇XY �∇YX � rX, Ys � 0.
Note that the torsion tensor T can in general only be defined on the tangent bundle and not on an arbitrary vector

bundle E.

3. SPIN GEOMETRY

Definition 3.1. Let pM, gq be an oriented Riemannian manifold.
(i) A spin-structure on M is a pair pP, πq consisting of a Spinpnq-principal fibre bundle pP, πP; Spinpnqq over M

and a smooth 2-sheeted covering map π : P Ñ SOpM, gq such that
(a) πSOpM,gq � π � πP and
(b) πpp � gq � πppq �λpgq for all p P P and g P Spinpnq with λ : Spinpnq Ñ SOpnq the Lie group homomorphism

from Section 1.3.
In other words, a spin-structure on M is a λ-reduction of the bundle SOpM, gq of oriented orthonormal frames of
M. We can summarize properties (a) and (b) by saying that the diagram

P� Spinpnq
π�λ

��

� // P

π

��

πP

""
SOpM, gq � SOpnq � // SOpMq

πSOpnq // M

is commutative.
(ii) Two spin-structures pP1, π1q and pP2, π2q on M are called equivalent if there exists a Spinpnq-principal fibre

bundle isomorphism Φ : P1 Ñ P2 such that π1 � π2 �Φ.
(iii) If there exists a spin-structure on a Riemannian manifold pM, gq, we call M spin.

Remark 3.2. Note that two equivalent spin-structures pP1, π1q and pP2, π2q on M provide isomorphic Spinpnq-principal
fibre bundles P1 and P2. However, the converse is not true. There do exist oriented Riemannian manifolds pM, gq having
two inequivalent spin-structures pP1, π1q and pP2, π2q such that P1 and P2 are isomorphic as abstract Spinpnq-principal
fibre bundles over M.

Example 3.3. Let M � Rn. By identifying TxRn with Rn for each x P Rn, we can equip Rn with the Riemannian
metric g given by the Euclidean inner product,

gxpv, wq :� xv, wy for all x P Rn, v, w P TxRn � Rn ,

and its standard orientation given by requiring that the canonical basis pe1, . . . , enq of TxRn � Rn is positively oriented.
The bundle SOpRn, gq of oriented orthonormal frames is trivial, i.e., is given by

SOpRn, gq � Rn � SOpnq ,

where we have identified an OONB pv1, . . . , vnq of Rn with the matrix A P SOpnq whose i-th column is vi. A spin-
structure for pRn, gq is now given by pP, πq with

P � Rn � Spinpnq
and

π : P � Rn � Spinpnq Ñ Rn � SOpnq � SOpRn, gq
px, gq ÞÑ px, λpgqq .

Example 3.4. We consider the unit sphere Sn � Rn�1 with its round standard metric g, i.e.,

gxpv, wq :� xv, wy for all x P Sn, v, w P TxSn � TxRn�1 � Rn�1 ,

where x�, �y is the Euclidean inner product. By our identification TxRn�1 � Rn�1, x P Rn�1, we have

TxSn � xK � tv P Rn�1 | xv, xy � 0u .
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The orientation we endow Sn with is defined by requiring any basis pv1, . . . , vnq of TxSn to be oriented if and only if
pv1, . . . , vn, xq is an oriented basis of Rn�1. It follows that for any positively oriented orthonormal basis pv1, . . . , vnq of
TxSn, pv1, . . . , vn, xq is an oriented orthonormal basis of Rn�1. Thus, the bundle SOpSnq is given by

SOpSnq � SOpn� 1q ,

where we have identified the OONB pv1, . . . , vn, xq of Rn�1 with the matrix A in SOpn � 1q having v1, . . . , vn, x as
columns, with projection

πSOpSnq : SOpSnq � SOpn� 1q Ñ Sn

pv1, . . . , vn, xq � A ÞÑ x � A � en�1 .

The right-action of SOpnq on SOpSnq � SOpn� 1q is given by the right-multiplication of SOpn� 1q on itself precom-
posed with the inclusion

ι : SOpnq Ñ SOpn� 1q

A ÞÑ
�

A 0
0 1



.

Associated with the inclusion ι is an inclusion rι : Spinpnq Ñ Spinpn � 1q, which can be constructed as follows. The
inclusion Rn � Rn � t0u ãÑ Rn�1 induces an inclusion Cℓn ãÑ Cℓn�1 (the image of which is the algebra generated by
e1, . . . , en), which, by restriction, induces an inclusion rι : Spinpnq Ñ Spinpn � 1q. It follows from the construction of
the map λ from Section 1.3 that λn�1prιpgqq � ιpλnpgqq for all g P Spinpnq.

To construct our spin-structure for Sn we set P :� Spinpn� 1q. The right-action of Spinpnq on P is given by right-
multiplication of Spinpn � 1q on itself precomposed with the inclusion rι. We set π :� λn�1 : P � Spinpn � 1q Ñ
SOpn � 1q � SOpSnq and define the projection πP : P Ñ Sn which makes P into a principal fibre bundle over Sn

by πP :� πSOpSnq � λn�1. Now pP, πq is a spin-structure for Sn. We summarize the situation in two commutative
diagrams:

P � Spinpn� 1q
λn�1
��

πP�πSOpSnq�λn�1

))

SOpSnq � SOpn� 1q
πSOpSnq

��
Sn

P� Spinpnq
λn�1�λn

��

��pid�rιq // P

λn�1
��

SOpSnq � SOpnq ��pid�ιq // SOpSnq

Example 3.5. Let M � S1 � r0, 2πs{t0, 2πu with the metric it inherits from its embedding into C � R2 and the
counterclockwise orientation. Since in dimension 1 there is only one positively oriented unit-vector in each tangent space,
we see that SOpS1q � S1. Note that SOp1q � t1u and Spinp1q � t�1u � Z2. The first spin-structure we define is
P1 :� S1 �Z2 with the obvious projections and right-action of Z2. We call P1 the trivial spin-structure on S1. There
is a second spin-structure on S1. Define P2 :� r0, 2πs � Z2{ � where p0,�1q � p2π,	1q with projection onto S1

πP2prx, gsq � x. We call P2 the nontrivial spin-structure on S1. The two spin-structures are inequivalent.

Proposition 3.6. Let pM, gq be an oriented Riemannian manifold. Then the spin-structures on M are in natural 1:1-
correspondence with the 2-sheeted coverings of SOpM, gq which, in case n ¥ 2, are nontrivial on the fibres of πSOpM,gq.

Proof. By definition, every spin-structure π : P Ñ SOpM, gq is a two-sheeted covering of SOpM, gq which, for
n ¥ 2, is nontrivial on the fibres of πSOpM,gq since πpp � gq � πppq � λpgq.

Assume that n ¥ 2 and let π : P Ñ SOpM, gq be an arbitrary two-sheeted covering which is nontrivial on
the fibres of πSOpM,gq. W.l.o.g. we assume that M and thus SOpM, gq and P are connected. Define πP : P Ñ M
by πP :� πSOpM,gq �π. Let R : SOpM, gq � SOpnq Ñ SOpM, gq be the right-action and define R : P� Spinpnq Ñ
SOpM, gq by Rpp, gq :� Rpπppq, λpgqq. Then, with R� : π1pP� Spinpnqq Ñ π1pSOpM, gqq the induced map on
homotopy groups, we have

R�pπ1pP� Spinpnqqq � R�pπ1pPq � π1pSpinpnqqq � R�pπ�pπ1pPqq, λ�pπ1pSpinpnqqqqq
� π�pπ1pPqq � π1pSOpM, gqq ,

since π1pSpinpnqq is trivial. Hence, there exists a unique lift R̃ : P � Spinpnq Ñ P of R. One easily checks
that this is indeed a group action. We have thus turned (the fibre bundle) pP, πPq into a Spinpnq-principal fibre
bundle over M which, by assumption, is a spin-structure. □
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Remark 3.7. Not every Riemannian manifold allows a spin-structure. Examples are the even-dimensional real projective
spaces RP2m, which are not orientable and so, in particular, not spin. Orientable examples, which are not spin, are the
even-dimensional complex projective spaces CP2m. The easiest way to see this is the following theorem.

For every smooth manifold there exist certain characteristic classes wi P HipM; Z2q, called Stiefel-Whitney
classes. These are obstruction classes to the existence of everywhere linearly independent sections of the
tangent bundle: if wipMq � 0, then there do not exist n � i � 1 everywhere linearly independent continuous
vector fields on M. In spin geometry, one is interested in the first and second Stiefel-Whitney class.

Theorem 3.8. Let M be a smooth manifold.
(i) M is orientable if and only if w1pMq � 0.

(ii) M is spin if and only if w1pMq � 0 and w2pMq � 0 in the sense that for any choice of orientation and metric, there
exists a spin-structure. Moreoever, if M is spin then there is a (nonunique) 1:1-correspondence between inequivalent
spin-structures on M and elements of H1pM; Z2q.

For the next definition recall the associated vector bundle construction from Definition 2.18.

Definition 3.9. (i) Let pM, gq be an oriented n-dimensional Riemannian manifold with spin-structure pP, πq. Let
κn : Spinpnq Ñ UpΣnq be the fundamental spin-representation. The complex vector bundle

ΣM :� P�κn Σn

is called the spinor bundle of pM, gq and the spin-structure pP, πq.
(ii) A section s P ΓpM, ΣMq is called a spinor field or, sloppily, a spinor.

Remark 3.10. (i) The spinor bundle ΣM has rank dim Σn � 2t n
2 u. Moreover, since κn is a unitary representation it

comes equipped with a canonical bundle metric as described in Proposition 2.21.
(ii) Recall that in case n � 2m the fundamental spin representation splits into the direct sum κ2m � κ�2m ` κ�2m of the

positive respectively negative half-spin representations κ�2m : Spinp2mq Ñ UpΣ�2mq. To this splitting corresponds a
splitting of the spinor bundle (see Remark 2.19)

ΣM � Σ�M` Σ�M ,

where the vector bundles
Σ�M :� P�κ� Σ�n

are called the bundles of positive respectively negative half-spinors. The sections s P ΓpM, Σ�Mq are called
positive respectively negative half-spinors.

Remark 3.11. Recall that Rn bR Σn carries a canonical structure as a complex vector space where scalar multiplication
with complex numbers is given by multiplication on the second factor.

Analogously, the real tensor product TMb ΣM carries a canonical C-vector bundle structure.

Definition 3.12. Let pM, gq be an oriented Riemannian manifold with a spin-structure pP, πq and let ΣM be the asso-
ciated spinor bundle. A Clifford multiplication is a vector bundle homormorphism of complex vector bundles

µ : TMb ΣM Ñ ΣM
vb σ ÞÑ v � σ

satisfying

v � pw � σq �w � pv � σq � �2gpv, wq � σ for all x P M, v, w P Tx M, σ P ΣMx .

Proposition 3.13. Let pM, gq be a Riemannian spin manifold with spin-structure pP, πq and let ΣM be the associated
spinor bundle.

(i) If n is even there exists exactly one Clifford multiplication. If n is odd there exist exactly two Clifford multiplications
which are the negative of each other. They can be distinguished by the action of the complex volume element, i.e., we
have either

ωC
n � σ :� itpn� 1q{2ue1 � pe2 � p. . . pen � σqqq � σ for all x P M, σ P ΣMx ,

or
ωC

n � σ � �σ for all x P M, σ P ΣMx ,
where pe1, . . . , enq is an OONB of Tx M.

(ii) Any Clifford multiplication satisfies

xv � σ, τy � �xσ, v � τy for all x P M, v P Tx M, σ, τ P ΣMx .
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Proof. To proof (i), we first note that the tangent bundle TM is associated to the spin-structure pP, πq via the
representation λ : Spinpnq Ñ SOpnq. More precisely, the vector bundle homomorphism

P�λ Rn Ñ TM

rp, px1, . . . , xnqts ÞÑ
ņ

i�1

xiπppqi

is an isomorphism. Here, for p P Px we have πppq � pπppq1, . . . , πppqnq P SOpM, gqx. Alluding to Remark 2.19
again, it follows that the vector bundle TMb ΣM is associated to P and the representation λb κn : Spinpnq Ñ
GLpRn b Σnq through the isomorphism

P�λbκn pRn b Σnq Ñ TMb ΣM

rp, xb σs ÞÑ
ņ

i�1

xiπppqi b rp, σs .

If rµ : Rn b Σn Ñ Σn is any Clifford multiplication as in Definition 1.52, we define the Clifford multiplication

µ : TMb ΣM � P�λbκn pRn b Σnq Ñ P�κn Σn � ΣM

rp, xb σs ÞÑ rp, rµpxb σqs � rp, x � σs .

We have to check that µ is well-defined, i.e., is independent of the chosen representative. For this, let p, q P Px
and let g P Spinpnq be the unique element such that q � p � g. Then we have

rp, xb σs � rp � g, pλb κnqpg�1qpxb σqs � rq, λpg�1qpxq b κnpg�1qpσqs
and

rp, rµpxb σqs � rp � g, κnpg�1qprµpxb σqqs � rq, κnpg�1qprµpxb σqqs .
From Proposition 1.56 we know that

κnpg�1qprµpxb σqq � rµppλb κnqpg�1qpxb σqq � rµpλpg�1qpxq b κnpg�1qpσqq
so that

rp, rµpxb σqs � rq, κnpg�1qprµpxb σqqs � rq, rµpλpg�1qpxq b κnpg�1qpσqqs
as required.

All statements now follow from Proposition 1.53 and Corollary 1.54. □

Remark 3.14. (i) In case the dimension n of M is odd, we will always fix the Clifford multiplication for which the
complex volume element acts by � idΣM.

(ii) We extend the Clifford multiplication to vector and spinor fields, that is, for X P VpMq and φ P ΓpM, ΣMq we let
X � φ be the spinor field defined by

pX � φqx :� Xx � φpxq for all x P M .

All relations holding pointwise then also hold as field equations, e.g., we have

X � pY � φq �Y � pX � φq � �2gpX, Yq � φ for all X, Y P VpMq, φ P ΓpM, ΣMq .

Theorem 3.15. There exists a metric connection ∇ � ∇Σ : ΓpM, ΣMq Ñ ΓpM, T�Mb ΣMq on ΣM satisfying

(3.1) ∇Σ
XpY � φq � ∇XY � φ�Y �∇Σ

X φ for all X, Y P VpMq, φ P ΓpM, ΣMq .

The connection ∇Σ is called spinor connection or Levi-Civita connection.

Remark. In fact, ∇Σ is the unique metric connection satisfying (3.1). Unfortunately, we will have to content ourselves
with the existence of ∇.

Proof. Let pP, πq be our spin-structure with which ΣM is associated.
Step 1: For any local section s : M � U Ñ P let pe1, . . . , enq :� π � s : U Ñ SOpM, gq be the projected local
OONB. For any φ P ΓpU, ΣMq, given by φ � rs, vs for some v P C8pU, Σnq, define

∇s
X φ � rs, Xpvqs � 1

4

ņ

i�1

ei �∇LC
X ei � φ(3.2)

for any X P VpMq. Obviously, ∇s is C-linear with respect to φ, C8pU, Cq-linear w.r.t. X and satisfies the Leibniz
rule.
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Step 2: We show that (3.2) is independent of the section s. Let s, t be local sections of P, which are, without loss
of generality, defined on the same open set W � M. We let σ : W Ñ Spinpnq be the unique smooth map which
satisfies

t � s � σ

and v, w P C8pW, Σnq such that φ � rs, vs � rt, ws. Then

rs, vs � rs � σ, κnpσ�1qpvqs � rt, ws .

We consider the first term on the right-hand side of (3.2). We have

Xpwq � Xpκnpσ�1qpvqq � pdpκn � σ�1qXqpvq � κnpσ�1qpXpvqq .

Since Spinpnq � Cℓ�n , we have dpLgqX � g � X respectively dpRgqX � X � g (cf. Example ??) and using Exercise
16 we see that

pdpκn � σ�1qXqpvq � pdκn � d inv � dσXqpvq � �κnpdpLσ�1q � dpRg�1qdσXqpvq
� �κnpσ�1pdσXqσ�1qpvq � �κnpσ�1qκnpdσX � σ�1qpvq ,

so that

rt, Xpwqs � rs � σ,�κnpσ�1qκnpdσX � σ�1qpvq � κnpσ�1qpXpvqqs
� rs, Xpvqs � rs, κnpdσX � σ�1qpvqs .(3.3)

In order to obtain an expression for dσX � σ�1 we will first calculate λ�pdσX � σ�1q. Denote A � pAijq � λ � σ :
W Ñ SOpnq. Let γ : p�ε, εq Ñ M be a curve with γp0q � x P W and γ1p0q � X P Tx M. Then

λ�pdσX � σ�1q � d
dt |t�0

λpσ � γptq � σpxq�1q � d
dt |t�0

pλ � σ � γqptq � λpσpxq�1q

� d
dt |t�0

A � γptq � At � dAX � At

�
ņ

k�1

pXpAikqAjkq

� 1
2

ņ

i,j,k�1

XpAikqAjkXei ,ej ,

where the Xei ,ej are the matrices from Exercise 5. By Proposition 1.47 we now have

(3.4) dσX � σ�1 � 1
4

ņ

i,j,k�1

XpAikqAjkei � ej .

Next, we consider the second term on the right-hand side of (3.2). Recall that the tangent bundle is (isomor-
phic to ) the vector bundle P�λ Rn associated with the principal fibre bundle P of our spin-structure and the
representation λ. With pe1, . . . , enq � π � s and pf1, . . . , fnq � π � t the projected local OONBs, we have for each
i � 1, . . . , n,

fi � rt, eis � rs � σ, eis � rs, λpσqeis � rs, Aeis �
��s,

ņ

j�1

Ajiej

�� �
ņ

k�1

Ajirs, ejs

�
ņ

k�1

Ajiej ,

which implies

∇LC
X fi �

ņ

j�1

∇LC
X pAjiejq �

ņ

j�1

XpAjiqej �
ņ

j�1

Aji∇LC
X ej .
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Hence,
ņ

i�1

fi �∇LC
X fi � φ �

¸
i,j,k�1

Ajiej �
�

XpAkiqek � Aki∇LC
X ekq

	
� φ

�
¸

i,j,k�1

XpAkiqAjiej � ek � φ�
¸

i,j,k�1

Aji Akiej �∇LC
X ek � φ

�
��s, κn

�� ¸
i,j,k�1

XpAkiqAjiej � ek

�
pvq
���

¸
i,j,k�1

Aji Akiej �∇LC
X ek � φ .

Since A�1 � At we have
°

i Aji Aki � δkl and using (3.4) we obtain

ņ

i�1

fi �∇LC
X fi � φ � 4rs, κnpdσX � σ�1qs �

¸
i�1

ei �∇LC
X ei � φ ,

which in turn, using (3.3), implies

rs, Xpvqs � 1
4

ņ

i�1

ei �∇LC
X ei � φ � rt, Xpwqs � 1

4

ņ

i�1

fi �∇LC
X fi � φ .

Step 3: We have to show that our connection is metric and satisfies (3.1). To see that ∇ is metric, let s : U Ñ P
be a local section with pe1, . . . , enq � π � s : U Ñ SOpM, gq the accompanying OONB, φ � rs, vs, ψ � rs, ws P
ΓpU, ΣMq with v, w P C8pU, Σnq and X P Tx M. Then, by definition of the bundle metric, see Proposition 2.21,
we have

Xxφ, ψy � Xxv, wy � xXpvq, wy � xv, Xpwqy � xrs, Xpvqs, ψy � xφ, rs, Xpwqsy .

Using the skew-symmetry of Clifford multiplication, that the Levi-Civita connection is metric and the Clifford
relations, we see that

xei �∇LC
X ei � φ, ψy � xφ, ei �∇LC

X ei � ψy � xei �∇LC
X ei � φ�∇LC

X ei � ei � φ, ψy
� �2gpei,∇LC

X eiqxφ, ψy ,

which vanishes since
0 � Xgpei, eiq � 2gpei,∇LC

X eiq .

Hence,
Xxφ, ψy � xrs, Xpvqs, ψy � xφ, rs, Xpwqsy � x∇X φ, ψy � xφ,∇Xψy .

To see that ∇ satisies (3.1) we let Y � rs, ys P ΓpU, TMq with y P C8pU, Rnq. Observe that

Y � rs, ys �
�

s,
ņ

i�1

yiei

�
�

ņ

i�1

yirs, eis �
ņ

i�1

gpY, eiqei

and
Y � φ � rs, ys � rs, vs � rs, κnpyqpvqs .

Thus

(3.5) ∇XpY � φq � rs, Xpκnpyqpvqqs � 1
4

ņ

i�1

ei �∇LC
X ei �Y � φ .

The first term on the right-hand side is

Xpκnpyqpvqq � Xpκnpyqqpvq � κnpyqpXpvqq � κnpXpyqqpvq � κnpyqpXpvqq

�
ņ

i�1

Xpyiqκnpeiqpvq � κnpyqpXpvqq �
ņ

i�1

Xpgpei, Yqqκnpeiqpvq � κnpyqpXpvqq ,

so that

(3.6) rs, Xpκnpyqpvqqs �
ņ

i�1

Xpgpei, Yqqei � φ�Y � rs, Xpvqs .
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Using the Clifford relations, we see that the second term on the right-hand side of (3.5) is
ņ

i�1

ei �∇LC
X ei �Y � φ � �

ņ

i�1

ei �Y �∇LC
X ei � φ� 2

ņ

i�1

gp∇LC
X ei, Yqei, Yq � φ

�
ņ

i�1

Y � ei �∇LC
X ei � φ� 2

ņ

i�1

gpei, Yq∇LC
X ei � φ� 2

ņ

i�1

gp∇LC
X ei, Yqei � φ .

Since the Levi-Civita connection is metric, for each j � 1, . . . , n we have
ņ

i�1

gpgpei, Yq∇LC
X ei, ejq �

ņ

i�1

gpei, Yqgp∇LC
X ei, ejq � �

ņ

i�1

gpei, Yqgpei,∇LC
X ejq � �gpY,∇LC

X ejq

� �
ņ

i�1

gpY,∇LC
X eiqgpei, ejq � �

ņ

i�1

gpgpY,∇LC
X eiqei, ejq ,

which implies

1
4

ņ

i�1

ei �∇LC
X ei �Y � φ � 1

4
Y �

ņ

i�1

ei �∇LC
X ei � φ�

ņ

i�1

gpei, Yq∇LC
X ei � φ .

From this, (3.5) and (3.6) we obtain

∇XpY � φq �
ņ

i�1

Xpgpei, Yqqei � φ�
ņ

i�1

gpei, Yq∇LC
X ei � φ�Y �∇X φ

� ∇LC
X

�
ņ

i�1

gpei, Yqei

�
� φ�Y �∇X φ

� ∇LC
X Y � φ�Y �∇X φ .

□

Remark 3.16. On any Riemannian manifold pM, gq there are vector bundle isomorphisms

TM
5
Õ
7

T�M

called musical isomorphisms which are given by the metric, i.e., for any x P M and X P Tx M we have

Tx M Q X ÞÑ X5 P T�x M

with
X5pYq :� gxpX, Yq

and
7 � 5�1 .

Definition 3.17. Let pM, gq be a Riemannian spin manifold with spin-structure pP, πq, associated spinor bundle ΣM
and Clifford multiplication µ : TMb ΣM Ñ ΣM. The Dirac operator D is the 1st order linear differential operator

D : ΓpM, ΣMq ∇ÝÑ ΓpM, T�Mb ΣMq 7bidÝÝÝÑ ΓpM, TMb ΣMq µÝÑ ΓpM, ΣMq .

Proposition 3.18. Let pe1, . . . , enq be a local ONB. Then the Dirac operator is given by

Dφ �
ņ

i�1

ei �∇ei φ

for all φ P ΓpM, ΣMq. Moreover, we have

Dp f φq � grad f � φ� f Dφ

for all f P C8pM, Cq and φ P ΓpM, ΣMq, where grad f :� pd f q7.
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Proof. Let εi � e5i for all i � 1, . . . , n. Then

∇φ �
ņ

i�1

εi b∇ei φ ,

so that

Dφ � µ � p7 b idq
�

ņ

i�1

εi b∇ei φ

�
� µ

�
ņ

i�1

ei b∇ei φ

�
�

ņ

i�1

ei �∇ei φ .

Using the formula we just proved, we see that

Dp f φq �
ņ

i�1

ei �∇eip f φq �
ņ

i�1

ei � peip f qφ� f∇ei φq �
ņ

i�1

eip f qei � φ�
ņ

i�1

ei �∇ei φ � grad f � φ� f Dφ .

□

Definition 3.19. Let pM, gq be a Riemannian manifold.
(i) Denote by BpMq the Borel σ-algebra of M, i.e., the smallest σ-algebra containing all open sets of M. We define the

Riemannian measure / volume µ :� µg on M to be the measure which in every chart pU, xq is given by

dµ :�
b

detpgijqdλ ,

where λ is the (pulled back) Lebesgue-measure in pU, xq and

gij :� g
�

B
Bxi ,

B
Bxj

	
for i, j � 1, . . . , n ,

are the components of the matrix of g associated with the coordinates px1, . . . , xnq.
(ii) Let pE, πE; Vq be any K-vector bundle over M and φ P ΓC8pM, Eq. The support of φ is the set

suppφ :� tx P M | φpxq � 0u .

We say that φ is compactly supported if suppφ is compact and denote the space of all compactly supported
sections by

ΓC8c pM; Eq :� tφ P ΓC8pM, Eq | suppφ is compactu .
In the case of E � TM we additionally introduce the notation

VcpMq :� ΓC8c pM, TMq .

(iii) Suppose that pE, πE; Vq comes equipped with a bundle metric x�, �y. We define the L2-inner product p�, �q :� p�, �qL2

on ΓC8c pM, Eq by

pφ, ψqL2 :�
»

M
xφ, ψydµg

and the associated L2-norm | � | :� | � |L2 by

|φ|L2 :�
b
pφ, φq .

Remark 3.20. Note that ΓC8c pM; Eq is in general not complete w.r.t. | � |L2 , i.e., the pair pΓC8c pM; Eq, p�, �qq is only a
pre-Hilbert space.

Definition 3.21. Let pM, gq be a Riemannian manifold and X P VpMq a vector field. The divergence of X is the
function div X P C8pMq given locally by

div X �
ņ

i�1

gpei,∇ei Xq � trgp∇Xq ,

where pe1, . . . , enq is a local ONB.

The familiar Divergence Theorem from vector calculus generalizes to Riemannian manifolds and we state
it here without proof.

Theorem 3.22. Let pM, gq be a Riemannian manifold and X P VcpMq. Then»
M

div Xdµg � 0 .
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Notation and Remarks 3.23. We denote by TMC the complexification of the tangent bundle. Formally, this is the
complex vector bundle over M given by

TMC �
¤

xPM

pTx MqC

where pTx MqC � Tx MbR C is the complexification of Tx M. Each element z P pTx MqC can be written as

z � v� iw with v, w P Tx M .

We denote VC
pcqpMq :� ΓC8

pcq
pM, TMCq and call its elements complex (compactly supported) vector fields. Each

element Z P VCpMq can be written in the form

Z � V � iW for unique V, W P VpMq .

We extend the Levi-Civita connection ∇ complex linearly to a connection of TMC, denoted by the same symbol, and we
do the same with the divergence. The Divergence Theorem is then of course also true for all complex compactly supported
vector fields.

Proposition 3.24. Let pM, gq be an oriented Riemannian spin manifold with a fixed spin-structure. Then the Dirac
operator is formally selfadjoint, i.e., we have

pDφ, ψq � pφ, Dψq for all φ, ψ P ΓC8c pM, ΣMq .

Proof. Let p P M and pe1, . . . , enq be an ONB defined in a neighborhood of p with p∇eiqp � 0. Then at p we
have

xDφ, ψyp �
ņ

i�1

xei �∇ei φ, ψyp � �
ņ

i�1

x∇ei φ, ei � ψy

� �
ņ

i�1

�peiqpxφ, ei � ψy � xφ,∇ei ei � ψyp � xφ, ei �∇ei ψyp
�

� �
ņ

i�1

�peiqpxφ, ei � ψy � xφ, ei �∇ei ψyp
�

� �
ņ

i�1

peiqpxφ, ei � ψy � xφ, Dψyp .

Denote with gC the complex bilinear extension of g to TMC and define a complex compactly supported vector
field X P VC

c pMq by the condition

gC
x pXx, Wq � �xφpxq, W � ψpxqyx for all W P Tx M, x P M .

Then

div Xppq �
ņ

i�1

gCp∇ei X, eiqp �
ņ

i�1

�
peiqpgCpX, eiq � gCpX,∇ei eiqp

	
�

ņ

i�1

peiqpgCpX, eiq � �
ņ

i�1

peiqpxφ, ei � ψy ,

from which we deduce
xDφ, ψy � div X � xφ, Dψy .

The statement of the theorem now follows from the Divergence Theorem. □

Corollary 3.25. Let pM, gq be a compact Riemannian spin manifold with a fixed spin-structure. Then

ker D � ker D2 .

Remark 3.26. We call any spinor φ P ΓpM, ΣMq with D2 φ � 0 harmonic and in case M is compact, this is equivalent
to Dφ � 0.

proof of Corollary 3.25. We only need to show ker D2 � ker D. Let φ P ker D2, i.e., D2 φ � 0. Then we also have
pD2 φ, φq � 0. Hence,

0 � pD2 φ, φq � pDφ, Dφq �
»

M
xDφ, Dφydµg .
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The integrand is a nonnegative, continuous function. We claim that it must be zero. Assume it is not, i.e., there
is a point p P M such that xDφ, Dφyp ¡ 0. By continuity, there is an open neighborhood of p on which this
function is positive. Since the Riemannian measure is of full support (every open set has positive measure),
the integral would be positive. A contradiction. Hence, xDφ, Dφy � 0 which implies Dφ � 0. □

For the next proposition recall that in even dimensions the spinor bundle splits as ΣM � Σ�M ` Σ�M.
Hence, any section φ P ΓpM, ΣMq splits uniquely as φ � φ� � φ� with φ� P ΓpM, Σ�Mq.
Proposition 3.27. Let pM2m, gq be an even dimensional Riemannian spin manifold. Then the Dirac operator D :
ΓpM, Σ�Mq ` ΓpM, Σ�Mq Ñ ΓpM, Σ�Mq ` ΓpM, Σ�Mq splits as

D �
�

0 D�

D� 0



.

Proof. By the Clifford relations and skew-symmetry of Clifford multiplication, any unit vector e P Tx M induces
an isometric isomorphism

e� : pΣ�Mqx Ñ pΣ	Mqx .
It follows from the local formula (3.2) that the spinor connection preserves ΓpM, Σ�Mq. The local formula from
Proposition 3.18 shows that the Dirac operator maps ΓpM, Σ�Mq to ΓpM, Σ	Mq. □

Corollary 3.28. The operators D� : ΓpM, Σ�Mq Ñ ΓpM, Σ	Mq are formal adjoints of each other w.r.t. the corre-
sponding L2-products.

Definition 3.29. Let pM, gq be a Riemannian spin manifold with a fixed spin-structure and ΣM the associated spinor
bundle. Suppose we are given a complex vector bundle E over M with a bundle metric and a metric connection. We
consider the bundle ΣM b E with its tensor product bundle metric, tensor product connection and the induced Clifford
multiplication µ : TMb ΣMb E Ñ ΣMb E. Then the operator

DE : ΓpM, ΣMb Eq ∇ÝÑ ΓpM, T�Mb ΣMb Eq 7bidb idÝÝÝÝÝÝÑ ΓpM, TMb ΣMb Eq µÝÑ ΓpM, ΣMb Eq
is called twisted Dirac operator with coefficients in E.

Remark 3.30. If pM, gq is an even dimensional Riemannian spin manifold, then there is a natual splitting ΣM b E �
pΣ�Mb Eq ` pΣ�Mb Eq and a correspoding splitting of the twisted Dirac operator

DE �
�

0 D�
E

D�
E 0



,

with D�
E : ΓpM, Σ�Mb Eq Ñ ΓpM, Σ	Mb Eq.

3.1. The Lichnerowicz formula. The goal of this section is to come back to the very first lecture and see that,
in a suitable sense, the square of the Dirac operator is a Laplacian. The corresponding formula is called the
Lichnenrowicz formula (see Theorem 3.37) and it shows that there is an interesting interplay between the
geometry of a manifold and the existence of harmonic spinors, i.e., solutions to the equation D2 φ � 0.

Let pM, gq be a Riemannian manifold. Recall the definition of the Riemannian curvature tensor

RpX, YqZ � ∇X∇YZ�∇Y∇XZ�∇rX,YsZ ,

the Ricci curvature tensor

RicpX, Yq �
ņ

i�1

gpRpei, XqY, eiq � trpU ÞÑ RpU, XqYq ,

and the scalar curvature

scal �
ņ

i�1

Ricpei, eiq � trgppU, Vq ÞÑ RicpU, Vqq �
ņ

i,j�1

gpRpei, ejqej, eiq .

The Riemannian curvature tensor has the following symmetry properties,

RpX, YqZ � �RpY, XqZ ,

gpRpX, YqZ, Wq � �gpRpX, YqW, Zq ,

gpRpX, YqZ, Wq � gpRpZ, WqX, Yq ,

RpX, YqZ� RpY, ZqX � RpZ, XqY � 0 .
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The last equation is 1st Bianchi-identity.
It follows from the symmetry properties of the Riemannian curvature tensor, that the Ricci tensor is sym-

metric, i.e., RicpX, Yq � RicpY, Xq. It thus defines, by duality, a (pointwise) selfadjoint endomorphism field
ric,

gpricpXq, Yq � RicpX, Yq .

Definition 3.31. Let M be a manifold and pE, πE; Vq a K-vector bundle over M equipped with a connection ∇E :
ΓpM, Eq Ñ ΓpM, T�Mb Eq. We define the curvature tensor RE of pE,∇Eq by

REpX, Yqφ � ∇E
X∇E

Y φ�∇E
Y∇E

X φ�∇E
rX,Ysφ for all X, Y P VpMq, φ P ΓpM, Eq .

Remark 3.32. A calculation completely analogous to the one for the Riemannian curvature tensor shows that RE is
indeed C8-linear in all three arguments so that it is indeed a tensor, i.e., a section RE P ΓC8pM, T�MbT�MbEndpEqq,
and that it is antisymmetric in the first two arguments, i.e., REpX, Yqσ � �REpY, Xqσ for all X, Y P Tx M, σ P Ex,
x P M. Therefore, it can also be viewed as an endomorphism-valued two-form, RE P Ω2

C8pM,EndpEqq.
Proposition 3.33. Let pM, gq be a Riemannian spin manifold with a fixed spin-structure pP, πq. Then

RΣMpX, Yqσ � 1
4

ņ

i�1

ei � RpX, Yqei � σ ,

where pe1, . . . , enq is an ONB of the corresponding tangent space.

Proof. Let p P M and let pe1, . . . , enq be a local OONB defined on a neighborhood U of p with p∇eiqp � 0 for all
i � 1, . . . , n. Choose a section s : U Ñ P such that π � s � pe1, . . . , enq. Let X, Y P VpMq, v P C8pU, Σnq and let
φ � rs, vs P ΓpU; ΣMq. Then we have (cmp. the proof of Theorem 3.15, Step 1)

∇Σ
X∇Σ

Y φ � ∇Σ
X

�
rs, Ypvqs � 1

4

¸
i�1

ei �∇Yei � φ

�

� rs, XpYpvqqs � 1
4

ņ

i�1

ei �∇Xei � rs, Ypvqs � 1
4

ņ

i�1

∇Σ
X pei �∇Yei � φq

� rs, XpYpvqqs � 1
4

ņ

i�1

ei �∇Xei � rs, Ypvqs � 1
4

ņ

i�1

�
∇Xei �∇Yei � φ� ei �∇X∇Yei � φ� ei �∇Yei �∇Σ

X φ
	

.

Analogously, we have

∇Σ
Y∇Σ

X φ � rs, YpXpvqqs � 1
4

ņ

i�1

ei �∇Yei � rs, Xpvqs � 1
4

ņ

i�1

�
∇Yei �∇Xei � φ� ei �∇Y∇Xei � φ� ei �∇Xei �∇Σ

Y φ
	

,

and also

∇Σ
rX,Ysφ � rs, rX, Yspvqs � 1

4

ņ

i�1

ei �∇rX,Ysei � φ ,

so that, at the point p, we have

RΣMpXp, Ypqpφppqq � 1
4

ņ

i�1

peiqp � RpXp, Ypqpeiqp � φppq ,

as claimed. □

Definition 3.34. Let pM, gq be a Riemannian manifold and pE, πE; Vq a K-vector bundle over M, equipped with a
connection ∇E. The associated Bochner Laplacian, also called the connection Laplacian, is the linear second order
differential operator

∆E : ΓC8pM, Eq Ñ ΓC8pM, Eq

φ ÞÑ �
ņ

i�1

�
∇E

ei
∇E

ei
φ�∇E

∇ei ei
φ
	

,

where pe1, . . . , enq is a local ONB. In case M is a spin manifold and E � ΣM is the spinor bundle associated with a
spin-structure, we call ∆Σ :� ∆ΣM the spinor Laplacian.
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Proposition 3.35. Let pM, gq be a Riemannian manifold and pE, πE; Vq a K-vector bundle with a bundle metric x�, �y
and a metric connection ∇E. Then the associated Bochner Laplacian satisfies

p∆E φ, ψq � p∇E φ,∇Eψq for all φ, ψ P ΓC8c pM; Eq .

In particular, ∆E is nonnegative and formally self-adjoint, i.e.,

p∆E φ, φq ¥ 0 and p∆E φ, ψq � pφ, ∆Eψq for all φ, ψ P ΓC8c pM; Eq .

Remark. The expression |∇φ|2 has to be read as follows. The Riemannian metric g induces a bundle metric g� on T�M
by

g�x pα, βq � gxpα7, β7q for all α, β P T�x M, x P M .
The bundle metric g� is sometimes called the cometric. Now we can use the tensor product metric x�, �yb on T�Mb E
which is given on pure tensors by

xαb σ, βb τybx :� g�x pα, βqxσ, τyx for all α, β P T�x M, σ, τ P Ex, x P M .

Then |∇φ|2 is the square of the corresponding L2-norm of ∇φ.

Proof. As before, we fix a point p P M and choose a local ONB pe1, . . . , enq defined on a neighborhood of p with
p∇eiqp � 0 for all i � 1, . . . , n. Then, at p, we have

x∆E φ, ψyp � �
ņ

i�1

x∇ei∇ei φ, ψyp � �
ņ

i�1

�
eix∇E

ei
φ, ψy � x∇E

ei
φ,∇E

ei
ψy

	
p

� �
ņ

i�1

peiqpx∇E
ei

φ, ψy �
ņ

i,j�1

gpei, ejqpx∇E
ei

φ,∇E
ej

ψyp

� �
ņ

i�1

peiqpx∇E
ei

φ, ψy �
ņ

i,j�1

g�pεi, ε jqpx∇E
ei

φ,∇E
ej

ψyp

� �
ņ

i�1

peiqpx∇E
ei

φ, ψy �
ņ

i,j�1

xεi b∇E
ei

φ, ε j b∇E
ej

ψyp

� �
ņ

i�1

peiqpx∇E
ei

φ, ψy � x∇E φ,∇Eψybp .

In case E is a real vector bundle, we define a compactly supported vector field X P VcpMq by

gxpXx, Wq � �x∇E
W φpxq, ψpxqyx for all W P Tx M, x P M ,

and in case E is complex we substitute gC for g to define X as a complex compactly supported vector field. In
both cases, a calculation analogous to the one in the proof of Proposition 3.24 shows that

div Xppq � �
ņ

i�1

peiqpx∇E
ei

φ, ψy .

Hence, it follows from the Divergence Theorem that

p∆E φ, ψq � p∇E φ,∇Eψq .

Nonnegativity now follows by setting ψ � φ and formal selfadjointness of ∆E follows straightforwardly,

p∆E φ, ψq � p∇E φ,∇Eψq � p∇Eψ,∇E φq � p∆Eψ, φq � pφ, ∆Eψq .

□

Corollary 3.36. In the situation of Proposition 3.35, every φ P ΓC8c pM, Eq which is ∆E-harmonic, i.e., satisfies ∆E φ �
0, is parallel, i.e., satisfies ∇E φ � 0.

Proof. Let φ P ΓC8c pM, Eq be harmonic. Since ∆E φ � 0, we also have p∆E φ, φq � 0. By the last proposition,

0 � p∆E φ, φq � p∇E φ,∇E φq �
»

M
x∇E φ,∇E φydµg .

The same argument as in the proof of Corollary 3.25 shows that ∇E φ � 0. □



ADVANCED DIFFERENTIAL GEOMETRY II - SPIN GEOMETRY WINTER SEMESTER 2022/23 31

Theorem 3.37 (Lichnerowicz formula). Let pM, gq be a Riemannian spin manifold with a fixed spin-structure. Then
we have

D2 φ � ∆Σ φ� 1
4

scal �φ for all φ P ΓpM, ΣMq .

Proof. Let p P M and choose a local ONB pe1, . . . , enq with p∇eiqp � 0 for all i � 1, . . . , n. Then, at p, we have

D2 φ �
ņ

i,j�1

ei �∇ei

�
ej �∇ej φ

	
�

ņ

i,j�1

ei �
�
∇ei ej �∇ej φ� ej �∇ei∇ej φ

	
�

¸
i,j�1

ei � ej �∇ei∇ej φ

� �
ņ

i�1

∇ei∇ei φ�
¸
i j

ei � ej �
�
∇ei∇ej φ�∇ej∇ei φ

	
.

Since p∇eiqp � 0 and rei, ejsp � p∇ei ej �∇ej eiqp � 0 (the Levi-Civita connection is, by definition, torsionfree),
this is equal to

�
ņ

i�1

�
∇ei∇ei φ�∇∇ei ei φ

	
�
¸
i j

ei � ej �
�
∇ei∇ej φ�∇ej∇ei φ�∇rei ,ejs

φ
	

�∆Σ φ�
¸
i j

ei � ej � RΣMpei, ejqφ � ∆Σ φ� 1
2

ņ

i,j�1

ei � ej � RΣMpei, ejqφ .

It remains to show that the second term on the right hand side is equal to 1{4 scal φ. By Proposition 3.33 this
term is

1
8

ņ

i,j,k�1

ei � ej � ek � Rpei, ejqek � φ � 1
8

¸
i,j,k,l�1

gpRpei, ejqek, elqei � ej � ek � el � φ

� 1
8

ņ

l�1

�
1
3

¸
i,j,k

p.w. dist.

gpRpei, ejqek � Rpej, ekqei � Rpek, eiqej, elqei � ej � ek�

�
ņ

i,j�1

gpRpei, ejqei, elqei � ej � ei � �
ņ

i,j�1

gpRpei, ejqej, elqei � ej � ej �
�

el � φ .

By the first Bianchi-identity for the Riemannian curvature tensor, the first sum vanishes and we are left with

1
8

ņ

l�1

�� ņ

i,j�1

gpRpei, ejqel , eiqej � ei � ei � �
ņ

i,j�1

gpRpej, eiqel , ejqei � ej � ej�
�
el � φ

�� 1
4

ņ

i,l�1

Ricpei, elqei � el � φ � �1
4

ņ

i�1

Ricpei, eiqei � ei � φ � 1
4

scal φ ,

where we have used the symmetry properties of the curvature tensor, the Ricci curvature and the Clifford
relations. □

Remark 3.38. If we are considering the twisted spinor bundle ΣMb E over the spin manifold M, then the first part of
the proof of Theorem 3.37 shows that

D2
E � ∆ΣMbE �R ,(3.7)

where R P ΓC8pM,EndpΣMb Eqq is given by

Rpσq � 1
2

ņ

i,j�1

ei � ej � RΣMbEpei, ejqpσq ,

with pe1, . . . , enq a local ONB. Formula (3.7) is an example of a Weitzenböck formula, also called a Bochner identity.

Corollary 3.39. Let pM, gq be a connected, compact Riemannian spin manifold with fixed spin-structure. Assume that
scal ¥ 0 and that there exists a point p P M such that scalppq ¡ 0. Then there do not exist any nontrivial harmonic
spinors, i.e., the equation

Dφ � 0 , φ P ΓpM, ΣMq
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has only the trivial solution.

Proof. Let φ P ΓpM, ΣMq be a harmonic spinor. Then D2 φ � 0 and so

0 � pD2 φ, φq � p∆Σ φ, φq � 1
4 pscal φ, φq ,

that is,

�|∇φ|2 � �p∇φ,∇φq � �p∆Σ φ, φq � 1
4 pscal φ, φq � 1

4

»
M

scal }φ}2dµg .

The right-hand side is nonnegative, so we must have ∇φ � 0. Since the spinor connection is metric, this
implies that }φ}2 is constant,

X}φ}2 � Xxφ, φy � x∇X φ, φy � xφ,∇X φy � 0� 0 for all X P Tx M, x P M .

By assumption scalppq ¡ 0 which means we must have scal ¡ 0 on an open neighborhood of p. This implies
}φ}2 � 0 for otherweise the integral on the right hand-side was positive. □

3.2. Special Spinors and Geometry. We constructed the spinor bundle and its covariant derivative using the
metric and the Levi-Civita connection. This means that the geometry of the spinor bundle is closely related
to the geometry of the underlying manifold, a fact which can be seen in the formula for the curvature tensor
of ΣM or in the Lichnerowicz-formula. It comes as no surprise that the existence of spinors satisfying certain
field equations has strong geometric implications.

Definition 3.40. Let pM, gq be a Riemannian spin manifold with a fixed spin-structure. Then a spinor φ P ΓpM, ΣMq
is called parallel if

∇φ � 0 ,
that is, if ∇X φ � 0 for all X P VpMq.
Lemma 3.41. If M is connected and φ P ΓpM, ΣMq parallel, then the function }φ} is constant.

Proof. We have for every X P VpMq,
X}φ}2 � Xxφ, φy � x∇X φ, φy � xφ,∇X φy � 0� 0 .

Hence, }φ}2 is constant and then so is }φ}. □

Theorem 3.42. Let pM, gq be a connected Riemannian spin manifold with a fixed spin-structure. If there exists a
nontrivial parallel spinor φ P ΓpM, ΣMq, then pM, gq is Ricci-flat, i.e., Ric � 0.

Proof. Let φ P ΓpM, ΣMq be nontrivial and parallel. By definition of the curvature tensor RΣM, we have

RΣMpX, Yqφ � 0 for all X, Y P VpMq .

Fix a point x P M, let pe1, . . . , enq be an ONB of Tx M and X P Tx M. A calculation similar to the one in the proof
of the Lichnerowicz formula yields

0 �
ņ

i�1

ei � RΣM
x pei, Xqφpxq � 1

2
ricxpXq � φpxq .

The previous lemma assures φpxq � 0. Hence, ricxpXq � 0 for all X P Tx M, i.e., ricx � 0. □

A more general notion than that of a parallel spinor is given in the following definition.

Definition 3.43. Let pM, gq be a Riemannian spin manifold with a fixed spin-structure. A spinor φ P ΓpM, ΣMq for
which there exists a number ζ P C such that

∇X φ � ζX � φ for all X P VpMq
is called a Killing spinor with Killing number ζ.

Remark 3.44. The defining equation for a Killing spinor is in general well overdetermined. Indeed, if M has dimension
n the spinor bundle has rank 2tn{2u. Hence, locally, ∇X φ � ζX � φ is a system of 2tn{2u equations in n variables. As we
will see in the following propositions, neccessary conditions for Killing spinors to exist are quite restrictive.

Proposition 3.45. Let pM, gq be a connected Riemannian spin manifold with a fixed spin-structure and φ P ΓpM, ΣMq
a Killing spinor with Killing number ζ P C. Then

(i) if φ is nontrivial, then φpxq � 0 for all x P M,
(ii) Dpφq � �nζφ, i.e., φ is an eigenspinor for the Dirac operator with eigenvalue �nζ.
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Proof. (i): Since we already handled the case of parallel spinors, we can assume ζ � 0. Let γ : p�ε, εq Ñ M be
any smooth curve and let ψ : p�ε, εq Q t ÞÑ φpγptqq P ΣM. Since φ is a Killing spinor we then have

∇
dt

ψptq � p∇γ1ptqφqγptq � ζγ1ptq � φpγptqq � ζγ1ptq � ψptq ,

i.e., ψ satisfies a first order ordinary linear differential equation. By uniqueness of solutions of ODEs, ψp0q �
φpγp0qq � 0 would imply ψ � 0. Since γ was arbitrary, this in turn implies φ � 0.
(ii): Locally, we have

Dφ �
ņ

i�1

ei �∇ei φ �
ņ

i�1

ei � ζei � φ � �nζφ .

□

Definition 3.46. Let pM, gq be a Riemannian manifold. A vector field X P VpMq is a Killing (vector) field if

LX g � 0 ,

where the Lie-derivative on 2-tensors is given by

pLXhqpY, Zq :� XhpY, Zq � hpLXY, Zq � hpY,LXZq
for all X, Y, Z P VpMq.
Remark 3.47. The vector field X P VpMq is Killing if and only if

0 � XgpY, Zq � gpLXY, Zq � gpY,LXZq � gp∇XY, Zq � gpY,∇XZq � gprX, Ys, Zq � gpY, rX, Zsq
� gp∇XY, Zq � gpY,∇XZq � gp∇XY �∇YX, Zq � gpY,∇XZ�∇ZXq
� gp∇YX, Zq � gpY,∇ZXq ,

i.e., if and only if Y ÞÑ ∇YX is a skew-symmetric endomorphism of the tangent bundle.

Remark 3.48. Let pM, gq be a Riemannian manifold and assume for simplicity that M is compact. The diffeomorphism
group DiffpMq of M is an infinite-dimensional (Fréchet-) Lie group and VpMq together with the Lie-bracket r�, �s on
vector fields is its Lie algebra. This can be seen as follows. Suppose we are given a one-parameter group t ÞÑ Φt of
diffeomorphisms Φt of M with Φ0 � idM. Then p ÞÑ Xp :� d{dt|t�0Φtppq clearly is a vector field of M. On the other
hand, given any X P VpMq, then, by compactness, X is complete, i.e., for any starting point p P M the flow Φt

Xppq
exists for all time t P R. In particular, t ÞÑ Φt

X is a one-parameter group of diffeomorphisms with Φ0 � idM.
Inside DiffpMq we have the isometry group

IsompM, gq :� tΦ P DiffpMq |dΦx : pTx M, gxq Ñ pTΦpxqM, gΦpxqq is an isometry for all x P Mu .

This is a (finite-dimensional) Lie group as in Section 1.1. While for a generic Riemannian metric g on M the isometry
group IsompM, gq will be trivial, there are Riemannian manifolds whose isometry group has dimension ¥ 1. The most
prominent example is of course pSn, groundq with isometry group IsompSn, groundq � Opn� 1q. A noncompact example
is the hyperbolic plane pH, ghypq, where H � tpx, yq P R2 | y ¡ 0u and ghyp � 1{y2pdx2 � dy2q, with isometry group
IsompH, ghypq � PSLp2; Rq acting by Möbius transformations.

A Killing field X is a vector field for which the associated flow Φt
X is a one-parameter group of isometries of pM, gq,

i.e., for each t P R the map M Q p ÞÑ Φt
Xppq P M is an isometry. Thus, the existence of a Killing field X P VpMq on a

Riemannian manifold pM, gq is equivalent to the assertion that the isometry group IsompM, gq has positive dimension.
Killing fields are sometimes called infinitesimal isometries.

A typical Killing field on the round sphere can be obtained by differentiating the one-parameter group of rotations
around a fixed axis. An example of a Killing field on the hyperbolic plane is B

Bx which corresponds to the one-parameter
group of translations along lines parallel to the x-axis.

Proposition 3.49. Let pM, gq be a connected Riemannian spin manifold with a fixed spin-structure and φ P ΓpM, ΣMq
a Killing spinor with Killing number ζ P R. Then the vector field

X :�
ņ

j�1

ixφ, ej � φyej P VpMq ,

where pe1, . . . , enq is a local ONB, is a (possibly vanishing) Killing field of pM, gq.
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Proof. Let p P M and pe1, . . . , enq a local ONB in a neighborhood of p with p∇ejqp � 0 for all j � 1, . . . , n. Let
Y P Tp M. Then, at p, we have

∇YX � i
ņ

j�1

�
Ypxφ, ej � φyqej � xφ, ej � φy∇Yej

�
� i

ņ

j�1

�x∇Y φ, ej � φy � xφ,∇Ypej � φqyq� ej

� i
ņ

j�1

�x∇Y φ, ej � φy � xφ,∇Yej � φy � xφ, ej �∇Y φyq� ej

� iζ
ņ

j�1

�xY � φ, ej φy � xφ, ej �Y � φyq� ej

� iζ
ņ

j�1

xφ, ej �Y � φ�Y � ej � φyej ,

so that

gp∇YX, Zq � iζ
ņ

j�1

xφ, ej �Y � φ�Y � ej � φygpej, Zq � iζ
ņ

j�1

xφ, gpej, Zqpej �Y � φ�Y � ej � φqy

� iζxφ, Z �Y � φ�Y � Z � φy ,

which is skew-symmetric in pY, Zq, i.e., Y ÞÑ ∇YX is a skew-symmetric endomorphism of the tangent bundle
TM. By the last remark, X is a Killing field. □

Proposition 3.50. Let pM, gq be a connected Riemannian spin manifold with a fixed spin-structure. Assume there exists
a Killing spinor φ P ΓpM, ΣMq with Killing number ζ P C. Then we have:

(i) ricpXq � 4pn� 1qζ2X. In particular, pM, gq is an Einstein manifold with ζ2 � 1
4

scal
npn�1q and ζ P R or ζ P iR.

(ii) If ζ � 0 then pM, gq is locally irreducible, i.e., no point admits a neighborhood U such that pU, g|Uq is isometric to
a Riemmanian product pV, gVq � pW, gWq.

Proof. By definition of the curvature tensor we have

RΣMpX, Yqφ � ∇X∇Y φ�∇Y∇X φ�∇rX,Ysφ � ∇XpζY � φq �∇YpζX � φq � ζrX, Ysφ
� ζ p∇XY � φ�Y �∇X φ�∇YX � φ� X �∇Y φ� rX, Ys � φq
� ζ p∇XY �∇YX � rX, Ysq φ� ζ pY � ζX � φ� X � ζY � φq
� ζ2pY � X � X �Yqφ .

As before we also have

ricpXq � φ � �2
ņ

i�1

ei � RΣMpX, eiqφ � �2ζ2
ņ

i�1

ei � pei � X � X � eiqφ � �2ζ2
ņ

i�1

pe2
i � X � ei � X � eiqφ

� �2ζ2
ņ

i�1

pe2
i � X � e2

i � X � 2gpX, eiqeiqφ � 4pn� 1qζ2X � φ .

By Proposition 3.45(i), φ is nowhere zero, which implies ricpXq � 4pn � 1qζ2X, or, equivalently, RicpX, Yq �
4pn� 1qζ2gpX, Yq. A straightforward calculation yields

scal �
ņ

i�1

Ricpei, eiq �
ņ

i�1

4pn� 1qζ2gpei, eiq � 4npn� 1qζ2 .

To see (ii) assume U � M is open and that pU, g|Uq is isometric to the Riemannian product pV, gVq� pW, gWq
by an orientation preserving isometry f . We give pV �W, gV�W � gV ` gWq the spin-structure induced by f
so that the spinor bundles over U and V �W are isomorphic by a vector bundle isomorphism which preseres
bundle metrics and covariant derivatives. We now view φ as a spinor on V � W. Let px, yq P V � W, X P
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TxVzt0u, Y P TyWzt0u, so that X � Y P TxV ` TyW � Tpx,yqV � W. Then RV�WpX, YqZ � 0 for all Z P
TxV ` TyW.

From the above we have on the one hand

RΣpV�WqpX, Yqφpx, yq � 1
4

ņ

i�1

ei � RV�WpX, Yqei � φpx, yq � 0

and on the other hand

RΣpV�WqpX, Yqφpx, yq � ζ2pY � X � X �Yqφpx, yq .

Since ζ � 0 and gV�WpX, Yq � 0 this implies

X �Y � φpx, yq � 0 .

But Clifford multiplication by a nonzero vector is an isomorphism (X � X � φpx, yq � �}X}2 φpx, yq), hence
φpx, yq � 0, which contradicts Proposition 3.45(i). □

Corollary 3.51. Let pM, gq be a connected Riemannian spin manifold with a fixed spin-structure. Assume there exists a
Killing spinor φ P ΓpM, ΣMq with Killing number ζ � 0.

(i) If ζ is real and pM, gq complete, then M is compact.
(ii) If ζ is imaginary, M is noncompact.

Proof. By the last proposition we have Ric � 4pn � 1qζ2g. If ζ is real, 4pn � 1qζ2 ¡ 0, and Myers’ theorem
asserts that M is compact.

If ζ is imaginary, we have ζ2   0 and by Proposition 3.45(ii), φ is an eigenspinor of D2 with eigenvalue
n2ζ2   0. Assuming M is compact implies

0 ¤ pDφ, Dφq � pD2 φ, φq � n2ζ2pφ, φq   0 ,

a contradiction. Hence, M must be noncompact. □

Remark 3.52. In dimensions three every Einstein manifold has constant sectional curvature. In dimension four, one can
show that a Riemannian spin manifold possessing a nontrivial Killing spinor with nonzero Killing number has vanishing
Weyl tensor. Since such a manifold is an Einstein space, it follows that its sectional curvature is constant. Thus, Killing
spinors become interesting only in dimension ¥ 5.

Remark 3.53. Our next goal is an eigenvalue estimate for the Dirac operator. Since the spinor Laplacian is a nonnegative
operator, the Lichnerowicz formula tells us that any eigenvalue λ of the Dirac operator on a closed Riemannian manifold
pM, gq satisfies λ2 ¥ scal0

4 , where scal0 :� infxPM scalpxq. Indeed, let λ be an eigenvalue of D with a corresponding
L2-normalized smooth eigenspinor φ P ΓpM, ΣMq. On the one hand, we have

pD2 φ, φq � λ2pφ, φq � λ2 ,

and on the other hand

pD2 φ, φq � p∆φ, φq �
�

1
4 scal φ, φ

	
¥ 1

4 scal0pφ, φq � 1
4 scal0 .

As the next theorem shows, this inequality is not sharp and we can do better.

Theorem 3.54 (Friedich’s inequality). Let pMn, gq be closed Riemannian spin manifold with fixed spin-structure.
Then every eigenvalue λ of the Dirac operator D satisfies

λ2 ¥ n
n� 1

scal0
4

.

Moreover, if λ � � 1
2

b
n

n�1 scal0 is an eigenvalue of the Dirac operator with corresponding eigenspinor φ, then φ is a

Killing spinor with Killing number 	 1
2

b
1

npn�1q scal0. In particular, the scalar curvature is constant.

Remark 3.55. Friedrich’s inequality is sharp. Indeed, equality is attained on, e.g., the sphere where we have scal0 �
scal � npn� 1q.
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Proof of Theorem 3.54. Let ζ P C and consider the twisted connection

∇ζ
X φ :� ∇X φ� ζX � φ , φ P ΓpM, ΣMq, X P VpMq .

x∇�ζ φ,∇�ζ φy �
ņ

j�1

x∇�ζ
ej φ,∇�ζ

ej φy �
ņ

j�1

x∇ej φ� ζej � φ,∇ej φ� ζej � φy

�
ņ

j�1

�
x∇ej φ,∇ej φy � ζxej � φ,∇ej φy � ζx∇ej φ, ej � φy � ζ2xej � φ, ej � φy

	

�
ņ

j�1

�
x∇ej φ,∇ej φy � ζxφ, ej �∇ej φy � ζxej �∇ej φ, φy � ζ2xφ, φy

	
� x∇φ,∇φy � ζxφ, Dφy � ζxDφ, φy � nζ2xφ, φy .

Integrating this yields

p∇�ζ φ,∇�ζ φq � p∇φ,∇φq � 2ζpDφ, φq � nζ2pφ, φq .(3.8)

We also have

pD� ζq2 φ � pD� ζqpDφ� ζφq � D2 φ� 2ζDφ� ζ2 φ .

Integrating and using the Lichnerowicz formula and Proposition 3.35 we obtain

ppD� ζq2 φ, φq � pD2 φ� 2ζDφ� ζ2 φ, φq � p∆φ, φq � pp1{4 scal�ζ2qφ, φq � 2ζpDφ, φq
� p∇φ,∇φq � pp1{4 scal�ζ2qφ, φq � 2ζpDφ, φq .

(3.9)

Let λ be an eigenvalue of D with corresponding eigenspinor φ P ΓpM, ΣMq. Set ζ :� λ{n. From (3.8) we obtain

p∇�λ{n φ,∇�λ{n φq � p∇φ,∇φq � 2
λ2

n
pφ, φq � n

λ2

n2 pφ, φq � p∇φ,∇φq � λ2

n
pφ, φq .

Combining this with (3.9) yields�
λ� λ

n


2
pφ, φq � ppD� λ{nq2 φ, φq � p∇φ,∇φq �

��
1
4

scal�λ2

n2



φ, φ



� 2

λ2

n
pφ, φq

� p∇�λ{n φ,∇�λ{n φq �
�

λ2

n2 �
λ2

n



pφ, φq � 1

4
pscal φ, φq .

Substracting λ2p1� nq{n2pφ, φq from both sides we obtain

λ2 n� 1
n

pφ, φq � p∇�λ{n φ,∇�λ{n φq � 1
4
pscal φ, φq ¥ scal0

4
pφ, φq ,(3.10)

which is the desired inequality.
Now assume that λ � � 1

2

b
n

n�1 scal0. Then we have equality in (3.10), which implies ∇λ{n φ � 0, i.e.,

φ is a Killing spinor with Killing number λ{n � 	 1
2

b
1

npn�1q scal0 and the scalar curvature is automatically
constant. □

APPENDIX A: TOPOLOGICAL SPIN STRUCTURES

Let GL�pn; Rq be the group of invertible n � n-matrices with real entries and positive determinant. The
group SOpnq � GL�pn; Rq is a deformation retract. This can be seen by noting that the Gram-Schmidt-
algorithm GS : GL�pn; Rq Ñ SOpnq is a continuous map and that ι � GS : GL�pn; Rq Ñ GL�pn; Rq, where
ι : SOpnq Ñ GL�pn; Rq is the inclusion, is homotopic to the identity.

It follows that π1pGL�p2; Rqq � Z and π1pGL�pn ¥ 3; Rqq � Z2. We denote with �GL�pn; Rq the double
cover group (which is the universal cover for n ¥ 3) and with Λ : �GL�pn; Rq Ñ GL�pn; Rq the corresponding
covering map, which is automatically a Lie group homomorphism.

Definition 3.56. Let M be a smooth oriented manifold and denote with pGL�pMq, πGL�pMq; GL�pn; Rqq the GL�pn; Rq-
principle fibre bundle of oriented frames of M.

(i) A topological spin-structure is a pair pP, πq consisting of a �GL�pn; Rq-principle fibre bundle pP, πP; �GL�pn; Rqq
over M and a two-sheeted covering π : P Ñ GL�pMq such that
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(a) πGL�pMq � π � πP,

(b) πpp � gq � πppq �Λpgq for all p P P, g P �GL�pn; Rq.
P� �GL�pn; Rq

π�Λ
��

� // P

π

��

πP

$$
GL�pMq �GL�pn; Rq � // GL�pn; Rq

πGL�pMq
// M

(ii) Two topological spin-structures pP1, π1q and pP2, π2q on M are equivalent if there exists a �GL�pn; Rq-principal
fibre bundle isomorphism Φ : P1 Ñ P2 such that πP2 �Φ � πP1 .

Now let M be an oriented manifold with a topological spin-structure pP, πq. We choose a Riemannian metric
g on M. The Riemannian metric induces a reduction of the bundle of oriented frames to the group SOpnq,

P

π
��

GL�pMq
πGL�pMq

��

SOpM, gq

πSOpM,gq
xx

�oo

M

Defining Q :� Qg :� π�1pSOpM, gqq, we obtain a 2-sheeted covering,

P

π

��

Qg

π|Q

��

�oo

GL�pMq
πGL�pMq

��

SOpM, gq

πSOpM,gq
xx

�oo

M

which is then automaically a spin-structure as in Definition 3.1, cmp. Proposition 3.6. From the above it is
evident that SOpM, gq is a deformation retract of GL�pMq and one can show that Qg is a deformation retract of
P. Setting the question of the existence of P aside, the choice of a spin-structure Qg thus uniquely determines
the topological spin-structure P and thereby a unique spin-structure Qh for every other Riemannian metric h.

The above raises the question why we do not define spin-structures as topological spin-structures. Unfor-
tunately, the group �GL�pn; Rq does not posses any finite-dimensional representations that are not lifts from
GL�pn; Rq, [LM89, Ch. II, Lemma 5.23]. It is only after we reduce to the compact group SOpn; Rq and cosider-
ing its compact double cover Spinpnq that we obtain the fundamental spin-representation.
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