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Abstract 

In this master thesis, a localization algorithm capable of localizing generic objects in a 

three-dimensional space is developed. This algorithm is to be used in unmanned aerial 

systems which are integrated into unmanned aerial vehicles or UAVs. Therefore, the 

inputs of the object localization are limited to the flight data of the UAV, the orientation 

of a gimbal mounted on the UAV and the two-dimensional positions of objects being 

detected in images shot via a camera placed on the gimbal. A monocular camera is 

used for this. The developed object localization algorithm shall further satisfy certain 

efficiency and accuracy constraints to be used for real-time collision avoidance. In 

particular, it is to be integrated into the Automated Power Line Inspection (APOLI) 

project carried out by the Professorship of Computer Engineering at the Faculty of 

Computer Science of the Chemnitz University of Technology. 

 

Keywords: 3D Object Localization, Monocular Vision, UAV, Triangulation, Multi-

View
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1 Introduction 

1.1 Motivation 

Computer vision [5], occasionally abbreviated to CV, is a field of study which seeks to 

develop techniques to understand the content of images or videos on a higher level. 

Examples of challenges tackled in computer vision are the stitching problem [5], [6], in 

which multiple images are overlapped in a way a single seamlessly stitched panorama 

image is generated, the recognition of fingerprints [5], [7], the detection of faces [5], [8] 

or, more generally, the detection of objects [5], [9] in image streams. Another 

fundamental challenge faced in computer vision which is still heavily researched is the 

vision-based three-dimensional object localization problem [10]. There, the location 

and, if feasible, the shapes of objects shall be determined in a three-dimensional space 

using, among others, data from image streams. Generally speaking, such object 

localization information is mostly used to generate an environment map, i.e. a map 

containing all objects that have been localized. There are a number of real-world 

applications for which an environment map is useful. Firstly, this environment map may 

be used to measure the size of objects or areas in general. Furthermore, it can also be 

used for route planning. 

 

Another application of the environment map is the collision avoidance problem. There, 

the environment map generated by the object localization algorithm is used to avoid 

the collision between a moving vehicle and the objects of the map. In particular, such 

a vehicle may be an unmanned aerial vehicle [1], or UAV, which are aircrafts operating 

without a human pilot. The autonomization of the systems UAVs are embedded in, the 

so-called unmanned aerial systems (UASs), also has been a focus of research for 

several years now. Autonomously operating UASs shall start, navigate and land 

completely on their own without human interference. Most often, UASs are designed 

to integrate specific use cases. Examples for such use cases are aerial observations, 

logistics or mapping of environments. For the navigation process, collision avoidance 

is of crucial importance. While a static environment map provided to the UAS prior to 

the flight is more efficiently used by the UAS, a dynamically generated environment 

map generated by an object localization algorithm on-the-fly allows for more flexibility. 

The application of three-dimensional object localization algorithms on UASs, however, 

leads to additional challenges. Firstly, a UAS has in most cases rather limited 

computational resources available. Therefore, the object localization algorithm used 

must not be too complex to solve, computationally. Furthermore, most simple object 

localization approaches require accurate knowledge of the camera’s position, its 
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orientation as well as the location of the object in the images. For UAVs, however, all 

of this information must be assumed to be afflicted by some noise. Therefore, the 

object localization algorithm used for UASs must be able to deal with such noise. 

 

In particular, the Professorship of Computer Engineering at the Faculty of Computer 

Science of the Chemnitz University of Technology carries out a research project which 

aims to develop a UAS capable of autonomously inspecting power lines and detecting 

faults of them. This is the Automated Power Line Inspection [1]–[4] project, hereinafter 

referred to as APOLI. The UAS inspects power lines by navigating the UAV around the 

power poles and evaluating the video footage captured by a camera mounted on the 

UAV’s gimbal. Obviously, it is of crucial importance that the UAV does not collide with 

the power lines themselves. In the APOLI project, this collision avoidance problem, 

however, has not been tackled yet and a procedure for this has yet to be implemented. 

As stated before, if an environment map is available, the collision avoidance problem 

is a much more tractable task to solve. 

1.2 Thesis Objectives 

The goal of this master thesis is to develop an object localization algorithm which is 

capable of determining the location as well as, if appropriate, the shape of objects. This 

algorithm, referred to as the Real-Time Object Localizer or simply RTL, shall run in 

real-time on a UAS while the UAV is flying. More specifically, it is to be integrated into 

the APOLI project. As the environment map generated by the RTL shall be used for 

collision avoidance, it has to satisfy certain accuracy and robustness constraints. 

Furthermore, the input of the RTL is limited so only the flight data of the UAV, the 

orientation of the gimbal as well as the two-dimensional object position in RGB images 

captured using a monocular camera system are used. No information about the model 

of the objects that are to be localized is known prior to the localization. The RTL shall 

further be implemented in C++. For demonstration purposes and easier evaluation, the 

implementation of the RTL shall also render the environment map in a three-

dimensional space. 

 

While Chapter 2 elaborates the required fundamental knowledge, some state-of-the-

art three-dimensional object localization approaches are presented in Chapter 3. In 

particular, the triangulation, described in Chapter 3.2, as well as the ellipsoid 

approximation approach of Chapter 3.3, are further explained in detail. Subsequently, 

Chapter 4 elaborates the complete concept of the Real-Time Object Localizer. Its 

implementation in C++ is briefly described in Chapter 5. Then, the RTL is evaluated in 

Chapter 6 in regards to its runtime, the accuracy as well as its robustness. Finally, 
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Chapter 7 provides a conclusion of the developed object localization algorithm as well 

as an outlook. 
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2 Fundamentals 

This chapter introduces some fundamental knowledge required for the state-of-the-art 

object localization approaches presented in Chapter 3 as well as the conceptualization 

of the RTL in Chapter 4. While Chapter 2.1 and 2.2 explain mathematical 

fundamentals, Chapter 2.3 elaborates the APOLI project in greater detail. 

Subsequently, some of the flight data of UAVs is described in Chapter 2.4. Finally, 

Chapter 2.5 presents the concept of monocular RGB camera systems and highlights 

some of their advantages in comparison to other camera systems that may be used 

for object localization. 

2.1 Projective Space 

The 𝑛-dimensional Euclidean space ℝ𝑛 can be used to describe any 𝑛-dimensional 

point 𝒙 = (𝑥1, … , 𝑥𝑛)
𝑇 ∈ ℝ𝑛 . As we live in a three-dimensional world, the three-

dimensional Euclidean space ℝ3 is of particular importance to us. However, to ease 

some equations, especially in the context of projections, the so-called projective space 

ℙ𝑛 ≔ ℝ𝑛+1\{𝟎} [5] may be used. This space extends the Euclidean space by adding 

an additional projective coordinate, which is mostly referred to as 𝑤. Given any point 

𝒙̃ = (𝑥1̃, … , 𝑥𝑛̃, 𝑤̃)
𝑇 ∈ ℙ𝑛, 𝒙̃ describes the point 

 𝒙 = (
𝑥1̃
𝑤̃
, … ,

𝑥𝑛̃
𝑤̃
)
𝑇

∈ ℝ𝑛  

of the 𝑛-dimensional Euclidean space. While 𝒙 uses cartesian coordinates, 𝒙̃ uses so-

called homogeneous coordinates. Of particular importance is the observation that all 

𝑎𝒙̃ = (𝑎𝑥1̃, … , 𝑎𝑥𝑛̃, 𝑎𝑤̃)
𝑇 ∈ ℙ𝑛  with 𝑎 ∈ ℝ\{0}  describe the same 𝒙 ∈ ℝ𝑛 . Therefore, 

when converting a point from cartesian coordinates to homogeneous coordinates, 𝑤 

can be chosen arbitrarily. To ease some equations, it is mostly set to 𝑤 = 1. If not 

stated otherwise, throughout this thesis a vector with the tilde sign atop of it represents 

a homogeneous vector while the absent of it expresses the corresponding vector of 

the Euclidean space. 

 

The homogeneous representation 𝒙̃ ∈ ℙ3 of a point 𝒙 ∈ ℝ3 can be used to apply any 

transformation on 𝒙. Such a transformation is expressed via a transformation matrix 

𝑇 ∈ ℝ4×4. To apply the transformation 𝑇 on 𝒙 ∈ ℝ3, the equation 

 𝒙′̃ ≔ 𝑇𝒙̃  

is used. While the transformation matrix 𝑇 may be of any form, of particular importance 

are the Euclidean transformations [5] 

 𝑇 ≔ [
𝑅 𝒕
𝟎𝑻 1

].  
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Euclidean transformations are composed of two components. The translation vector 

𝒕 ∈ ℝ3 described the translation of a point, i.e. how it is displaced. Furthermore, the 

orthonormal rotation matrix 𝑅 ∈ ℝ3×3 expressed the rotation of the point around the 

origin. The inverse Euclidean transformation 𝑇−1 of 𝑇 can be derived as 

 𝑇−1 = [𝑅
𝑇 −𝑅𝑇𝒕

𝟎𝑻 1
]. (2.1) 

It should be noted that this equation results from the observation that the inverse 

rotation of any rotation matrix 𝑅 ∈ ℝ3×3 is equal to its transpose, i.e. 

 𝑅−1 = 𝑅𝑇 .  

2.2 Camera Matrix 

The camera matrix 𝑃 ∈ ℝ3×4 [5] of a given pinhole camera describes the projection of 

three-dimensional points onto the two-dimensional image plane. The point 𝒙 ∈ ℝ3 is 

projected onto the image plane via 

 𝒙′̃ = 𝑃𝒙̃.  

𝒙′̃ can then be converted to a point of the Euclidean space as usual. The camera matrix 

𝑃 consists of two distinct components. While the calibration matrix 𝐾 ∈ ℝ3×3 describes 

the camera’s intrinsics, the extrinsics are described via a rigid transformation matrix 

𝐸 ∈ ℝ3×4. 𝐸 expresses the transformation from the world coordinate system to the 

three-dimensional camera coordinate system. It consists of the world’s origin 𝒕 ∈ ℝ3 in 

camera coordinates and the rotation 𝑅 ∈ ℝ3×3. Knowing the camera’s position 𝒄 ∈ ℝ3 

in world coordinates, 𝒕 is calculated as 𝒕 = −𝑅𝒄. The camera matrix 𝑃 is therefore 

determined as 

 𝑃 ≔ 𝐾𝐸  

with 𝐸 ≔ [𝑅|𝒕]. 

 

To check whether the point 𝒙 ∈ ℝ3 lies in front or behind a camera view given by its 

camera matrix, the condition 

 (𝑃𝒙̃)3 > 0 (2.2) 

may be used [11]. (𝑃𝒙̃)3, i.e. the projective coordinate 𝑤 of 𝒙′̃ is positive if 𝒙 lies in front 

of the camera and negative if 𝒙 lies behind the camera. Further, it is equal to zero if 𝒙 

lies in the so-called principle plane of the camera. This plane contains the camera’s 

position 𝒄 and its normal vector is given by the view direction. In this case, there exists 

no unique point of the image plane on which 𝒙 projects onto. Note that these conditions 

can only be used if the left 3 × 3 submatrix of 𝑃, i.e. 𝐾𝑅, has a positive determinant 

[11]. Otherwise the conditions are reversed. Throughout this thesis and without loss of 

generality, the determinant of the left 3 × 3 submatrix of a camera matrix is always 

considered positive. If this submatrix has a negative determinant, then the camera 
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matrix 𝑃 can simply be multiplied by minus one. This does not, however, influence the 

projection itself as all coordinates of 𝒙′̃ = 𝑃𝒙̃, including the projective coordinate 𝑤, are 

negated. 

 

For some algorithms, an inverse projection, and therefore an inverse camera matrix, 

is needed. For this, 𝑃  must be inversible and extended to a 4 × 4  matrix. This is 

achieved by adding non-diagonal elements of value zero and a diagonal element of 

value one, i.e. 

 𝑃̃ ≔ 𝐾𝐸̃ = [
𝐾 𝟎
𝟎𝑇 1

] [
𝑅 𝒕
𝟎𝑇 1

],  

whereby 𝑃̃ denotes the extended camera matrix. It is applied in a similar manner as 

the conventual camera matrix 𝑃. Let 𝒚̃ ∈ ℙ3 be a point of the projection space. 𝒚̃′ = 𝑃̃𝒚̃ 

is the projection of 𝒚̃ onto the image plane. However, 

 𝒚̃′ = (𝑦̃1
′ , 𝑦̃2

′ , 𝑦̃3
′ , 𝑦̃4

′)𝑇 (2.3) 

is not a point of the two-dimensional projective space because it is composed of four 

elements instead of three. The existence of 𝑦̃4
′ is a direct result of the extension of 𝑃 to 

𝑃̃. That being said, in this case it can simply be dropped. The resulting point (𝑦̃1
′ , 𝑦̃2

′ , 𝑦̃3
′) 

can be handled as a point of the projection space, meaning that it corresponds to  

 𝒚′ = (
𝑦̃1
′

𝑦̃3
′ ,
𝑦̃2
′

𝑦̃3
′)

𝑇

∈ ℝ2.  

 

The inverse camera matrix 𝑃̃−1 can be used to determine all points 𝒙 ∈ ℝ3 that project 

onto a given image plane point 𝒙′ ∈ ℝ2. For this,  

 𝒙̃ = 𝑃̃−1𝒙̃′ (2.4) 

may be used. Again, 𝒙′ = (𝑥1
′ , 𝑥2

′ , 1, 𝑑)𝑇 is composed of four elements. However, while 

the first three elements are known, 𝑑 is unknown. This is a result of the information 

loss deriving from the reduction of the dimension by one. More specifically, it is the 

dropped 𝑦4
′ from (2.3) divided by 𝑦3

′ . Using any 𝑑 ≠ 0 for (2.4) leads to a valid 𝒙 ∈ ℝ3, 

that projects onto the given 𝒙′ ∈ ℝ2. 
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2.3 APOLI 
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Figure 2.1: States of Insulator Inspection of APOLI [2]. 

 

The Automated Power Line Inspection (APOLI) [1]–[4] project has been briefly 

introduced in Chapter 1.1. This chapter, however, elaborates the project in greater 

detail. In particular, a UAS is developed which autonomously inspects power lines and 

detects damages of them such as 

 electrical short damages, 

 cracks and glass breakages as well as 

 transmission line damages. 

While these tasks can also be performed without the involvement of a UAV, objects 

such as insulators of power poles are hard to reach by humans in respect to safety and 

cost. Therefore, an appropriate UAS can ease the inspection process drastically. 

 

2.3.1 Hardware Setup 

The UAS of APOLI runs on a single-board computer, an ODROID-XU4 [12], which is 

directly mounted on the UAV. The ODROID computer features a Samsung Exynos 

5422 Octa-Core processor that consists of four Cortex®-A15 2.1GHz and four 

Cortex®-A7 1.4GHz processor cores. Additionally, the XU4 possesses 2GB of main 

memory. To control the UAV, a dedicated flight controller (FLC), which is either a 3DR 

Pixhawk 1 [13] or a Pixhawk 4 [14], is being used. It handles given flight commands 

and provides flight data in an easy-to-use format. The firmware flashed on the FLC is 

ArduCopter 4.0 [15]. 

 

For the navigation, a FLIR Blackfly S USB3 BFS-U3-31S4C-C [16] camera is being 

used. It captures RGB images at 3.2 megapixels with a framerate of up to 55Hz. To 
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retrieve the image stream, a USB 3 interface is provided by the camera. In addition to 

the navigation camera, the UAV also features an inspection camera that captures 

images at a higher resolution. More specifically, this camera is a FLIR Blackfly S GigE 

BFS-PGE-120S4C-CS [17] which captures RGB images at 12 megapixels. However, 

it features a lower framerate of only up to 8.5Hz. For image retrieval, a Gigabit Ethernet 

port is available. To achieve stable and UAV movement independent image streams 

of both cameras, they are mounted on a gimbal. The HD Air Studio InfinityMR-S [18] 

gimbal is being used for this. 

 

2.3.2 Software Setup 

ODROID-XU4

CGC

CTH

EXS

MALFPD FLC

Gimbal

Navigation 
Camera

Inspection 
Camera

MAL: MAVLink Abstraction Layer
CTH: Control Handler
FLC: Flight Controller
CGC: Camera Gimbal Controller
EXS: Expert System
FPD: Feature Point Detection

 
Figure 2.2: Snippet of the Structure of the APOLI Project. 

 

Figure 2.2 shows a snippet of the APOLI project’s software structure. As can be seen, 

it is composed of multiple individual software components. The EXS is the central 

decision-making component. It issues flight commands and aligns the gimbal. These 

commands are sent to the CTH, which forwards them to their corresponding 

component. The MAL sends flight commands to the FLC. This component also 

receives the UAV’s flight data. The CGC simply sends gimbal align commands to the 

gimbal and the FPD detects features of objects in the image stream of the navigation 

camera. 

2.4 UAV Flight Data 

In this chapter, some of the flight data provided by a UAV is elaborated. This data is 

necessary for building accurate camera matrices for the cameras mounted on the UAV. 

In particular, Chapter 2.4.1 describes the data obtained from a Global Navigation 

Satellite System [19] sensor while Chapter 2.4.2 explains the principle axes of a UAV 

which are used to determine the orientation of the UAV. 

 

2.4.1 Global Navigation Satellite System 

A Global Navigation Satellite System, also referred to as a GNSS, is a system 

consisting of multiple satellites which can be used to accurately determine the position 
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of a GNSS sensor on the earth. Some examples [19] for existing Global Navigation 

Satellite Systems are the Global Positioning System (GPS), developed by the United 

States of America, the GLONASS, which also stands for Global Navigation Satellite 

System and is operated by the Russian Federation, as well as Galileo, which is being 

maintained by the European Union. 

 

 
Figure 2.3: Geographic Latitude and Longitude of the Earth [20]. 

 

In this thesis, the data provided by a GNSS sensor mounted on a UAV is considered 

to be the latitude, the longitude and the altitude of the UAV in respect to the earth. The 

latitude is a coordinate that specified the north-south position. It ranges from -90°, 

being the geographic south pole, to 90° which represents the geographic north pole. 

Analogously, the longitude represents the east-west position. If it is 0°, the UAV lies on 

the same line of longitude as Greenwich. This line of longitude is also called the prime 

meridian. Going westwards yields negative longitude values down to -180° while the 

positions to the east of the prime meridian have positive longitude values of up to 180°. 

The line of longitude which may possess a longitude of 180° or -180° is called the 

antimeridian and traverses the easternmost part of the Russian Federation. Lastly, the 

altitude simply represents the elevation of the UAV above the mean see level in meters.  
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2.4.2 Principle Axes of a UAV 

 
Figure 2.4: Principle Axes of an Aircraft [21]. 

 

To express the orientation of any UAV, the principle axes used for aircrafts may be 

used [21], [22]. These axes are the roll axis, the pitch axis and the yaw axis. They build 

an orthonormal coordinate system as illustrated in Figure 2.4. Furthermore, a reference 

system must be defined. In the north-east-down (NED) reference system the origin lies 

at the center of the aircraft, the roll axis points in the north direction, the pitch axis 

shows eastwards and the yaw axis is perpendicular to both axis and is directed 

downwards pointing to the center of the earth. As a result, the NED reference system 

is right-handed. The principle axis of an aircraft itself are, as it may be oriented 

arbitrarily, defined differently. The roll axis of an aircraft shows in the heading direction 

while the pitch axis is directed “to the right”. Lastly, the yaw axis is again perpendicular 

to both axis and points downwards with respect to the aircraft.  

 

To determine the rotation from the NED reference system to the UAV system, three 

rotation angles are necessary. These parameters determine the rotation angles around 

their corresponding axis. In the following, 𝜙 ∈ ℝ is the roll rotation, 𝜃 ∈ ℝ denotes the 

pitch rotation and 𝜓 ∈ ℝ  represents the yaw rotation. Any point 𝒙𝑵𝑬𝑫  of the NED 

system is first rotated around the z-axis, i.e. the yaw axis, then around the y-axis and 

lastly around the x-axis. Therefore, the complete rotation matrix 𝑅 ∈ ℝ3×3 is derived 

via 

𝑅𝑥𝑦𝑧 ≔ 𝑅𝑥,𝜙𝑅𝑦,𝜃𝑅𝑧,𝜓 

= [

cos(𝜃) cos(𝜓) cos(𝜃) sin(𝜓) − sin(𝜃)

sin(𝜙) sin(𝜃) cos(𝜓) − cos(𝜙) sin(𝜓) sin(𝜙) sin(𝜃) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜙) cos(𝜃)

cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓) cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓) cos(𝜙) cos(𝜃)
], 

whereby 𝑅𝑥,𝜙, 𝑅𝑦,𝜃, 𝑅𝑧,𝜓 ∈ ℝ3×3  denote the rotation matrices to rotate around the 

corresponding axis. More specifically, rotating any point 𝒙𝑵𝑬𝑫 of the NED system using 

𝑅 results in the corresponding point 𝒙𝑼𝑨𝑽 of the UAV system, i.e. 

 𝒙𝑼𝑨𝑽 = 𝑅𝒙𝑵𝑬𝑫.  



12 
 

To rotate from 𝒙𝑼𝑨𝑽 to 𝒙𝑵𝑬𝑫 the inverse rotation matrix of 𝑅 may be used. This yields 

 𝒙𝑵𝑬𝑫 = 𝑅𝑇𝒙𝑼𝑨𝑽.  

2.5 Monocular RGB Cameras 

As written in Chapter 1.2, the Real-Time Object Localizer shall use, among others, the 

image data provided by a monocular RGB camera system [5], [23]. In this context, 

RGB refers to the three base colors red, green and yellow of the additive RGB color 

space. Consequently, RGB cameras are camera systems which capture RGB images, 

i.e. images consisting of three channels each corresponding to one of these base 

colors. Additionally, a monocular camera system is a camera system consisting only 

of a single camera. 

 

Monocular camera systems stand in strong contrast to multi-camera systems [24], i.e. 

camera setups consisting of multiple cameras. While the problem of object localization 

becomes easier to solve if a multi-camera system is used, such camera systems may 

also lead to practicality problems. Firstly, a multi-camera system consumes more 

space. While this may not be a problem if these systems are used on the ground, UAVs 

only have a very limited amount of space available. Furthermore, the additional 

cameras lead to supplemental weight and, therefore, to additional power consumption 

of the UAV. Last but not least, a multi-view camera system has a significantly higher 

cost than a monocular camera system. 

 

Besides RGB cameras, one can also use camera systems which provide additional 

information in the images captured, e.g. RGB-D cameras [25]. Here, the added D 

stands for depth and its channel contains the distance between the camera and the 

three-dimensional point captured by the corresponding pixel. This additional distance 

information can be used for further object localization algorithms or to improve existing 

algorithms. However, the range of the distance is, for most RGB-D cameras, rather 

limited. For these reasons, and also because the APOLI’s UAV already possesses two 

monocular RGB camera systems, i.e. the navigation and the inspection camera, the 

object detection input of the RTL is generated via a monocular RGB camera system. 

More specifically, the navigation camera is used for this. 
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3 State-of-the-Art of Object Localization 

In this chapter, some state-of-the-art object localization algorithms are elaborated. 

Approaches, which may be used in a UAS that possesses a monocular RGB camera, 

provides GNSS data and also features some form of object detection, are further 

explained in greater detail, i.e. algorithms which may be used in the APOLI project. 

 

Chapter 3.1 elaborates a single-view object localization approach. This means that a 

single camera view, i.e. a monocular camera system, is sufficient to localize objects in 

the 3D space. Subsequently, Chapter 3.2.1 to 3.2.2 introduce so-called stereo-view 

approaches. These algorithms use input data captured from two different viewpoints. 

Normally, a monocular camera does not provide such information. However, as the 

camera is mounted on a moving vehicle, this movement can be used to capture images 

from different viewpoints, effectively creating a multi-camera system. That being said, 

this requires that the pose of the objects that are to be localized must not change. The 

following chapters 3.2.3 to 3.4 present multi-view algorithms. These localization 

approaches operate on any number of views greater than a specific threshold. Finally, 

a brief summary of all discussed object localization approaches is given in chapter 3.5. 

3.1 Depth Estimation using the Vertical Position of the Bounding Rectangle 

 
Figure 3.1: Depth Estimation using the Vertical Position of the Bounding Rectangle. The yellow Line is 

located at the Vertical Position of the Vanishing Point [23]. 

 

In [23] Joglekar et al. proposed a single-view approach to estimate the distance of a 

detected object from a monocular camera. If the distance of an object from the camera 

is known, its location in the 3D environment can easily be approximated. In their paper, 

Joglekar et al. use the image’s geometry to directly estimate the depth. More 

specifically, their algorithm is being provided with the camera’s calibration as well as a 
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bounding rectangle around an object in the image. It further assumes that the object is 

placed on a flat ground plane, e.g. a road, and that the camera is mounted so that the 

optical axis is parallel to the ground plane. The algorithm then approximates the depth 

of the object by abusing the perspective properties of the pinhole camera model. The 

higher the distance of an object placed on a flat ground from the camera, the more 

does the lower boundary of the bounding rectangle converge to the vertical position of 

the vanishing point.  

 

This approach, however, is not feasible for most UASs. Firstly, the algorithm assumes 

a flat ground plane to which the UAV has a constant distance to. This assumption 

cannot be made for most UASs. Even if a flat ground plane is present, the UAV then 

cannot ascend or descend in any way and, depending on the depth estimation 

tolerance, must precisely keep its altitude. Moreover, the depth estimation algorithm 

proposed by Joglekar et al. requires a fixed pitch angle of the camera used. While this 

can be achieved using a gimbal, it limits the usability of the camera in the 

corresponding UAS. 

3.2 Triangulation of a Single Point 

Triangulation [26] is the reconstruction of a point 𝒙 ∈ ℝ3 which has been captured from 

𝑛  different viewpoints via the image points 𝒖𝟏, … , 𝒖𝒏 ∈ ℝ2 . These viewpoints are 

denoted using their corresponding camera matrices 𝑃1 = 𝐾1[𝑅1|𝒕𝟏], … , 𝑃𝑛 =

𝐾𝑛[𝑅𝑛|𝒕𝒏] ∈ ℝ3×4 . Triangulation then aims to find an 𝒙′ ∈ ℝ3 , given 𝒖𝟏, … , 𝒖𝒏  and 

𝑃1, … , 𝑃𝑛 , which best explains 𝒙. The following subchapters elaborate five different 

triangulation algorithms. More specifically, these algorithms are: 

 Noiseless Triangulation (Chapter 3.2.1), 

 Midpoint Triangulation (Chapter 3.2.2), 

 Generalized Midpoint Triangulation (Chapter 3.2.3), 

 L2 Triangulation (Chapter 3.2.4) and 

 L∞ Triangulation (Chapter 3.2.5). 

The Noiseless Triangulation and the Midpoint Triangulation are two stereo-view 

triangulation algorithms meaning that only the data provided by two camera views are 

being used. Subsequently, the Generalized Midpoint, the L2 and the L∞ Triangulation 

formulate triangulation approaches which utilize any number of views greater than one. 

While the Noiseless Triangulation assumes the absence of noise, all other triangulation 

approaches can also be applied on noise afflicted data. 
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3.2.1 Noiseless Triangulation 

𝒄𝟏

Left view

𝒙′

𝒖𝟏

Right view

𝒄 

𝒖 

  𝑡2 𝟏 𝑡1

 
Figure 3.2: Noiseless Triangulation of a Single Point. 

 

In a noiseless environment, 𝒖𝟏  and 𝒖  are the precise projections of 𝒙  in their 

corresponding image plane. Using their camera matrices, they can be expressed as 

 𝒖𝟏̃ = 𝑃1𝒙̃  

and 

 𝒖 ̃ = 𝑃2𝒙̃.  

 

The problem of finding the corresponding 𝒙′ can be solved in a trivial manner as 𝒙 is 

the intersection point of two rays. While the first ray starts at 𝒄𝟏 ≔ −𝑅𝑇𝒕𝟏 ∈ ℝ3 and 

traverses 𝒗𝟏 ∈ ℝ3, where  

 𝒗𝟏̃ = 𝑃1̃
−1
𝒖𝟏̃  

for any 𝑑 > 0 , the second ray begins at 𝒄 ∈ ℝ3  and passes through 𝒗 ∈ ℝ3 

analogously. These rays can therefore be described as 

  𝟏(𝑡1) ≔ 𝒄𝟏 + 𝑡1(𝒗𝟏 − 𝒄𝟏),  

   (𝑡2) ≔ 𝒄 + 𝑡2(𝒗 − 𝒄 )  

with 𝑡1, 𝑡2 ≥ 0. Furthermore, because 𝒙 ∈ ℝ3 lies on both of these rays, the system of 

linear equations 

 𝒄𝟏 + 𝑡1(𝒗𝟏 − 𝒄𝟏) = 𝒄 + 𝑡2(𝒗 − 𝒄 )  

with 𝑡1 and 𝑡2 as unknowns, is obtained. Solving it yields the solution for 𝑡1 and 𝑡2 and, 

therefore, also for the triangulated 𝒙′ as 

 𝒙′ ≔ 𝒄𝟏 +
‖(𝒄 − 𝒄𝟏) × (𝒗 − 𝒄 )‖

‖(𝒗𝟏 − 𝒄𝟏) × (𝒗 − 𝒄 )‖
(𝒗𝟏 − 𝒄𝟏) (3.1) 

or equally 

 𝒙′ ≔ 𝒄 +
‖(𝒄𝟏 − 𝒄 ) × (𝒗𝟏 − 𝒄𝟏)‖

‖(𝒗𝟏 − 𝒄𝟏) × (𝒗 − 𝒄 )‖
(𝒗 − 𝒄 ), (3.2) 

whereby 
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 ‖𝒂‖ ≔ √∑𝑎𝑗
2

𝑗

  

denotes the L2  norm, also Euclidean norm, of a vector 𝒂 and 𝒃 × 𝒄 stands for the 

cross-product between two vectors 𝒃 and 𝒄. It should be noted, however, that if  𝟏 and 

   are parallel, there is no unique solution for 𝒙′. In this case, the denominators are 

equal to zero, as the cross-product of two parallel vectors results in the zero vector. 

Because both rays have fixed initial points 𝒄𝟏 and 𝒄  and also traverse the same 𝒙, 

there exist only two cases in which they are parallel. If  𝟏 and    are parallel and if both 

of them contain the other ray’s initial point, then 𝒙 lies on the line segment 𝒍 connecting 

𝒄𝟏 and 𝒄 . In that event, both rays completely contain 𝒍. Therefore, every point 𝒙′ that 

lies on 𝒍 is a valid reprojection of 𝒙. If both rays  𝟏 and    are parallel but it does not 

yield true that both of them contain each other’s initial point, a separate scenario is 

achieved. In this case, only one of the rays contain the other ray’s initial point. Without 

loss of generality, let that ray be  𝟏. Furthermore,  𝟏 does not only contain the initial 

point 𝒄  of    but also, because both rays traverse the same 𝒙,    as a whole. Again, 

any point 𝒙′ of    is a valid reprojection of 𝒙. As stated before,  𝟏 and    are parallel if, 

and only if, 

 ‖(𝒗𝟏 − 𝒄𝟏) × (𝒗 − 𝒄 )‖ = 0 (3.3) 

holds true. Therefore, a test for this case can easily be performed. 

 

This triangulation assumes the absence of noise. If any of the values 𝒖𝟏, 𝒖 , 𝑃1 or 𝑃2 

are affected by noise, the rays are not guaranteed to intersect anymore. In this case, 

(3.1) and (3.2) cannot be used. However, the data provided by any UAS must be 

assumed to be afflicted by some noise. This includes both the points 𝒖𝟏 and 𝒖  as well 

as the camera matrices 𝑃1 and 𝑃2. In particular, the rigid transformation matrices 𝐸1 

and 𝐸2 of the camera matrices are obtained using, among other information, GNSS 

sensor data which is by no means noiseless. Even in the absence of noise, for real 

images the coordinates of 𝒖𝟏 and 𝒖  are integers. Therefore, the digitalization further 

amplifies this issue. For these reasons, the Noiseless Triangulation is not feasible for 

application in systems dealing with noise afflicted data. In particular, this triangulation 

cannot be used in UASs. 
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3.2.2 Midpoint Triangulation 
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Figure 3.3: Midpoint Triangulation of a Single Point. 

 

P. A. Beardsley et al. briefly describe in [27] an approach able to deal with the noise 

issue, the so-called Midpoint Triangulation. Here 𝒙′ is not determined as the point of 

intersection between the rays  𝟏 and    but rather as the midpoint of the common 

perpendicular to them. Therefore,  𝟏 and    do not have to intersect anymore. The 

Midpoint Triangulation further extends the rays to lines. This is because if 𝒙 lies close 

to the camera position 𝒄𝟏, noise can easily translate the captured image point 𝒖  of the 

second view in a way that the resulting ray    lies completely lies “behind” the first 

camera and vise-versa. In such cases, the rays  𝟏 and    do not have a common 

perpendicular. Therefore, using lines instead of rays is more feasible. To prevent 

confusions, the lines, which are extensions of the rays  𝟏(𝑡2) and   (𝑡2), are referred 

to as 𝒍𝟏(𝑡1) and 𝒍 (𝑡2) respectively. Furthermore, it should be noted that 𝒙′ must be 

uniquely identifiable meaning that there has to be exactly one point 𝒙′ ∈ ℝ3 which has 

the same distance to both lines 𝒍𝟏 and 𝒍 . This uniqueness is satisfied if, and only if, 𝒍𝟏 

and 𝒍  are nonparallel. Again, this occurs exactly if (3.3) yields false. 

 

To determine 𝒙′, the lines 𝒍𝟏(𝑡1) and 𝒍 (𝑡2) are required. As they are the extensions of 

 𝟏(𝑡1) and   (𝑡2) respectively, they can be obtained in an almost identical way, i.e. 

 𝒍𝟏(𝑡1) ≔ 𝒄𝟏 + 𝑡1(𝒗𝟏 − 𝒄𝟏), (3.4) 

 𝒍 (𝑡2) ≔ 𝒄 + 𝑡2(𝒗 − 𝒄 ), (3.5) 

whereby 𝑡1, 𝑡2 ∈ ℝ. The common perpendicular 𝒍  to 𝒍𝟏 and 𝒍  is, except if 𝒍𝟏 and 𝒍  are 

parallel which is to be avoided, uniquely determined. Further, 𝒍  traverses through the 

point of each line, which has minimal distance to the other line. In the following, these 

points are referred to as  𝟏 ∈ ℝ3, which lies on 𝒍𝟏, and   ∈ ℝ3, which is located on 𝒍 . 

Additionally, let 𝒗(𝑡1, 𝑡2) be a vector which translates from 𝒍 (𝑡2) to 𝒍𝟏(𝑡1). Its equation 

is therefore determined as 
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 𝒗(𝑡1, 𝑡2) ≔ 𝒍𝟏(𝑡1) − 𝒍 (𝑡2).  

It is perpendicular to both lines 𝒍𝟏  and 𝒍  exactly when it translates from    to  𝟏 . 

Therefore, 𝑡1 and 𝑡2 can be obtained by solving a system of linear equations given as 

 〈𝒗(𝑡1, 𝑡2), 𝒗𝟏 − 𝒄𝟏〉 = 0,  

 〈𝒗(𝑡1, 𝑡2), 𝒗 − 𝒄 〉 = 0,  

whereby 〈∗,∗〉 denotes the dot product. Solving this system, the parameters 𝑡1and 𝑡2 

are determined as: 

 𝑡1 =
‖𝒗 − 𝒄 ‖

2〈𝒄𝟏 − 𝒄  , 𝒗𝟏 − 𝒄𝟏〉 − 〈𝒄𝟏 − 𝒄 , 𝒗 − 𝒄 〉〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉

2〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉 − ‖𝒗𝟏 − 𝒄𝟏‖
2‖𝒗 − 𝒄 ‖

2
,  

 𝑡2 =
‖𝒗𝟏 − 𝒄𝟏‖

2〈𝒄 − 𝒄𝟏 , 𝒗 − 𝒄 〉 − 〈𝒄 − 𝒄𝟏, 𝒗𝟏 − 𝒄𝟏〉〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉

2〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉 − ‖𝒗𝟏 − 𝒄𝟏‖2‖𝒗 − 𝒄 ‖2
.  

Utilizing (3.4) and (3.5), 𝑡1 and 𝑡2 can then be used to calculate the point of each line 

that intersects with 𝒍 , i.e.  𝟏 and   . They are expressed through 

 𝟏 ≔ 𝒄𝟏 +
‖𝒗 − 𝒄 ‖

2〈𝒄𝟏 − 𝒄  , 𝒗𝟏 − 𝒄𝟏〉 − 〈𝒄𝟏 − 𝒄 , 𝒗 − 𝒄 〉〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉

2〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉 − ‖𝒗𝟏 − 𝒄𝟏‖
2‖𝒗 − 𝒄 ‖

2
(𝒗𝟏 − 𝒄𝟏) 

and 

  ≔ 𝒄 +
‖𝒗𝟏 − 𝒄𝟏‖

2〈𝒄 − 𝒄𝟏 , 𝒗 − 𝒄 〉 − 〈𝒄 − 𝒄𝟏, 𝒗𝟏 − 𝒄𝟏〉〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉

2〈𝒗𝟏 − 𝒄𝟏, 𝒗 − 𝒄 〉 − ‖𝒗𝟏 − 𝒄𝟏‖
2‖𝒗 − 𝒄 ‖

2
(𝒗2 − 𝒄 ). 

As 𝒙′ corresponds to the midpoint of the line segment between  𝟏 and   , it can now 

be obtained via 

 𝒙′ ≔
1

2
( 𝟏 +   ).  

 

In principle, the Midpoint Triangulation algorithm can be used by any UAS which 

implements some form of object detection algorithm. All necessary triangulation input 

data can easily be obtained. While the image points 𝒖𝟏 and 𝒖  are simply the center 

of the object in both image frames, the camera matrices 𝑃1 and 𝑃2 can be constructed 

using the UAV’s flight data. Furthermore, the Midpoint Triangulation is able to deal with 

noise afflicted on the cameras’ positions 𝒄𝟏 and 𝒄  particularly well as the midpoint 

approach averages this noise. That being said, R. I. Hartley and P. Sturm state in [26] 

that when noise is afflicted on projective input data, i.e. the image points 𝒖𝟏 and 𝒖  as 

well as the cameras’ orientations, the Midpoint Triangulation approach does not yield 

good results. This is because this triangulation reconstructs a Euclidean space from 

the camera views and, therefore, lacks to recognize the projective nature of pinhole 

cameras. Small noise in the values of 𝒖𝒍 can lead to great errors in the calculation of 

𝒙′. This is especially true if 𝒙 is far away from the corresponding camera position 𝒄𝒍. 

Therefore, the usability of the Midpoint Triangulation greatly depends on the kind of 

noise which may be afflicted on the input data.  
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3.2.3 Generalized Midpoint Triangulation 

While the previous two chapters elaborated triangulation approaches that use two 

views only, i.e. stereo-view approaches, the triangulation algorithm presented in this 

chapter utilizes any number of views 𝑛 ≥ 2. In fact, this algorithm, briefly described by 

S. Ramalingam et al. in [28], is a generalization of the Midpoint Triangulation 

elaborated in Chapter 3.2.2. For this reason, it will be referred to as the Generalized 

Midpoint Triangulation throughout the thesis. 

 

Using more than two views may seem redundant at first glance as two views are, in 

general, sufficient to triangulate a 𝒙′. However, the additional information can be used 

to smoothen out noise and, therefore, improve the triangulation result 𝒙′. Again, for 

each view the input consists of an image point 𝒖𝒍 as well as the corresponding camera 

matrix 𝑃𝑙. Given this input, the camera positions 𝒄𝒍 and an arbitrary line point 𝒗𝒍 can be 

constructed as discussed before. Given the 𝑛 lines 𝒍𝟏, … , 𝒍𝒏 as 

 𝒍𝒍(𝑡𝑙) ≔ 𝒄𝒍 + 𝑡𝒅𝒍  

with 𝑡𝑙 ∈ ℝ and 

 𝒅𝒍 ≔
1

‖𝒗𝑙 − 𝒄𝑙‖
(𝒗𝑙 − 𝒄𝑙), (3.6) 

the Generalized Midpoint Triangulation determines the 𝒙′ which is closest on average 

to all lines, i.e. 

 𝒙′ ≔ argmin
𝒙′

∑d(𝒙′, 𝒍𝒍)
2

𝑛

𝑙=1

= argmin
𝒙′

min
𝒕
∑‖𝒙′ − (𝒄𝒍 + 𝑡𝑙𝒅𝒍)‖

2

𝑛

𝑙=1

. (3.7) 

Here, d(∗,∗) denotes the Euclidean distance between a point and a line. Because (3.7) 

represents a linear least squares problem, it can be solved using the pseudo-inverse 

which yields 

 (

𝒙′

𝑡1
⋮
𝑡𝑛

) = 𝑀−1 [

𝐼 ⋯ 𝐼
−𝒅𝟏

𝑇 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝒅𝒏

𝑇

] (

𝒄𝟏
⋮
𝒄𝒏
) (3.8) 

with 𝐼 ∈ ℝ3×3 as the identity matrix and 

 𝑀 ≔ [

𝑛𝐼 −𝒅𝟏 ⋯ −𝒅𝒏
−𝒅𝟏

𝑇 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

−𝒅𝒏
𝑇 0 ⋯ 1

] ∈ ℝ(3+𝑛)×(3+𝑛).  

Because of the sparse structure of 𝑀, its inversion can be performed efficiently. For 

this, S. Ramalingam et al. even derive a closed-form solution as 

 𝑀−1 = [
1

𝑛
(𝐼 + 𝐷𝐷𝑇𝐴) 𝐴𝐷

𝐷𝑇𝐴 𝐼 + 𝐷𝑇𝐴𝐷

], (3.9) 



20 
 

whereby 𝐷 ≔ [𝒅𝟏| … |𝒅𝒏] ∈ ℝ3×𝑛 and 𝐴 ≔ (𝑛𝐼 − 𝐷𝐷𝑇)−1 ∈ ℝ3×3. Applying (3.9) in (3.8) 

yields a closed-form solution for 𝒙′ via 

 𝒙′ ≔
1

𝑛
(𝐼 + 𝐷𝐷𝑇𝐴)∑𝒄𝒊

𝑛

𝑖=1

− 𝐴∑〈𝒄𝒊, 𝒅𝒊〉𝒅𝒊

𝑛

𝑖=1

. (3.10) 

It should be noted that (3.10) can only be used to determine 𝒙′  if 𝒙′  is uniquely 

determined via (3.7), i.e. if there is exactly one point which is closest on average to all 

lines. If there are multiple points 𝒙′ which minimize (3.7) then 𝐴 cannot be determined 

because the matrix 𝑛𝐼 − 𝐷𝐷𝑇 is singular and, therefore, cannot be inverted. For the 

stereo-view case, 𝐴 is singular exactly if both lines are parallel, i.e. if  

 ‖𝒅𝟏 × 𝒅 ‖ = 0  

yields true. 

 

In comparison to the Midpoint Triangulation, the Generalized Midpoint Triangulation 

reduces the effect of noise in the input data 𝒖𝟏, … , 𝒖𝒏 and 𝑃1, … , 𝑃𝑛 on the triangulation 

result 𝒙′ . This is because it utilizes any number of views greater than one and, 

therefore, is able to smoothen out such noise. Furthermore, such like the Midpoint 

Triangulation itself, it determines 𝒙′  through a closed-form solution. This 𝒙′  can be 

calculated efficiently as only basic algebraic operations are being used. However, the 

Generalized Midpoint Triangulation still does not recognize the projective properties of 

pinhole cameras. Instead, it operates in the Euclidean space using lines which have 

been constructed from the projective space. Therefore, it suffers from the same issue 

as the Midpoint Triangulation. While it deals with noise in the cameras’ positions 𝒄𝒍 in 

an optimal way, assuming a Gaussian noise model, noise afflicted on the image points 

𝒖𝒍 and the cameras’ orientations is not dealt well with. That being said, the Generalized 

Midpoint Triangulation is, in general, more suitable for application in noise afflicted 

environments and, therefore, also in UASs as it deals with noise more efficiently. In 

particular, it may be used in the APOLI project.  

 

3.2.4 L2 Triangulation 

In the previous chapters, triangulation algorithms were presented which operate in the 

Euclidean space. This, however, is not a feasible triangulation approach if only the 

image points 𝒖𝒍 of images captured using pinhole cameras are afflicted by noise as 

the projective properties of such cameras are not considered. Instead of working in the 

three-dimensional Euclidean space, the L2 Triangulation [5], [29], [30] described in this 

chapter operates on the two-dimensional Euclidean space of the image planes. 

Furthermore, it is a multi-view triangulation algorithm. 

 



21 
 

The L2  Triangulation assumes noiseless camera matrices 𝑃𝑙  and image points 𝒖𝒍 

which are subjects to a Gaussian noise model. This means that the image points 𝒖𝒍 

are likely to be in the correct area and that their ground-truth correspondences are of 

small distance to them. The goal of the L2 Triangulation is to find an 𝒙′ that has the 

lowest reprojection error, i.e. finding an 𝒙′ which minimizes the least squares error 

 𝒙′ ≔ argmin
𝒙′

∑||𝒖𝒍 − 𝒖𝒍
′||

2
𝑛

𝑙=1

 (3.11) 

with 

 𝒖𝒍
′̃ = 𝑃𝑙𝒙′̃.  

It is worth mentioning that (3.11) is effectively minimizing the L2 norm, hence the name 

of the triangulation, of a vector 𝒇(𝒙′) ≔ (‖𝒖𝟏 − 𝒖𝟏
′ ‖,… , ‖𝒖𝒏 − 𝒖𝒏

′ ‖)𝑇 ∈ ℝ𝑛, i.e. (3.11) 

can be reformulated as 

 𝒙′ ≔ argmin
𝒙′

‖𝒇(𝒙′)‖ = argmin
𝒙′

‖(
‖𝒖𝟏 − 𝒖𝟏

′ ‖
⋮

‖𝒖𝒏 − 𝒖𝒏
′ ‖
)‖. (3.12) 

Further, it can be seen that (3.11) represents a non-linear least squares problem when 

rewritten as 

 𝒙′ ≔ argmin
𝒙′

∑(𝒖𝒍 −
1

𝑃𝑙3𝒙
′̃
(
𝑃𝑙1𝒙

′̃

𝑃𝑙2𝒙
′̃
))

2
𝑛

𝑙=1

,  

whereby 𝑃𝑙𝑖 denotes the 𝑖-th row of the camera matrix 𝑃𝑙. Therefore, it is not solvable 

in a trivial manner. For this reason, the solution of (3.11) can only be obtained using 

more complex methods. The most common approach to solve this problem is the 

Levenberg-Marquardt Method [31] which is an iterative technique to solve non-linear 

least squares problems. 

 

 

Figure 3.4: Graph of some Function 𝒇𝒍(𝒙
′(𝒕))

 
 using a parameterized 𝒙′ [32]. 

 

However, the Levenberg-Marquardt Method only converges to local minima. If the 

formulated problem possesses multiple minima, then the found minimum may not be 

the global minimum. Unfortunately, (3.11) is a problem for which multiple minima may 
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exist. This can be shown in two separate ways. Firstly, R. I. Hartley and P. Sturm 

discuss in [26] the stereo-view case of the L2 Triangulation. There, the minimalization 

problem (3.11) is reformulated to finding the roots of a polynomial of degree six. Such 

a polynomial has up to three local minima [32]. Consequently, even the simplest case 

in which only two camera views are being utilized is already subject to the local minima 

issue. It should be noted that such a reformulation to a polynomial cannot be performed 

if more than two views are used as stated in [32]. A second derivation of the possible 

existence of multiple minima is elaborated in [32]. There, Hartley and Schaffalitzky 

consider the equivalent problem formulation of (3.12), or more specifically 

 𝒙′ = argmin
𝒙′

‖𝒇(𝒙′)‖2 = argmin
𝒙′

∑𝑓𝑙(𝒙
′)2

𝑛

𝑙=1

  

with 𝑓𝑙(𝒙
′) ≔ ‖𝒖𝒍 − 𝒖𝒍

′‖. They further consider a parametrization for 𝒙′ as a point on a 

line in front of a camera 𝑙, i.e. 𝒙′(𝑡) = 𝒙𝟎
′ + 𝑡𝒅′. Using this parametrization, the cost 

function’s component 𝑓𝑙(𝒙
′(𝑡))

2
 can be expressed through 

 𝑓𝑙(𝒙
′(𝑡))

2
=
𝑎 + 𝑏𝑡 + 𝑐𝑡2

(𝑑 + 𝑒𝑡)2
 (3.13)  

for 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℝ. A derivation of this expression can be found in [32]. From geometric 

intuition, it follows that 𝑓𝑙(𝒙
′(𝑡))

2
 must have a single minimum, as all considered values 

of 𝒙′ lie in front of camera 𝑙. However, upon further inspection it can be seen that (3.13) 

is not always a convex function, i.e. there may exist line segments on the graph of 

𝑓𝑙(𝒙
′(𝑡))

2
 between any two 𝑓𝑙(𝒙

′(𝑡1))
2
 and 𝑓𝑙(𝒙

′(𝑡2))
2
 which lie below the graph. An 

illustration of this non-convexity can be seen in Figure 3.4 where the graph of some 

function 𝑓𝑙(𝒙
′(𝑡))

2
 is visualized. As the functions 𝑓𝑙(𝒙

′(𝑡))
2
 are not guaranteed to be 

convex, their sum is also not guaranteed to be convex. For this reason, it may possess 

multiple minima. 

 

Another problem to consider is the chirality [11], [32]. It states that the triangulated 

point 𝒙′ shall lie inside the so-called chirality domain. This domain is defined as the 

intersection of all half-spaces bound by the camera views’ principle planes, i.e. the 

convex domain in which each point is in front of all camera views. This observation is 

obvious as 𝒙′ should be visible from all camera views because the camera matrices 

𝑃1, … , 𝑃𝑛  are assumed to be noiseless. However, the projective space does not 

formulate this chirality condition. Instead, it also projects points that lie behind a camera 

onto the image plane. A condition to check if 𝒙′ lies inside the chirality domain can be, 

using (2.2), formulated as 

 ∀𝑙: 𝑢𝑙
′̃
3
> 0 (3.14)  
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with 𝒖𝒍
′̃ = 𝑃𝑙𝒙′̃. 

 

In principle, the L2 Triangulation is able to find the optimal solution 𝒙′ for multiple views 

assuming noiseless camera matrices 𝑃𝑙  and image points 𝒄𝒍  afflicted by Gaussian 

noise. For this, any algorithm solving a non-linear least squares problem may be used, 

e.g. the Levenberg-Marquardt Method. However, these algorithms more often than not 

find local minima of the L2 Triangulation’s minimization problem. Therefore, the found 

minimum does not have to match the global minimum of the problem and, therefore, a 

non-optimal solution may be found. For the Levenberg-Marquardt Method, the 

minimum that is found highly depends on the initial point 𝒙′
(𝟎)

∈ ℝ3. Therefore, it may 

have to be executed multiple times, each with a different initial point 𝒙′
(𝟎)

, in order to 

retrieve the optimal solution. Again, the L2 Triangulation may be used in any UAS 

implementing some object detection algorithm. However, as stated before, the camera 

matrices are assumed to be noiseless using this algorithm. For most UASs, this does 

not yield true as both, the cameras’ positions as well as their orientation must be 

assumed to be afflicted by noise. Furthermore, this triangulation also requires the 

solution of a problem of high complexity, i.e. a non-linear least squares problem. The 

time required to find the optimal solution may be too high to achieve real-time capability 

which is an essential criterion for the integration into the APOLI project. Therefore, a 

computationally more feasible approach is more desirable when dealing with noise 

afflicted image points. 

 

3.2.5 L∞ Triangulation 

In 2004, R. I. Hartley and F. Schaffalitzky [32] introduced a multi-view triangulation 

approach which aims to tackle the local minima issue of the L2 Triangulation. More 

specifically, it formulates a cost function that has exactly one local, and therefore 

global, minimum in the chirality domain. For this reason, solving the resulting 

minimization problem is simplified drastically and the risk of converging into local 

minima is eliminated. 

 

Instead of finding the 𝒙′ that minimizes the L2 norm of 𝒇(𝒙′) = (‖𝒖𝟏 − 𝒖𝟏
′ ‖,… , ‖𝒖𝒏 −

𝒖𝒏
′ ‖)𝑇, as it was done in the L2 Triangulation, the L∞ Triangulation instead finds the 𝒙′ 

which minimizes the L∞ norm of 𝒇(𝒙′), i.e. 

 𝒙′ = argmin
𝒙′

‖𝒇(𝒙′)‖∞ = argmin
𝒙′

‖(
‖𝒖𝟏 − 𝒖𝟏

′ ‖
⋮

‖𝒖𝒏 − 𝒖𝒏
′ ‖
)‖

∞

, (3.15) 
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whereby ‖𝒂‖∞  denotes the L∞  norm of a vector 𝒂 . It is defined as the maximum 

absolute component of 𝒂, i.e. ‖𝒂‖∞ ≔ max
l
|𝑎𝑙|. The minimization problem of (3.15) 

can, therefore, be expressed as 

 𝒙′ = argmin
𝒙′

max
l
‖𝒖𝒍 − 𝒖𝒍

′‖.  

 

To prove that the cost function ‖𝒇(𝒙′)‖∞ has a single minimum in the chirality domain, 

Hartley and Schaffalitzky [32], again, consider the parametrization of 𝒙′ as a point on 

a line 𝒙′(𝑡), i.e. 𝒙′(𝑡) = 𝒙𝟎
′ + 𝑡𝒅′. Here, the largest domain 𝑇 is chosen for 𝑡 so 𝒙′(𝑡) 

lies completely inside the chirality domain. Lines 𝒙′(𝑡) for which the domain 𝑇 is empty 

are not being considered. As the chirality domain is convex, 𝑇  is an interval. 

Additionally, as stated in Chapter 3.2.4, each function 𝑓𝑙(𝒙
′(𝑡)) has a single minimum 

for 𝑡 ∈ 𝑇. Contrary to the assumption that ‖𝒇(𝒙′(𝑡))‖
∞

 only possesses one minimum 

in 𝑇 , suppose that there are two minima at 𝑡1 ∈ 𝑇  and 𝑡2 ∈ 𝑇  and, without loss of 

generality, 

 ‖𝒇(𝒙′(𝑡1))‖∞ > ‖𝒇(𝒙′(𝑡2))‖∞  

as well as 𝑡1 < 𝑡2. Then there has to be a 𝑡′ ∈ 𝑇 with 𝑡′ > 𝑡1 for which ‖𝒇(𝒙′(𝑡′))‖
∞
>

‖𝒇(𝒙′(𝑡1))‖∞ holds true. Further, there is a component 𝑓𝑙(𝒙
′(𝑡)) of the cost function 

‖𝒇(𝒙′(𝑡))‖
∞

 for which 𝑓𝑙(𝒙
′(𝑡′)) = ‖𝒇(𝒙′(𝑡′))‖

∞
.It follows 

 𝑓𝑙(𝒙
′(𝑡′)) > 𝑓𝑙(𝒙

′(𝑡1))  

and 

 𝑓𝑙(𝒙
′(𝑡′)) > 𝑓𝑙(𝒙

′(𝑡2)).  

Therefore, the function 𝑓𝑙(𝒙
′(𝑡′))  must have a minimum each in [𝑡1; 𝑡

′) ⊂ 𝑇  and 

(𝑡′; 𝑡2] ⊂ 𝑇 which, however, contradicts the observation that each 𝑓𝑙(𝒙
′(𝑡)) possesses 

a single one minimum in 𝑇 . Consequently, ‖𝒇(𝒙′(𝑡))‖
∞

 has exactly one minimum 

along any line in the chirality domain. Further, ‖𝒇(𝒙′)‖∞ possesses a single minimum 

in the chirality domain itself. This is trivial to demonstrate as if there were at least two 

minima in the chirality domain, ‖𝒇(𝒙′(𝑡))‖
∞

, whereby 𝒙′(𝑡) is a line joining two of these 

minima, itself has two minima. 

 

To solve the minimization problem of (3.15), a simple iterative algorithm is elaborated 

in [32]. Firstly, an initial estimate for 𝒙′ must be determined, i.e. 𝒙′
(𝟎)

. For example, it 

may be found by solving the linear programming problem formulated by (3.14). After 

an initial point has been chosen, the iteration step 𝑚 is initialized to 0 and a random 

direction 𝒗(𝟎) is determined. Using that, a line 
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 𝒍(𝒎)(𝑡) ≔ 𝒙′
(𝒎)

+ 𝑡𝒗(𝒎) (3.16) 

can be formulated. The parameter domain of 𝑡 is chosen as large as possible while still 

guaranteeing that 𝒍(𝒎)  lies inside the chirality domain for all 𝑡 . Now, knowing that 

‖𝒇(𝒙′)‖∞  only has one minimum in the chirality domain and, therefore, only one 

minimum on 𝒍(𝒎), any line search algorithm may be used to determine the 𝑡(𝑚) for 

which  

 ‖𝒇 (𝒍(𝒎)(𝑡(𝑚)))‖
∞

  

is minimal. In [32], Hartley and Schaffalitzky chose the Fibonacci Line Search [33] for 

this. After the minimum has been determined by estimating the optimal line parameter 

𝑡(𝑚), the current estimate of 𝒙′
(𝒎)

 can be improved upon using 

 𝒙′
(𝒎+𝟏)

≔ 𝒍(𝒎)(𝑡(𝑚)).  

This concludes the iteration step and 𝑚 is incremented by one. Subsequently, a new 

random direction 𝒗(𝒎) is chosen and the next iteration step starts again at (3.16). This 

algorithm terminates after a set number of iteration steps. Finally, an approximation for 

the triangulation solution of (3.15) is determined as 

 𝒙′ ≔ 𝒙′
(𝒎)

.  

 

In comparison to the L2  Triangulation, the L∞  Triangulation eliminates the possible 

existence of multiple minima in the chirality domain. Therefore, the risk of finding a 

non-optimal solution for 𝒙′ is eliminated and the problem is much easier to solve. It 

should be noted that the found solution 𝒙′ is only optimal in regards to (3.15) and most 

likely does not represent a solution of (3.11). However, it is obvious that outliers in the 

input data, i.e. 𝒖𝒍 which are heavily affected by noise, have a greater impact on the 

result of the L∞ Triangulation than on the result of the L2 Triangulation. Nevertheless, 

those outliers may be removed prior to the triangulation using algorithms like RANSAC 

[34]. Because of the lowered complexity, the L∞ Triangulation may be preferred over 

the L2 Triangulation for usage in most UASs and especially the APOLI project. That 

being said, the camera matrices 𝑃𝑙  are still assumed to be noiseless for the L∞ 

Triangulation which is not realistic for most UASs.  
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3.3 Multi-View Ellipsoid Approximation using Bounding Rectangles 

 
Figure 3.5: Multi-View Ellipsoid Approximation using Bounding Rectangles. The Figure is based on an 

Image from [35]. 

 

In 2018, Rubino et al. [35] presented another multi-view object localization approach. 

The basic concept of this algorithm is visualized in Figure 3.5. Their algorithm utilizes 

the bounding rectangles around an object in captured camera images as well as the 

corresponding camera matrices. More specifically, it approximates objects as 

ellipsoids. By reformulating the problem to use an ellipsoid as well as ellipses, instead 

of the bounding rectangles directly, it becomes mathematically much more feasible 

and, therefore, easier to solve. In the following, the ellipsoid that describes the object 

to localize precisely is denoted as 𝑄 ∈ ℝ4×4, i.e. given in a quadric matrix form [36]. 

Note that in this form 𝑄  is symmetrical, i.e. 𝑄𝑇 = 𝑄 . In an optimal noiseless 

environment, the ellipses that result from projecting 𝑄 onto the image planes perfectly 

fit inside the bounding rectangles of the corresponding view. The projection of 𝑄 onto 

the image plane of view 𝑙 is referred to as the ellipse 𝐶𝑙 ∈ ℝ3×3 given as the matrix 

representation of a conic section. Again, 𝐶𝑙  is a symmetric matrix. Because the 

ellipsoid 𝑄 is unknown, the ellipses 𝐶𝑙 are constructed using the bounding rectangles. 

Furthermore, the camera matrices are given as 𝑃1 = 𝐾1[𝑅1|𝒕𝟏], … , 𝑃𝑛 = 𝐾𝑛[𝑅𝑛|𝒕𝒏] ∈

ℝ3×4. The goal of the following algorithms is to find an ellipsoid 𝑄′, given the ellipses 

𝐶𝑙  as well as the camera matrices 𝑃𝑙 , which best explains 𝑄 . Obviously, this 

approximation highly depends on the quality of the bounding rectangles. While the 

Noiseless Ellipsoid Approximation, elaborated in Chapter 3.3.1 assumes the absence 

of noise, all other algorithms aim to reduce the influence of noise in the input data on 

the localization result 𝑄′. All described algorithms require at least three different views, 

i.e. 𝑛 ≥ 3. 
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3.3.1 Noiseless Ellipsoid Approximation 

If the input data is noiseless, each 𝐶𝑙 perfectly represents the projection of 𝑄 onto the 

image plane of view 𝑙. In this case, the Noiseless Ellipsoid Approximation, presented 

in [35] and elaborated in this chapter, can be used to determine 𝑄′. To check whether 

an image point 𝒖 ∈ ℝ2 lies on the ellipse 𝐶𝑙, the condition 

 𝒖̃𝑇𝐶𝑙𝒖̃ = 0  

may be used [36]. Analogously, a three-dimensional point 𝒙 ∈ ℝ3 lies on the surface 

of the ellipsoid 𝑄 if, and only if, 

 𝒙̃𝑇𝑄𝒙̃ = 0  

yields true. From these conditions, it is obvious that both matrices 𝑄 and 𝐶𝑙 are scale-

invariant. 

 

Nevertheless, the projection between the ellipsoid 𝑄 and the ellipses 𝐶𝑙 is not trivial to 

derive in the Euclidean space. Therefore, Rubino et al. [35] reformulate the projection 

into the so-called dual space. In this space an ellipsoid is expressed by the envelope 

of all the planes tangent to it while an ellipse is represented by the envelope of all the 

lines tangent to it. To convert the ellipsoid 𝑄 and the ellipses 𝐶𝑙 into this space, 

 𝑄̂ ≔ adj(𝑄),  

 𝐶𝑙̂ ≔ adj(𝐶𝑙)  

may be used, whereby  

 adj(𝐴) ≔ cof(𝐴)𝑇 = (((−1)𝑜+𝑝𝐴𝑜,𝑝)1≤𝑜,𝑝≤𝑛)
𝑇

  

denotes the adjoint matrix [36] of 𝐴 ∈ ℝ𝑛×𝑛. Here, 𝐴𝑜,𝑝 is the (𝑜, 𝑝)-minor of 𝐴, i.e. the 

determinant of a submatrix formed by deleting the 𝑜-th column and the 𝑝-th row from 

𝐴. The projection between the ellipsoid and the ellipses can now be expressed via 

 𝑠𝑙𝐶𝑙̂ = 𝑃𝑙𝑄̂𝑃𝑙
𝑇 . (3.17) 

The 𝑠𝑙 ∈ ℝ is the scale factor which derives from the scale-invariance of 𝑄  and 𝐶𝑙 . 

(3.17) shall now be solved to find 𝑄̂. For this, the linear system is reformulated to  

 𝑠𝑙𝒄𝒍̂ = 𝐺𝑙 ̂ (3.18) 

with  ̂ ≔ vecs(𝑄̂) ∈ ℝ10 as the vectorization of the lower triangle part of 𝑄̂ and 𝒄𝒍̂ ≔

vecs(𝐶𝑙̂) ∈ ℝ6  as an analogous vectorization of 𝐶𝑙̂ . Furthermore, 𝐺𝑙 ∈ ℝ6×10  is 

determined as 

 𝐺𝑙 = 𝐴(𝑃𝑙⨂𝑃𝑙)𝐵,  

whereby 𝑃𝑙⨂𝑃𝑙 denotes the Kronecker product of 𝑃𝑙 with itself. Additionally, 𝐴 ∈ ℝ6×9 

and 𝐵 ∈ ℝ16×10 are two arbitrary matrices for which vecs(𝑋) = 𝐴 vec(𝑋) and vecs(𝑌) =

𝐵 vec(𝑌) for any symmetrical matrices 𝑋 ∈ ℝ9×9 and 𝑌 ∈ ℝ16×16 hold true. Here, the 

vec(∗) operator vectorizes all elements of a matrix. A closed-form solution for 𝐺𝑙 only 

utilizing the values of the camera matrix 𝑃𝑙 is provided in [35]. 
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By applying all 𝑛 views on (3.18), the system 

 𝑀𝒘 = 𝟎 (3.19) 

is derived. The matrix 𝑀 and the vector 𝒘 are built as 

 𝑀 ≔ [

𝐺1 −𝒄𝟏̂ 𝟎 ⋯ 𝟎
𝐺2 𝟎 −𝒄 ̂ ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝐺𝑛 𝟎 𝟎 ⋯ −𝒄𝒏̂

] ∈ ℝ6𝑛×(10+𝑛), (3.20) 

 𝒘 ≔ (

 ̂
𝑠1
⋮
𝑠𝑛

) ∈ ℝ10+𝑛. (3.21) 

The solution of (3.19) can be found by minimizing 

 𝒘′ ≔ argmin
𝒘

‖𝑀𝒘‖2  

under the constraint 

 ‖𝒘′‖2 = 1, (3.22) 

whereby (3.22) is used to avoid the trivial solution of 𝒘′ = 𝟎. This minimization problem 

can be solved by applying a Singular Value Decomposition (SVD) [37] on 𝑀. The 

solution 𝒘′ is the right singular vector associated with the minimum singular value. 

Using (3.21), the first ten values of 𝒘′ represent  ′̂ which is further used to determine 

the ellipsoid 𝑄′ of the Euclidean space via 

 𝑄′ ≔ adj−1(vecs−1( ′̂)). (3.23) 

The inverse adjoint operation adj−1(𝐴) of a matrix 𝐴 ∈ ℝ𝑛×𝑛 can be defined as 

 adj−1(𝐴) ≔ (
1

√|𝐴|
𝑛−1

𝐴)

−1

.  

 

The Noiseless Ellipsoid Approximation provides a closed-form solution for 𝑄′ 

formulated in (3.23) which can be determined efficiently. By expressing the quadric 

matrix form 𝑄′ of the ellipsoid as 

 𝑄′ = [
𝑄1
′ 𝑸 

′

𝑄3
′ 𝑄4

′ ] ∈ ℝ4×4  

with 𝑄1
′ ∈ ℝ3×3, 𝑸 

′ ∈ ℝ3, 𝑄3
′ ∈ ℝ1×3 and 𝑄4

′ ∈ ℝ, its information can easily be extracted 

[35], [36], [38]. While the ellipsoid’s center 𝒄𝑸′ is calculated as 

 𝒄𝑸′ = −𝑄1
′−1𝑸 

′ , (3.24) 

its principle axes are determined as 

 𝒑𝑸′𝒍
≔ √−

|𝑄′|

|𝑄1
′ |

1

𝜆𝑚
𝒗𝒍 ∈ ℝ3  
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with 𝜆𝑙 ∈ ℝ as the 𝑙-th eigenvalue and 𝒗𝒍 ∈ ℝ3 as the 𝑙-th eigenvector of 𝑄1
′ . However, 

the Noiseless Ellipsoid Approximation assumes an environment in which the provided 

camera matrices 𝑃𝑙  and the ellipses 𝐶𝑙 are noiseless. While this algorithm in theory 

also works if this data is afflicted by noise, the solution 𝑄′ that results from such noise 

may not be a valid ellipsoid. Instead, 𝑄′ could represent a nearly degenerated ellipsoid 

or even a different quadric, e.g. a hyperboloid. To test whether 𝑄′ represents a valid 

ellipsoid, 

 ∀𝑙 ∈ {1,2,3}: 𝜆𝑙 > 0 ∨ ∀𝑙 ∈ {1,2,3}: 𝜆𝑙 < 0 (3.25) 

may be used [39]. For this reason, the Noiseless Ellipsoid Approximation is only 

feasible if the provided data can be assumed to be noiseless, which is not realistic in 

real-world application. Also, the coordinates of the bounding rectangles are, when 

using real images, integers which introduces additional noise. Therefore, this approach 

is not feasible for application in a UAS where the camera matrices and the bounding 

rectangles must be assumed to be affected by noise. Instead, an algorithm that 

handles noise in the data in a better way is more desirable. 

 

3.3.2 LfD Ellipsoid Approximation 

In [35], Rubino et al. also present a modification of the Noiseless Ellipsoid 

Approximation that is able to deal with higher noise while still leading to a closed-form 

solution for 𝑄′. In their paper, Rubino et al. call this modified algorithm the Localisation 

from Detection algorithm. Throughout this thesis, it will simply be referred to as the LfD 

Ellipsoid Approximation. The LfD Ellipsoid Approximation utilizes the observation that 

high diversities in the magnitude of the elements of 𝑀, as formulates in (3.21), is a 

potential source of its ill-conditioning when dealing with noise. An ill-conditioned matrix 

𝑀 is easily influenced by noise in the camera matrices 𝑃𝑙 and the ellipses 𝐶𝑙 in a way 

in which the solution 𝒘′ results in an invalid ellipsoid 𝑄′. 

 

To deal with this issue, Rubino et al. [35] acknowledge that the ellipses 𝐶𝑙 themselves 

are a source of the element magnitude diversity of 𝑀. Therefore, they introduce a 

precondition step in which they calculate the normalized ellipses 𝐶𝑙̇
̂  that, when 

transformed using an affine transformation 𝐻𝑙, result in the ellipses 𝐶𝑙̂. Here, an ellipse 

is said to be normalized when it is centered in its corresponding image plane at (0,0)𝑇 

and if its axis lengths are normalized. In particular, this yields 

 𝐶𝑙̂ ≔ 𝐻𝑙𝐶𝑙̇
̂𝐻𝑙

𝑇  

with 

 𝐻𝑙 ≔ [

ℎ𝑙 0 𝑐𝑙1
0 ℎ𝑙 𝑐𝑙2
0 0 1

] ∈ ℝ3×3,  
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 𝐶𝑙̇
̂ ≔ [

𝑐𝑙̂̇11 𝑐𝑙̂̇12 0

𝑐𝑙̂̇12 𝑐𝑙̂̇22 0

0 0 1

] ∈ ℝ3×3.  

𝑐𝑙1 ∈ ℝ and 𝑐𝑙2 ∈ ℝ are the coordinates of the center of the ellipse 𝐶𝑙 in its image plane. 

Further, ℎ𝑙 ∈ ℝ is defined as 

 ℎ𝑙 ≔ √𝑠𝑙1
2 + 𝑠𝑙2

2   

with 𝑠𝑙1 ∈ ℝ and 𝑠𝑙2 ∈ ℝ as the semi axes of 𝐶𝑙 , i.e. half of its axis lengths. Lastly, 

𝑐𝑙̂̇11, 𝑐𝑙̂̇12, 𝑐𝑙̂̇22 ∈ ℝ are defined so 𝐶𝑙̇ has normalized axis lengths. 

 

In addition to this, the quadric representation of the resulting ellipsoid 𝑄′ is subject to 

a similar problem as the matrix 𝑀 itself. This means that the translation values of 𝑄′ 

neglect the shape parts of 𝑄′ if its translation values are sufficiently large. To deal with 

this issue, a second precondition step is being introduced using a transformation matrix 

𝑇. It is chosen so the resulting ellipsoid of the LfD Ellipsoid Approximation lies around 

the origin (0,0,0)𝑇 . To retrieve the translation offset, the solution of the Noiseless 

Ellipsoid Approximation 𝑄′ is used. More specifically, 𝑇 describes the translation of the 

origin to the center of 𝑄′. Therefore, 𝑇 is, using 𝒄𝑸′ as calculated in (3.24), determined 

as 

 𝑇 ≔ [
𝐼 𝒄𝑸′

𝟎𝑇 1
] ∈ ℝ4×4 (3.26) 

with 𝐼 ∈ ℝ3×3  as the identity matrix. Alternatively, the center 𝒄𝑸′  can be directly 

calculated using the dual space representation of 𝑄′, i.e. 𝑄′̂, via 

 𝒄𝑸′ ≔
1

𝑄′̂
4,4

(

𝑄′̂
1,4

𝑄′̂
2,4

𝑄′̂
3,4

).  

This eliminates the need to invert the upper left 3 × 3 sub-matrix of 𝑄′ which may not 

be invertible. Additionally, there is no need to convert 𝑄′̂ back into the Euclidean space. 

 

Using these transformation matrices, the LfD Ellipsoid Approximation derives its 

solution is a similar way as the Noiseless Ellipsoid Approximation. The projection 

between the ellipsoid in the dual space 𝑄̂ and the normalized ellipses in the dual space 

𝐶𝑙̇
̂  is now determined as 

 𝑠𝑙𝐶𝑙̇
̂ = 𝐻𝑙

−1𝑃𝑙𝑇𝑄̂̇𝑇
𝑇𝑃𝑙

𝑇𝐻𝑙
−𝑇  

with the pseudo-centered ellipsoid 𝑄̂̇  determined through 𝑄̂̇ ≔ 𝑇−1𝑄̂𝑇−𝑇 . When 

substituting 𝐻𝑙
−1𝑃𝑙𝑇 to new camera matrices 𝑃𝑙̇, these matrices can be used to build 

the matrix 𝐺𝑙̇  in the same manner as 𝐺𝑙. Again, the system  
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 𝑀̇𝒘̇ = 𝟎 (3.27) 

is derived and the minimization problem 

 𝒘̇′ ≔ argmin
𝒘̇

‖𝑀̇𝒘̇‖
2
 (3.28) 

under the constraint 

 ‖𝒘̇′‖2 = 1  

with 

 𝑀̇ ≔

[
 
 
 
𝐺1̇ −𝒄𝟏̂̇ 𝟎 ⋯ 𝟎

𝐺2̇ 𝟎 −𝒄 ̂̇ ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝐺𝑛̇ 𝟎 𝟎 ⋯ −𝒄𝒏̂̇]

 
 
 

∈ ℝ6𝑛×(10+𝑛)  

follows. Solving it by applying an SVD yields 𝒘̇′. Once more, its first ten elements 

represent  ′̇̂ . Using it, the pseudo-centered ellipsoid 𝑄̇′̂ is calculated as 

 𝑄̇′̂ ≔ vecs−1 ( ′̇̂ ).  

Applying the inverse transformation of 𝑇 yields the solution 𝑄′. 

 𝑄′ ≔ adj−1 (𝑇𝑄̇′̂𝑇𝑇).  

 

The LfD Ellipsoid Approximation adds further transformations to the minimization 

problem (3.28) while avoiding to introduce complex constraints. Again, 𝑄′  can be 

obtained as a closed-form solution. Furthermore, the transformations help reducing the 

ill-conditioning problem of 𝑀 resulting in the modified matrix 𝑀̇. Therefore, the resulting 

quadric 𝑄′ is more likely to be a valid ellipsoid. For this reason, this algorithm is more 

feasible if the provided input data may be afflicted by noise. In particular, it is to be 

preferred for usage in UASs and, therefore, the APOLI project. However, it is still by 

no means guaranteed that 𝑄′ is an ellipsoid. Again, this can be tested using (3.25). 

  

3.3.3 LfDC Ellipsoid Approximation 

In [40], Gay and Bue further modify the LfD Ellipsoid Approximation by introducing 

additional constraints. They call their approach the Localisation from Detection with 

Constraints algorithm. Throughout this thesis, it is simply referred to as the LfDC 

Ellipsoid Approximation. It should be noted that in [40] Gay and Bue do not explicitly 

state that the introduced modifications are applied to the LfD Ellipsoid Approximation 

in contrast to the simpler Noiseless Ellipsoid Approximation. However, this is implied 

by the name of their modified algorithm as well as the modifications themselves. 

 

In particular, Gay and Bue use the observation that in a noiseless environment the 

projections of the center of the ellipsoid 𝑄, i.e. 𝒄𝑸 ∈ ℝ3, match the center 𝒄𝑪𝒍 ∈ ℝ2 of 
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any ellipse 𝐶𝑙 precisely. In the Euclidean space, this observation can be formulated 

easily as 

 𝒄𝑪𝒍̃ = 𝑃𝑙𝒄𝑸̃  ∀𝑙.  

To derive the mathematical modification used in the LfDC Ellipsoid Approximation, Gay 

and Bue further consider the vectorized dual space representations of 𝑄 and 𝐶𝑙, i.e.  ̂ 

and 𝒄𝒍̂. These are composed of 

  ̂ =

(

 
 
 
 
 
 
 
 
 

𝑐𝑄1
2 − 𝑎1

𝑐𝑄1𝑐𝑄2 − 𝑎2
𝑐𝑄1𝑐𝑄3 − 𝑎3

𝑐𝑄1
𝑐𝑄2

2 − 𝑎4
𝑐𝑄2𝑐𝑄3 − 𝑎5

𝑐𝑄2
𝑐𝑄3

2 − 𝑎6
𝑐𝑄3
1 )

 
 
 
 
 
 
 
 
 

  and  𝒄𝒍̂ =

(

 
 
 
 

𝑐𝐶𝑙1
2 − 𝑏𝑙1

𝑐𝐶𝑙1
𝑐𝐶𝑙2

− 𝑏𝑙2
𝑐𝐶𝑙1

𝑐𝐶𝑙1
2 − 𝑏𝑙3
𝑐𝐶𝑙2
1 )

 
 
 
 

. (3.29) 

Again, 𝒄𝑸 is the center of 𝑄 while 𝒄𝑪𝒍 refers to 𝐶𝑙’s center. The orientation as well as 

the scaling of these objects are encoded in the values of 𝑎𝑚 ∈ ℝ  and 𝑏𝑙𝑚 ∈ ℝ 

respectively. Upon further inspection of (3.29), it can be seen that in certain rows 𝒄𝑸 

and 𝒄𝑪𝒍 appear independently of the orientation and scaling. Using this observation, an 

additional linear system per view can be derived as 

 𝑠𝑙
′𝒄𝑪𝒍 = 𝐺𝑙

′ ̂, (3.30) 

whereby 

 𝐺𝑙
′ ≔ [

0 0 0 𝑃𝑙1,1 0 0 𝑃𝑙1,2 0 𝑃𝑙1,3 𝑃𝑙1,4
0 0 0 𝑃𝑙2,1 0 0 𝑃𝑙2,2 0 𝑃𝑙2,3 𝑃𝑙2,4

] ∈ ℝ2×10  

ensures the projection of the ellipsoid’s center 𝒄𝑸 onto the ellipse’s center 𝒄𝑪𝒍. Here, 

𝑃𝑙𝑚,𝑛
 denotes the element of 𝑃𝑙  at the 𝑚-th column and the 𝑛-th row. Note that the 

scaling factor 𝑠𝑙
′ ∈ ℝ  is usually unequal to 𝑠𝑙 ∈ ℝ  as formulated in the Noiseless 

Ellipsoid Approximation. While 𝑠𝑙 is used in the projection of the ellipsoid 𝑄̂ onto the 

ellipse 𝐶𝑙̂ , i.e. a dual space projection, 𝑠𝑙
′  compensates for the missing projection 

component 𝑐𝐶𝑙̃3
 of the Euclidean space projection. One could now modify the system 

(3.19) of the Noiseless Ellipsoid Approximation by extending 𝑀. However, this would 

not only lead to an increased number of rows but also additional columns. That being 

said, (3.30) can be simplified if all of the ellipses’ centers are located at the origin (0,0)𝑇 

of their corresponding image plane, i.e. when considering the LfD Ellipsoid 

Approximation as a base. It follows 

 𝑠𝑙
′𝒄𝑪𝒍̇ = 𝟎 = 𝐺𝑙̇

′
 ̂̇, (3.31) 
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whereby 𝐺𝑙̇
′
 is now computed using the substituted camera matrix 𝑃𝑙̇: 

 𝐺𝑙̇
′
≔ [

0 0 0 𝑃𝑙̇1,1 0 0 𝑃𝑙̇1,2 0 𝑃𝑙̇1,3 𝑃𝑙̇1,4

0 0 0 𝑃𝑙̇2,1 0 0 𝑃𝑙̇2,2 0 𝑃𝑙̇2,3 𝑃𝑙̇2,4
] ∈ ℝ2×10.  

Using (3.31), the system (3.27) of the LfD Ellipsoid Approximation can be modified, 

resulting in 

 𝑀̇′𝒘̇ = 𝟎 (3.32) 

with 

 𝑀̇′ ≔

[
 
 
 
 
 
 
 
 
𝐺1̇ −𝒄𝟏̂̇ 𝟎 ⋯ 𝟎

𝐺1̇
′

𝟎 𝟎 ⋯ 𝟎

𝐺2̇ 𝟎 −𝒄 ̂̇ ⋯ 𝟎

𝐺2̇
′

𝟎 𝟎 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝐺𝑛̇ 𝟎 𝟎 ⋯ −𝒄𝒏̂̇

𝐺𝑛̇
′

𝟎 𝟎 ⋯ 𝟎 ]
 
 
 
 
 
 
 
 

∈ ℝ8𝑛×(10+𝑛).  

As before, (3.32) can be solved by applying an SVD on 𝑀̇′ which yields the solution 𝒘̇′ 

of the corresponding minimization problem. The localization solution 𝑄′ is then derived 

via 

 𝑄′ ≔ adj−1 (𝑇 vecs−1 ( ′̇̂ ) 𝑇𝑇).  

 

The LfDC Ellipsoid Approximation elaborated in this chapter is a simple modification of 

the LfD Ellipsoid Approximation. Again, the solution 𝑄′ is obtained as a closed-form 

solution and can, therefore, be determined efficiently. In particular, the LfDC Ellipsoid 

Approximation only adds two rows per view to the matrix 𝑀̇. This yields the matrix 𝑀̇′ 

from which the solution is obtained from by applying an SVD. Fortunately, these rows 

can be determined efficiently themselves, too, as the center of the ellipses, i.e. 𝒄𝑪𝒍̇ , are 

by definition (0,0)𝑇 . Furthermore, the 𝐺𝑙̇
′
 that are used in these rows consist of 

individual components of the camera matrices 𝑃𝑙̇ which are already required for other 

rows of 𝑀̇′  and, therefore, determined already. However, the LfDC Ellipsoid 

Approximation leads to additional computational costs as an SVD is applied on the 

enlarged matrix 𝑀̇′ instead of 𝑀̇. Gay and Bue also state in [40] that their approach 

tends to produce more spherical shaped ellipsoids. Furthermore, they evaluated their 

approach in comparison to the LfD Ellipsoid Approximation and found better 

approximation results for the dataset they used. In respect to its usability on UASs, 

both the LfD and the LfDC Ellipsoid Approximation are feasible. However, the higher 

computational cost of the LfDC Ellipsoid Approximation has to be weighed against the 

higher accuracy of the approximated ellipsoids. It is worth noting that the LfDC Ellipsoid 
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Approximation does not, just like the other two algorithms, guarantee valid ellipsoids 

to be generated. 

3.4 Simultaneous Localization and Mapping 

 
Figure 3.6: Point Cloud of an Environment generated using LSD-SLAM [41]. 

 

Simultaneous Localization and Mapping (SLAM) [28], [41], [42] follows a more complex 

approach than the localization algorithms discussed previously. Instead of only 

approximating the localization of an object, the SLAM problem is formulated as 

simultaneously localizing a system in its environment and creating a map of the 

environment itself at runtime. This problem is of complex nature and still heavily 

researched on. In particular, it is of high interest for the field of mobile robotics where 

the developed robot shall navigate in unknown environments autonomously. In the 

following, the visual SLAM approach [43] is discussed in more detail. This means that 

the input data is limited to visual information only, i.e. image streams generated by a 

camera system. While some state-of-the-art visual SLAM algorithms detect features in 

individual images and match them between images resulting in so-called keypoints, 

other SLAM algorithms may follow more direct approaches to match regions between 

different images, e.g. LSD-SLAM [41]. After regions of images have been matched, 

either via keypoints or more direct approaches, the system’s localization as well as the 

environment map are approximated. Again, there are different approaches for this, e.g. 

using a Kalman Filter or the Bundle Adjustment [44] approach. However, the principle 

result of most visual SLAM algorithms is the same. They estimate the pose of the 

system as well as generate a map of the environment as a point cloud. Such a 

generated point cloud can be seen in Figure 3.6. 

 

However, the SLAM approach is not feasible as an object localization algorithm in the 

context of this thesis. This is because the point cloud generated by most visual SLAM 
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algorithms lacks semantic information. While it does provide knowledge about the 

position of points in the three-dimensional Euclidean space which belong to objects, 

information about the correlation between these points is not generated. In particular, 

the localization of whole objects cannot be derived easily and reliably using this point 

cloud only. Instead, prior knowledge about the objects’ models is required. As 

formulated in Chapter 1.2, however, information about the objects’ models is not 

provided. 

3.5 Summary 

Triangulation Algorithm 

Localization 

Output 

Feasible for noise-

afflicted Input 

Utilized 

Camera Views 

Computational 

Complexity 

Noiseless Point No Stereo-view Very low 

Midpoint Point Yes Stereo-view Very low 

Generalized Midpoint Point Yes Multi-view Low 

L2 Point Yes Multi-view Very high 

L∞ Point Yes Multi-view High 

Table 3.1: Some Criteria for the presented Triangulation Algorithms. 

Ellipsoid Approximation 

Algorithm 

Localization 

Output 

Feasible for noise-

afflicted Input 

Utilized 

Camera Views 

Computational 

Complexity 

Noiseless Ellipsoid No Multi-view Medium 

LfD Ellipsoid Yes Multi-view Medium to high 

LfDC Ellipsoid Yes Multi-view Medium to high 

Table 3.2: Some Criteria for the presented Ellipsoid Approximation Algorithms. 

 

This chapter provides a brief summary of all state-of-the-art object localization 

algorithms which have been presented in the previous chapters. Again, the focus is 

laid on their applicability on UASs and in particular in regards to the APOLI project. For 

starters, the presented depth estimation algorithm as well as the SLAM approach, 

which have been discussed in Chapter 3.1 and 3.4 respectively, are not feasible for 

object localization on UASs. While the depth estimation algorithm puts too many 

restrictions on the allowed UAV movement and the orientation of the mounted camera, 

the SLAM approach requires prior knowledge about the models of objects because it 

does not generate any semantic information. 

 

Table 3.1 and Table 3.2 list some criteria for the presented triangulation and ellipsoid 

approximation algorithms respectively. In particular, these criteria consist of the kind of 

generated localization output, whether the algorithm is feasible for noise-afflicted input 

data, the number of camera views utilized for the algorithm and, lastly, the algorithm’s 

computational complexity. As discussed earlier, while the triangulation approach only 

approximates the position of an object as a single point, the ellipsoid approximation 
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estimates an ellipsoid of the object. From this, its position as well as an approximation 

of the object’s shape can be derived. Additionally, only the Noiseless Triangulation as 

well as the Noiseless Ellipsoid Approximation are infeasible when dealing with noise 

afflicted input data. Note that this infeasibility is defined slightly different for these 

algorithms. While the problem solved by the Noiseless Triangulation, i.e. finding the 

point of intersection of two rays, simply does not make sense when dealing with noise 

afflicted data, the Noiseless Ellipsoid Approximation still attempts to solve a problem 

being well defined even if the input data is afflicted by noise. However, noise in the 

input data has a higher influence on the validity of the object localization than in 

comparison to the other ellipsoid approximation algorithms, i.e. the LfD and LfDC 

Ellipsoid Approximation. Furthermore, multi-view algorithms are to be preferred to 

stereo-view algorithms as noise-afflicted input data can be dealt with more efficiently.
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4 Conceptualization 

Input

Real-Time Object Localizer
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Figure 4.1: Concept of the Real-Time Object Localizer. 

 

This chapter elaborates the concept of the developed object localization algorithm, i.e. 

the Real-Time Object Localizer (RTL), in detail. For this, some of the fundamentals 

explained in Chapter 2 and selected state-of-the-art object localization algorithms from 

Chapter 3 are being used. An overview of the RTL’s concept is illustrated in Figure 4.1.  

 

In Chapter 4.1, some requirements of the RTL are formulated. For this, its application 

in the APOLI project, which has been presented in Chapter 2.3, is considered. 

Subsequently, Chapter 4.2 elaborates the input and output data of a single frame as 

well as the constant data provided by the user beforehand. The following chapters 4.3 

to 4.7 describe the individual steps performed by the RTL to localize objects. In the 

first step, the Input Processing which is explained in Chapter 4.3, the RTL performs 

some processing on the input data provided. More specifically, the input data is slightly 

modified to improve the accuracy of the object localization. The next step, elaborated 

in detail in Chapter 4.4, constructs the camera, i.e. its parameters, corresponding to 

the adjusted input. The calculated camera parameters as well as the input itself are 

then passed to the Input Filtering, presented in Chapter 4.5. In this step, a so-called 

Input Frame is generated. In its simplest form, it contains all of the input data as well 

as the camera parameters. This Input Frame is then added into a database of Input 

Frames. Subsequently, a set of Input Frames is selected from the database and 

passed to the next, most-essential step, the Object Localization. The Object 

Localization step utilizes the provided Input Frames to localize objects in a three-

dimensional space. The localized objects are then added to the environment map 
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which may also be used for the localization process itself. Depending on the number 

of Fundamental Points per object in each of the Input Frames, the Object Localization 

is further split into two approaches. These approaches are the triangulation and the 

ellipsoid approximation. This step is described in detail in Chapter 4.6. As a last step, 

the Output Processing, which is elaborated in Chapter 4.7, uses the localization data 

in the environment map to generate the output of the RTL. The exact output generated 

by the Output Processing is explained in Chapter 4.2.3. 

4.1 Requirements 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.2: The Three Types of Fundament Points provided by the FPD. The Fundamental Points are 
highlighted in Red. 

 

The RTL must satisfy certain requirements to be integratable into the APOLI project. It 

shall use some of the UAV’s flight data, provided by the MAL, its gimbal orientation, 

provided by the CGC, the 2D location of a detected object and its object label in the 

camera image, provided by the FPD, as well as some predetermined constant data, 

e.g. the calibration of the camera. No further information is to be used to locate objects 

in the 3D space. The exact format of the 2D location data provided by the FPD varies 

depending on the FPD’s configuration. In total, there are three configurations and, in 

all cases, the FPD provides points in or around the detected object. These points are 

hereinafter referred to as Fundamental Points. In its first configuration, as seen in 

Figure 4.2(a), the FPD presents a single Fundamental Points located at the center of 

the object. Figure 4.2(b) illustrates the second configuration in which two Fundamental 

Points are given, one above and one below the object. The last configuration is shown 

in Figure 4.2(c). There, the FPD provides four Fundamental Points around the object, 

essentially forming an axis-aligned bounding rectangle around it. 

 

The application of the RTL for UAV flights leads to additional, more general, 

requirements. Firstly, its localization accuracy and robustness must be feasible for 

UAV flights. If they do not satisfy certain thresholds, objects may be located at incorrect 

locations which could lead to collisions. Furthermore, the algorithm must run in real-
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time on the given hardware of the APOLI project, the ODROID-XU4 board. A 

localization frequency of at least 10Hz is desirable. 

4.2 Input, Constants and Output 

4.2.1 Input 

Category Data Notation Units 

UAV flight 

data 

UAV position 𝒄𝑼𝑨𝑽 𝑚 

UAV movement speed 𝒗𝑼𝑨𝑽 𝑚/𝑠 

UAV positional timestamp 𝑡𝑈𝐴𝑉𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

UAV orientation 𝜽𝑼𝑨𝑽 𝑟𝑎𝑑 

UAV angular speed 𝝎𝑼𝑨𝑽 𝑟𝑎𝑑/𝑠 

UAV orientational timestamp 𝑡𝑈𝐴𝑉𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  

Origin of UAV Local NED 𝒐 GNSS 

Gimbal 

orientation 

Gimbal orientation 𝜽𝑮𝒊𝒎𝒃𝒂𝒍 𝑟𝑎𝑑 

Gimbal angular speed 𝝎𝑮𝒊𝒎𝒃𝒂𝒍 𝑟𝑎𝑑/𝑠 

Gimbal orientational timestamp 𝑡𝐺𝑖𝑚𝑏𝑎𝑙  

Object 

detection 

Detected objects’ labels   

Detected objects’ FPs  𝒖𝒍  

Object detection timestamp 𝑡𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛  

Table 4.1: Input of the Real-Time Object Localizer. 

 

The input of the RTL, which is listed in Table 4.1, can be split into three categories. 

Firstly, there is the UAV flight data input. This input contains the UAV’s position  

𝒄𝑼𝑨𝑽 ∈ ℝ3 in a three-dimensional Euclidean coordinate system, which will be referred 

to as the UAV Local NED coordinate system, its movement speed 𝒗𝑼𝑨𝑽 ∈ ℝ3 in the 

same system as well as a timestamp 𝑡𝑈𝐴𝑉𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 specifying the point in time at which 

this data was valid. The UAV flight data input also consists of the orientation of the 

UAV 𝜽𝑼𝑨𝑽 ∈ ℝ3 as roll, pitch and yaw angles in respect to the NED system at the UAV’s 

position, as described in Chapter 2.4.2, paired with its angular speed 𝝎𝑼𝑨𝑽 ∈ ℝ3 in 

respect to the same NED coordinate system and, again, a timestamp 𝑡𝑈𝐴𝑉𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

corresponding to this orientation information. Lastly, the origin 

 𝒐 = (𝑙𝑎𝑡𝑖𝑡𝑢𝑡𝑒𝑂𝑟𝑖𝑔𝑖𝑛, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑂𝑟𝑖𝑔𝑖𝑛, 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑂𝑟𝑖𝑔𝑖𝑛)
𝑇
∈ ℝ3  

of the UAV Local NED system in GNSS coordinates is also included in the UAV flight 

data input. The second input type of the RTL is the gimbal orientation input. This input 

is comprised of the orientation 𝜽𝑮𝒊𝒎𝒃𝒂𝒍 ∈ ℝ3 of the gimbal, again as roll, pitch and yaw 

angles, its angular speed 𝝎𝑮𝒊𝒎𝒃𝒂𝒍 ∈ ℝ3 and a timestamp 𝑡𝐺𝑖𝑚𝑏𝑎𝑙 indicating the time at 

which this data was valid. Lastly, the object detection input of the RTL includes 



40 
 

information about all detected objects in the camera image. This information consists 

of the objects’ label as well as their Fundamental Points 𝒖𝒍 ∈ ℝ2, as elaborated in 

Chapter 4.1. Again, it also contains a timestamp. This timestamp 𝑡𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

represents the time at which the image has been captured. 

 

It should be noted that, currently, there exists no official release of the FLC’s firmware, 

namely ArduCopter [15], which defines a constant UAV Local NED coordinate system. 

Instead, ArduCopter uses the so-called home position as the point of origin for that 

system. This home position is set to the position of the UAV every time it is being 

armed. However, it may also be changed midflight which results in different UAV Local 

NED coordinate systems being used in the same flight session. Consequently, invalid 

input data is being provided in that case. Nevertheless, the ArduCopter development 

team has already made effort to change the UAV Local NED coordinate system to be 

defined only once while booting, i.e. statically. These changes are expected to be 

integrated in a stable release in the near future. That being said, because the gathering 

of valid input is out-of-scope of the RTL, the RTL's input is assumed to be valid at all 

times. 

 

4.2.2 Constants 

The Real-Time Object Localizer uses a variety of constants which have to be provided 

by the user before it is being started. While some of them control the accuracy and 

performance of the RTL, others are directly used in calculations. In addition to this, 

there also exist constant values which influence the RTL’s control flow on a higher 

level. Because of the high number of constants that exist, the particular constants used 

in a step of the RTL are elaborated in the corresponding chapter of that step. 
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4.2.3 Output 

Category Data Units 

Localized 

objects 

Localized objects’ labels  

Localized objects’ positions 𝑚 

Localized objects’ principle axes (1) 𝑚 

Localized objects’ distances to UAV 𝑚 

Flags whether objects were localized  

Flags whether objects’ localizations failed  

Localized object 

evaluations (2) 

Localized objects’ distances to GT position 𝑚 

Localized objects’ overlap between 𝑄′ and 𝑄 (1)  

Localized objects’ overlap between 𝑄′̅̅ ̅ and 𝑄 (1)  

Localized object 

pairs 

Localized object pairs’ object labels  

Distance between object pairs’ objects 𝑚 

Table 4.2: Output of the Real-Time Object Localizer. (1) denotes Output Data which is only generated if the 
Ellipsoid Approximation Localization Approach is used by the Real-Time Object Localizer. Output marked 

with (2) is only generated if Ground-Truth Evaluation is desired. 

 

Table 4.2 illustrates the output data of the RTL. Again, it can be split into three 

categories. Note that the exact format of the output generated by the RTL depends on 

its configuration, i.e. some of its constants. The first category of the RTL’s output is the 

localized objects output. This output data describes information about each of the 

localized objects. In general, for each object the object’s label, its position in the UAV 

Local NED system as well as the L2 distance to the UAV is being generated. If the RTL 

uses the ellipsoid approximation localization approach, the localized objects output 

data also contains the principle axes of the approximated ellipsoid in the UAV Local 

NED system. Regardless of the localization approach used, a Boolean flag indicating 

whether the object has been localized with the provided input data as well as a second 

Boolean flag being signaled if the object could have been localized using the input but 

the localization algorithm failed to produce valid results are also provided.  

 

The localized object evaluations output data is the second output category of the RTL. 

This output contains some ground-truth evaluation performed on the localized objects 

and it is only generated if desired, i.e. if a specific constant is set and if ground-truth 

information about the localized objects is provided via constants. For each localized 

object for which ground-truth data is present, this output consists of the L2 distance 

between the object’s position and the ground-truth object position. If the ellipsoid 

approximation approach is being used, the overlap between the approximated ellipsoid 

𝑄′  and the ground-truth ellipsoid 𝑄  as well as the overlap between the translated 
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approximated ellipsoid 𝑄′̅̅ ̅ and 𝑄 are also components of this output. Here, the overlap 

between two ellipsoids 𝑄1and 𝑄2 is defined as 

 𝑜(𝑄1, 𝑄2) ≔
𝑉(𝑄1 ∩ 𝑄2)

𝑉(𝑄1 ∪ 𝑄2)
 (4.1) 

with 𝑉(∗) as the volume. The translated ellipsoid 𝑄′̅̅ ̅ is 𝑄′ which has been translated so 

it is centered at the ground-truth center, i.e. 𝒄𝑸. Throughout this thesis, the overlap 

between 𝑄′̅̅ ̅ and 𝑄 may also be referred to as the translated overlap. 

 

Finally, the localized object pairs output expresses information about all pairs of 

localized objects. In particular, this output consists of the two object labels 

corresponding to each object pair as well as the L2 distances between the objects’ 

positions. 

4.3 Input Processing 

The very first step performed by the Real-Time Object Localizer is the Input 

Processing. Here, some simple processing is applied on the provided input data. While 

the Input Processing is an optional step, evaluations have been performed validating 

that it increases the overall accuracy of the object localization. Furthermore, it leads to 

nearly no performance overhead. For these reasons, the Input Processing step, 

elaborated in this chapter, is a fixed component of the RTL’s pipeline. 

 

In particular, the Input Processing approximates input data being valid at the exact 

same timestamp. For this, the speed input data, i.e. the movement speed of the UAV 

𝒗𝑼𝑨𝑽, its angular orientation speed 𝝎𝑼𝑨𝑽 and the gimbal’s angular speed 𝝎𝑮𝒊𝒎𝒃𝒂𝒍, is 

being used. As there is no speed data of the captured image, all input data is 

approximated at the timestamp the image has been captured at, i.e. 𝑡𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛. 

The time differences in seconds between the corresponding input data’s timestamp 

and 𝑡𝑂𝑏𝑗𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛  are denoted as Δ𝑡𝑈𝐴𝑉𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 , Δ𝑡𝑈𝐴𝑉𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 , Δ𝑡𝐺𝑖𝑚𝑏𝑎𝑙 ∈ ℝ  for the 

UAV positional data, its orientational input data and the gimbal’s orientational data 

respectively. As the time differences Δ𝑡 can be assumed to be close to zero, linear 

models may be used to approximate 𝒄𝑼𝑨𝑽
′ , 𝜽𝑼𝑨𝑽

′  and 𝜽𝑮𝒊𝒎𝒃𝒂𝒍
′ , each at the image’s 

timestamp. It yields 

 𝒄𝑼𝑨𝑽
′ ≔ 𝒄𝑼𝑨𝑽 + Δ𝑡𝑈𝐴𝑉𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝒗𝑼𝑨𝑽,  

 𝜽𝑼𝑨𝑽
′ ≔ 𝜽𝑼𝑨𝑽 + Δ𝑡𝑈𝐴𝑉𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝝎𝑼𝑨𝑽  

and 

 𝜽𝑮𝒊𝒎𝒃𝒂𝒍
′ ≔ 𝜽𝑮𝒊𝒎𝒃𝒂𝒍 + Δ𝑡𝐺𝑖𝑚𝑏𝑎𝑙𝝎𝑮𝒊𝒎𝒃𝒂𝒍.  

This newly approximated input data, alongside the unmodified input data provided, is 

used as the input of the following steps of the RTL. There, the approximated 𝒄𝑼𝑨𝑽
′ , 𝜽𝑼𝑨𝑽

′  



43 
 

and 𝜽𝑮𝒊𝒎𝒃𝒂𝒍
′  are, for simplicity reasons, referred to as 𝒄𝑼𝑨𝑽 , 𝜽𝑼𝑨𝑽  and 𝜽𝑮𝒊𝒎𝒃𝒂𝒍 

respectively. 

4.4 Construction of the Camera 

In this chapter, the calculation of all camera parameters corresponding to the provided 

input is elaborated. These parameters consist of the camera matrix, the inverse 

camera matrix as well as the camera’s position in the UAV Local NED coordinate 

system coordinate system. The construction of these parameters is necessary 

because they are not given in the input itself but required for the object localization 

algorithms discussed later on in Chapter 4.6. 

 

4.4.1 Coordinate Systems 

UAV Local NED

UAV

Gimbal

Camera

UAV NED

Gimbal NED

 
Figure 4.3: Coordinate Systems used for the Camera Construction. 

 

For the construction of the camera’s parameters, the so-called Camera coordinate 

system is required. This is a three-dimensional Euclidean coordinate system. As it is 

not provided by the input directly, it must be constructed using this input. Additionally, 

other coordinate systems are introduced to ease the computation of the Camera 

coordinate systems. All of these systems can be seen in Figure 4.3. There, the x-axis 

is denoted as a red arrow, the y-axis is colored green and the z-axis is blue. 

Furthermore, north is located to the left of the figure. In the following, each of the 

coordinate systems are described and transformations between them are provided. 

There, a Euclidean transformation matrix 𝑇𝐴
𝐵 ∈ ℝ4×4 denotes the transformation from 

coordinate system 𝐴 to coordinate system 𝐵. Furthermore, the units of the following 

coordinate systems are meters and all of them are right-handed coordinate systems. 
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The first coordinate system is the UAV Local NED system which is a Euclidean three-

dimensional coordinate system in which the UAV’s position is provided. This system is 

used as the world coordinate system. Its origin may be placed arbitrarily but it is usually 

defined at the position where the FLC has been started at. Additionally, because it is 

an NED system, its x-axis shows in the north direction, the y-axis points to the east 

and the z-axis is perpendicular to both axis and shows to the center of the earth.  

 

The next coordinate system used is the so-called UAV NED coordinate system. This 

system is also oriented as an NED frame. However, its origin is placed at the position 

of the UAV. Therefore, its axes may not match the axes of the UAV Local NED system. 

To calculate the transformation between the UAV Local NED coordinate system and 

the UAV NED system, this has to be taken into account. For this, the center of the 

earth 𝒄𝒆𝒂 𝒕𝒉 as well as the north direction vector from the earth’s center 𝒅𝒏𝒐 𝒕𝒉, each in 

the UAV Local NED system, must be determined. The calculation of 𝒄𝒆𝒂 𝒕𝒉 is trivial. By 

definition, the z-axis of the UAV Local NED system points to the center of the earth. 

Therefore, 𝒄𝒆𝒂 𝒕𝒉 is determined as 

 𝒄𝒆𝒂 𝒕𝒉 ≔ (

0
0

𝑟𝑒𝑎𝑟𝑡ℎ + 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑂𝑟𝑖𝑔𝑖𝑛

)  

with 𝑟𝑒𝑎𝑟𝑡ℎ  as the radius of the earth in meters and 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑂𝑟𝑖𝑔𝑖𝑛  representing the 

altitude of the origin above the mean sea level given via 𝒐 of the UAV flight data input. 

The north direction can also be calculated in a simple manner. For this, the vector 

pointing to the center of the earth in the UAV Local NED coordinate system, referred 

to as 𝒗𝒆𝒂 𝒕𝒉, is rotated around the y-axis, i.e. the east direction. The angle of rotation 

is the origin’s latitude plus 90°. It follows 

𝒅𝒏𝒐 𝒕𝒉̃ ≔𝑅𝑦,𝛼̃𝒗𝒆𝒂 𝒕𝒉̃ = [

cos(𝛼) 0 sin(𝛼) 0
0 1 0 0

− sin(𝛼) 0 cos(𝛼) 0
0 0 0 1

](

0
0

𝑟𝑒𝑎𝑟𝑡ℎ + 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑂𝑟𝑖𝑔𝑖𝑛
0

) 

whereby 𝑅𝑦,𝛼̃ is the 4 × 4 rotation matrix to rotate around the y-axis using the angle 

𝛼 ≔ 𝑙𝑎𝑡𝑖𝑡𝑢𝑡𝑒𝑂𝑟𝑖𝑔𝑖𝑛 + 90°. The length of 𝒅𝒏𝒐 𝒕𝒉 is irrelevant as long as it points in the 

north direction. Given 𝒄𝒆𝒂 𝒕𝒉 and 𝒅𝒏𝒐 𝒕𝒉, the transformation matrix 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝑈𝐴𝑉_𝑁𝐸𝐷  can 

be determined as 

 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝑈𝐴𝑉_𝑁𝐸𝐷 ≔ [

 𝒙  𝒚  𝒛 𝒄𝑼𝑨𝑽
0 0 0 1

]
−1

. (4.2) 

Here, 𝒄𝑼𝑨𝑽 is the translation part of the inverse transformation matrix which is simply 

the UAV’s position in the UAV Local NED coordinate system.  𝒛  denotes the 

transformation of the z-axis from the UAV NED system to the UAV Local NED system. 

Because it points to the center of the earth, it is determined via 
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  𝒛 ≔
1

‖𝒄𝒆𝒂 𝒕𝒉 − 𝒄𝑼𝑨𝑽‖
(𝒄𝒆𝒂 𝒕𝒉 − 𝒄𝑼𝑨𝑽).  

Next, the  𝒚 vector is defined to point eastwards. Therefore, it is perpendicular to the 

z-axis as well as the north direction vector 𝒅𝒏𝒐 𝒕𝒉, i.e. 

  𝒚 ≔
1

‖ 𝒛 × 𝒅𝒏𝒐 𝒕𝒉‖
( 𝒛 × 𝒅𝒏𝒐 𝒕𝒉).  

Lastly,  𝒙 is simple determined as the cross-product between  𝒚 and  𝒛, i.e.  𝒙 ≔  𝒚 ×

 𝒛. It should be noted that the matrix inversion in (4.2) can be performed efficiently 

using (2.1) as it is a Euclidean transformation matrix. 

 

The UAV coordinate system has the same origin as the UAV NED system. However, 

it is oriented so their axes match the principle axes of the UAV as described in Chapter 

2.4.2. Therefore, it is determined as 

 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝑈𝐴𝑉 ≔ 𝑇𝑈𝐴𝑉_𝑁𝐸𝐷

𝑈𝐴𝑉 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝑈𝐴𝑉_𝑁𝐸𝐷 ,  

whereby 𝑇𝑈𝐴𝑉_𝑁𝐸𝐷
𝑈𝐴𝑉  is the extension of the 3 × 3 rotation matrix of Chapter 2.4.2 to a 4 ×

4 rotation matrix, i.e. by adding non-diagonal elements of value zero and a diagonal 

element of value one. The rotation angles 𝜽𝑼𝑨𝑽, i.e. the roll, pitch and yaw angles, are 

provided as input. 

 

Next, the Gimbal NED coordinate system is located at the point of rotation of the gimbal 

on which the camera is mounted on. Because this point is unequal to the UAV’s 

position most of the time, an offset is required between the UAV’s position and the 

gimbal’s origin. This is realized as the constant vector 𝒕𝑼𝑨𝑽
𝑮𝒊𝒎𝒃𝒂𝒍 ∈ ℝ3 which denotes the 

position of the gimbal’s point of rotation in the UAV coordinate system. The 

transformation matrix 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐺𝑖𝑚𝑏𝑎𝑙_𝑁𝐸𝐷  is obtained in a similar fashion as in (4.2). 

However, a different translation component is being used for the inverse transformation 

matrix. This translation 𝒄𝑮𝒊𝒎𝒃𝒂𝒍_𝑵𝑬𝑫 is the position of the gimbal’s point of rotation in the 

UAV Local NED system. It is obtained via 

 𝒄𝑮𝒊𝒎𝒃𝒂𝒍_𝑵𝑬𝑫̃ ≔𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝑈𝐴𝑉 −1

𝒕𝑼𝑨𝑽
𝑮𝒊𝒎𝒃𝒂𝒍̃ .  

 

The Gimbal coordinate system reorients the Gimbal NED coordinate system so its axes 

are aligned with the principle axes of the gimbal. As seen before, its transformation 

matrix is therefore defined as 

 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐺𝑖𝑚𝑏𝑎𝑙 ≔ 𝑇𝐺𝑖𝑚𝑏𝑎𝑙_𝑁𝐸𝐷

𝐺𝑖𝑚𝑏𝑎𝑙 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐺𝑖𝑚𝑏𝑎𝑙_𝑁𝐸𝐷 .  

Again, 𝑇𝐺𝑖𝑚𝑏𝑎𝑙_𝑁𝐸𝐷
𝐺𝑖𝑚𝑏𝑎𝑙  is the 4 × 4 rotation matrix using the roll, pitch and yaw angles of 

the gimbal, i.e. 𝜽𝑮𝒊𝒎𝒃𝒂𝒍. 
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Finally, we arrive at the Camera coordinate system. As the camera may be mounted 

at an arbitrary position on the gimbal, another constant offset vector 𝒕𝑮𝒊𝒎𝒃𝒂𝒍
𝑪𝒂𝒎𝒆 𝒂 ∈ ℝ3 is 

being used. This vector is the camera’s position in the Gimbal coordinate system. The 

orientation of the Camera coordinate system, however, is fundamentally different from 

the other systems. Here, the x-axis points to the right of the camera matching the 

direction of the x-axis in captured images. Furthermore, the y-axis points downwards 

to also match the y-axis of images. Lastly, z points in the view direction of the camera 

to achieve a right-handed system. The transformation from the UAV Local NED system 

to the Camera system is, therefore, derived as 

 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐶𝑎𝑚𝑒𝑟𝑎 ≔ [

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

] [

1 0 0  
0 1 0 −𝒕𝑮𝒊𝒎𝒃𝒂𝒍

𝑪𝒂𝒎𝒆 𝒂

0 0 1  
0 0 0 1

]𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐺𝑖𝑚𝑏𝑎𝑙 .  

 

4.4.2 Camera Parameters 

Given 𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐶𝑎𝑚𝑒𝑟𝑎 , the camera parameters can be calculated easily. The first camera 

parameter is the camera matrix 𝑃 ∈ ℝ3×4 . It is an essential component of most 

localization algorithms. As described in Chapter 2.2, it describes the projection of any 

three-dimensional point 𝒙 ∈ ℝ3 onto the image plane of the corresponding camera. It 

consists of the camera calibration matrix 𝐾 ∈ ℝ3×3  as well as the Euclidean 

transformation matrix 𝐸 ∈ ℝ3×4, i.e. 𝑃 ≔ 𝐾𝐸. Because 𝐾 is a matrix which does not 

change over time, it is provided as a constant value. 𝐸, on the other hand, depends on 

the input provided. That being said, it is simply the upper 3 × 4  submatrix of 

𝑇𝑈𝐴𝑉_𝐿𝑜𝑐𝑎𝑙_𝑁𝐸𝐷
𝐶𝑎𝑚𝑒𝑟𝑎 . The second camera parameter is the inverse camera matrix 𝑃̃−1 as 

described in Chapter 2.2. This matrix may be used to determine all three-dimensional 

points 𝒙 ∈ ℝ3 which project onto a given image point 𝒖 ∈ ℝ2. To calculate 𝑃̃−1, the 

camera matrix has to be extended to a 4 × 4  matrix resulting in 𝑃̃  and inverted 

afterwards. Lastly, the position of the camera 𝒄𝒄𝒂𝒎𝒆 𝒂 ∈ ℝ3 may also be required. This 

vector is simply given by the first three values of the fourth column of the inverse 

camera matrix 𝑃̃−1. 

4.5 Input Filtering 

All object localization algorithms elaborated in Chapter 4.6 are multi-view localization 

algorithm. Therefore, they require data from multiple viewpoints to localize objects. 

However, the input of only one viewpoint is provided at a time. For this reason, past 

inputs have to be stored in a database. More precisely, so-called Input Frames are 

generated and then stored in the Input Frame database. While these Input Frames 

may consist of the input data and their corresponding camera parameters in their 
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simplest form, more advanced structures may be used to increase the performance of 

further steps. For example, data can be pre-processed for the corresponding object 

localization algorithm used. Obviously, one cannot use all past Input Frames for the 

object localization as this leads to an infinitely increasing cost, both in terms of memory 

and performance. Therefore, the size of the database must be finite. Furthermore, an 

adequate selection process shall be used to select a set of Input Frames from the 

database. The algorithm which manages the database and also makes an Input Frame 

selection is hereinafter referred to as an Input Filtering algorithm. The following two 

chapters 4.5.1 and 4.5.2 elaborate two concrete Input Filtering algorithms. 

 

4.5.1 Linear Input Filter 

The most naïve Input Filtering algorithm is the so-called Linear Input Filter. This 

algorithm simply stores and selects the most recent Input Frames. The exact number 

of Input Frames stored in the database may be chosen arbitrarily. Here, the database 

size is provided via a constant. It should be mentioned, however, that this size must 

not be below the minimum number of Input Frames required by the object localization 

algorithm used. More specifically, while the triangulation approach, presented in 

Chapter 4.6.1, only requires two Input Frames, the ellipsoid approximation, elaborated 

in Chapter 4.6.2, needs at least three Input Frames to localize objects. 

 

𝒄𝟏

𝒄 

𝒙 = 𝒙′

 

(a) 

𝒄𝟏

𝒄 

𝒙 𝒙′

 

(b) 
Figure 4.4: Influence of Noise on the Object Localization Result. 

 

The advantages of the Linear Input Filter are clear. It leads to nearly no overhead and 

is easy to implement. However, it suffers from one crucial issue. When using 

consecutive Input Frames, the chances are high that they were generated from camera 

positions that are close to one another. Furthermore, if the camera is not close to one 

of the objects to localize, the direction vectors between the camera and that object are 

also similar between Input Frames. Here, such a direction vector is defined as the 

normalized vector pointing from the camera to the center of the object, as detected by 

its Fundamental Points. Furthermore, two direction vectors are more similar the lower 
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the distance between these vectors. More specifically, the similarity sim(𝒅𝟏, 𝒅 ) 

between two direction vectors is defined as 

 sim(𝒅𝟏, 𝒅 ) ≔ −min{‖𝒅𝟏 − 𝒅 ‖, ‖𝒅𝟏 + 𝒅 ‖}.  

In a noiseless environment, the similarity between two direction vectors would not yield 

an issue. However, because all of the input data must be assumed to be afflicted by 

some kind of noise, this similarity between the direction vectors is problematic. More 

specifically, the influence of noise is amplified drastically if the direction vectors are 

similar to one another which may result in tremendously inaccurate object localizations. 

This issue can be seen in Figure 4.4 where two two-dimensional triangulations are 

visualized, each using two consecutive Input Frames. In Figure 4.4(a) noiseless Input 

Frames have been provided. There, the triangulation result 𝒙′ perfectly matches the 

ground-truth object position 𝒙. In Figure 4.4(b), however, the data of the second Input 

Frame is afflicted by very low noise. Even though the camera position 𝒄  and the 

direction vector 𝒅  are only slightly different from their ground-truth data, the 

triangulation result 𝒙′ is grossly inaccurate in respect to the ground-truth object position 

𝒙. This principle also holds true for the ellipsoid approximation. Therefore, a more 

complex Input Filtering algorithm is more desirable when dealing with noise afflicted 

input data. 

 

4.5.2 Spherical Input Filter 

The observation from the previous chapter that high similarity between direction 

vectors of Input Frames amplifies the influence of noise on the localization result can 

be generalized. In general, the lower the similarity between the direction vectors of 

Input Frames, the less influence does input data noise yield on the localization result. 

Therefore, an Input Filtering algorithm that selects Input Frames with a low similarity is 

more feasible. One simple algorithm that attempts to achieve this is the so-called 

Spherical Input Filter elaborated in this chapter. 

 

As an initial step, the Spherical Input Filter generates a distribution of points  𝒍 ∈ ℝ3 

with 𝑙 ∈ {1, … , 𝑛} on a sphere so the minimum distance between any two points is as 

high as possible. The problem of generating a distribution of points on a sphere so the 

minimum distance between any two points is maximized has been heavily researched 

on [45], [46]. However, except for a subset of cases, this problem has not been solved 

yet. For this reason, an approximation of the point distribution may be used. The exact 

algorithm for this distribution can be chosen arbitrarily. That being said, the so-called 

Fibonacci Spiral Sphere [47], [48] is being used in this thesis.  
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The Fibonacci Spiral Sphere algorithm utilizes one essential property of the Fibonacci 

sequence, the golden ratio 𝜑 . This ratio is, using the Fibonacci sequence (𝐹𝑖)𝑖≥0 , 

defined as  

 𝜑 ≔ lim
i→∞

(
𝐹𝑖+1
𝐹𝑖

) =
1 + √5

2
 ≈ 1.618.  

This means that the ratio between consecutive Fibonacci numbers approaches the 

golden ratio 𝜑, More specifically, the so-called golden angle 

 𝜗 ≔  2𝜋(2 − 𝜑) ≈ 2.4rad  

is utilized to generate any number of points on the unit sphere. As the number of points 

can be chosen arbitrarily, a constant value is used for this. The Fibonacci Spiral Sphere 

algorithm circulates the unit sphere in a spiral from 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = −𝜋/2 to 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 𝜋/2. 

At any point, the radius of the spiral is proportional to the cosine of the latitude. Further, 

the continuous distribution function of the turns is proportional to sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + 1. 

Given this, the latitude of point  𝒍 to be distributed on the sphere can be calculated as 

 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑙 ≔ sin−1 (𝑙
2

𝑁 + 1
− 1)  ∀𝑙 ∈ {1,… , 𝑛}.  

Furthermore, the longitude of  𝒊 is given as 

 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑙 ≔ 𝑙𝜗  ∀𝑙 ∈ {1,… , 𝑛}.  

Therefore, the points  𝒍 ∈ ℝ3 can be determined via 

  𝒍 ≔ (

cos(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑙) cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑙)

sin(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑙) cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑙)

sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑙)
)  ∀𝑙 ∈ {1,… , 𝑛}  

resulting in a sufficiently good approximation for the distribution problem. 

 

Given the points  𝒍, the surface of the unit sphere can be partitioned into so-called 

regions 𝑅𝑙. Here, a region 𝑅𝑙 is defined as the set of all points on the sphere which 

have, out of all points  𝒋, minimal distance to  𝒍, i.e. 

 𝑅𝑙 ≔ {𝒙 ∈ ℝ3: ‖𝒙‖ = 1 ∧ 𝑙 = argmin
𝑗

‖𝒙 −  𝑗‖}  ∀𝑙 ∈ {1,… , 𝑛}.  

Assuming that the points  𝒍 are nearly evenly distributed on the unit sphere, these 

regions 𝑅𝑙 have approximately the same size. The Spherical Input Filter now creates 

the Input Frame database with the capacity of the number of regions, i.e. the number 

of points distributed. Further, each of these entries is associated to exactly one region 

𝑅𝑙. When being provided with an Input Frame, the Spherical Input Filter assigns the 

entry of the database which corresponds to the region 𝑅𝑙 in which the direction vector 

𝒅  of the Input Frame is contained, i.e. 𝒅 ∈ 𝑅𝑙 , with the provided Input Frame. 

Afterwards, it selects all Input Frames of the database that have been set before and 

forwards them to the object localization. 
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Figure 4.5: Top-Down View of Two-Dimensional Spherical Input Filter with Six Regions and Three Inputs. 

 

A simplification of the Spherical Input Filter for the two-dimensions case is illustrated 

in Figure 4.5. There, the object to localize is visualized as a red sphere and the 

Spherical Input Filter generated six points  𝟏, … ,    on the unit circle from which the six 

regions  𝟏, … ,    were derived. The RTL then is provided with three inputs for which 

the corresponding UAV is colored blue, green and yellow in the figure respectively. 

This is also the order in which the inputs have been given. As the first direction vector 

𝒅𝟏 is element of the region 𝑅6, the corresponding input data is stored in the Input 

Frame associated with 𝑅6. The direction vector 𝑑2 of the second input, however, also 

lies in 𝑅6 and, therefore, the data of the same Input Frame is overwritten with the 

second input. As a result, there is only one Input Frame in the Spherical Input Filter’s 

database which has been set yet because the view direction vectors 𝒅𝟏 and 𝒅  are 

similar and lie in the same region. The red object can, therefore, not be localized with 

either of the object localization approaches. For the third input, the direction vector 𝒅  

lies in a different region being 𝑅4. Starting from this input, the triangulation approach 

can be used to localize the object. To use the ellipsoid approximation approach, at 

least one further input has to be provided for which its corresponding direction vector 

𝒅𝒍 is element of either of the regions 𝑅1,𝑅2,𝑅3 or 𝑅5. 
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The Spherical Input Filter tackles the issue of the Linear Input Filter that similar 

direction vectors 𝒅𝒍 amplify the influence of noise on the localization result. It does so 

by building a database of Input Frames observing the object from multiple angles. 

Therefore, past Input Frames are being stored as long as there has not been an Input 

Frame observing the object from the same region. If the number of regions is chosen 

wisely, this technique improves the localization result immensely. If the number of 

regions, however, is below a certain threshold, then the direction vectors 𝒅𝒍 may only 

be associated with a low number of regions even though they are changing drastically 

throughout the flight. Obviously, utilizing more Input Frames yields, in general, better 

object localization results. On the other hand, if too many regions are defined, we may 

risk allowing Input Frames with similar direction vectors 𝒅𝒍 to be contained in different 

regions. This results in the same issue as the Linear Input Filter. That being said, this 

issue is no longer relevant if the direction vectors 𝒅𝒍  vary enough resulting in a 

sufficient number of entries of the database being filled with Input Frame data.  

 

Nevertheless, there are several disadvantages of the Spherical Input Filter. First and 

foremost, it introduces additional overhead, both in terms of memory and performance. 

In terms of memory, the Spherical Input Filter must be able to associate entries of the 

Input Frame database with their corresponding regions. It does so by storing the 

region’s point  𝒍. Furthermore, as the entry of the Input Frame database, which is to 

be set to a provided Input Frame, is selected using the view direction from the camera 

to the observed object, one cannot use a single Spherical Input Filter for all objects 

that are to be localized. Instead, there must be one Input Filter for each detected object. 

The overhead in terms of performance can be split into two aspects, the initialization 

of the regions 𝑅𝑙 and the selection of the entry in the database corresponding to a 

provided Input Frame. As the initialization of the regions may only be done, this 

overhead is negligible. This is especially true if an efficient point generation algorithm 

is being used, e.g. the Fibonacci Spiral Sphere algorithm. On the other hand, we have 

the overhead of selecting the corresponding entry of the Input Frame database. This 

overhead is, however, also low as a simple loop which checks for the minimal distance 

between the region’s point and the view direction is sufficient. Another disadvantage 

of the Spherical Input Filter is that, when using a wisely chosen number of regions, the 

number of Input Frames stored in the database might become too high for the object 

localization algorithms which leads to a high run-time of the object localization. This, 

however, can also be dealt with efficiently by simply limiting the number of Input 

Frames that are selected by the Spherical Input Filter. This limit is referred to as 𝑚 and 

is realized as a constant. The simplest way of achieving such a limit is by only selecting 

the Input Frames of the first 𝑚 entries of the database, in terms of their indices, that 
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have Input Frames stored. Depending on the algorithm used to generate the sphere 

points  𝒍, however, a more complex approach might be more feasible. For example, 

when using the Fibonacci Spiral Sphere for the point generation, the minimal distance 

between consecutive points  𝒍  approaches the theoretical minimum. Therefore, 

instead of selecting consecutive points, one can select the Input Frame entries of 

regions 𝑅𝑙 that have a maximal minimum distance between their indices. While this is 

not a perfect selection algorithm, it is efficient and it guarantees not to perform worse 

than the naïve selection algorithm.  

4.6 Object Localization 

This chapter elaborates the integrated object localization algorithms of the RTL in 

detail. In particular, two approaches have been considered. While the triangulation 

approach, described in Chapter 4.6.1, operates on a single Fundamental Point for each 

object, the ellipsoid approximation, presented in Chapter 4.6.2, expects four 

Fundamental Points around each object.  

 

Consequently, only two of the three FPD configurations have been considered. For the 

third case in which two Fundamental Points have been provided, as seen in Figure 

4.2(b), no adequate localization approach has been discussed in literature. However, 

a simple localization algorithm for this Fundamental Point configuration can be 

developed easily. This algorithm constructs a subset of a plane in the three-

dimensional Euclidean space for each pair of Fundamental Points provided in the 

input. These planes contain the camera’s position as well as one reprojection per 

Fundamental Point. Therefore, they are uniquely determined. The utilized subset of a 

plane is defined as the set of all points which lie on any of the two rays, each containing 

the camera’s position as well as a reprojection of their corresponding Fundamental 

Point, or in between them. Consequently, the subset can be described as a triangle of 

“infinite size”, i.e. a triangle for which one of the edges has an infinitely high distance 

to the opposite corner. In the following, the subsets corresponding to an object are 

referred to as 𝑇𝑙 with 𝑙 ∈ {1,… , 𝑛}. The result of the object localization, i.e. the position 

of the object, can now be determined as the point 𝒙′ ∈ ℝ3 which is closest on average 

to all subsets. This yields 

 𝒙′ ≔ argmin
𝒙′

∑d(𝒙′, 𝑇𝑙)
2

𝑛

𝑙=1

,  

whereby the distance between the point 𝒙′ and the subset 𝑇𝑙 is denoted as d(∗,∗). Note 

especially the similarity between this approach and the Generalized Midpoint 

Triangulation introduced in Chapter 3.2.3. Because of this similarity and also because 

no other algorithm for this scenario has been discussed, the configuration in which only 
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two Fundamental Points are provided by the FPD has been discarded and no 

localization algorithm for this configuration has been integrated into the RTL. 

 

4.6.1 Triangulation 

In this chapter, the triangulation approach for which the FPD provides exactly one 

Fundamental Point per object is elaborated in detail. For this, three triangulation 

algorithms, whereby two of which have been presented in Chapter 3.2, are integrated. 

As a reminder, when using triangulation, a point 𝒙 ∈ ℝ3 is being reconstructed which 

has been captured from different viewpoints as image points 𝒖𝟏, … , 𝒖𝒏 ∈ ℝ2. As the 

Fundamental Points of an object are placed at the object’s center in their corresponding 

image, the triangulation result 𝒙′ ∈ ℝ3 is the object’s center in the three-dimensional 

Euclidean space. No further object information is being determined using the 

triangulation approach. In particular, the object’s shape is not approximated when 

using triangulation. The integrated triangulation algorithms are the Generalized 

Midpoint Triangulation, elaborated in Chapter 3.2.3, the L∞ Triangulation, which has 

been presented in Chapter 3.2.5, as well as a novel triangulation algorithm referred to 

as the Hybrid Triangulation. All other triangulation algorithms presented in Chapter 3.2 

have crucial disadvantages when applied to the APOLI project. In particular, the 

Noiseless Triangulation is not feasible because it assumes that the input data is 

completely noiseless. This assumption cannot be made because the input data is 

gathered using sensors which are themselves afflicted by noise. Furthermore, the 

Midpoint Triangulation is not integrated because it only uses input data of two Input 

Frames. Therefore, noise in one of these Input Frames may have a great influence on 

the result. Also, the Generalized Midpoint Triangulation is able to deal with noise 

afflicted input data in a better way while following the same concept as the Midpoint 

Triangulation. Lastly, while the L2 Triangulation is able to find the theoretical optimal 

solution for 𝒙′ if only the image points are assumed to be noise afflicted, a non-trivial 

problem must be solved to determine the triangulation result which is not feasible for 

real-time capability.  

 

4.6.1.1 Generalized Midpoint Triangulation 

The first integrated triangulation algorithm is the Generalized Midpoint Triangulation 

which has been presented in Chapter 3.2.3. This algorithm determines the point 𝒙′ 

which is closest on average to lines being the extensions of the rays reprojected via 

the captured image points, i.e. the Fundamental Points. For this algorithm, a closed-

form solution exists. This solution is provided via (3.10), i.e. 
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 𝒙′ ≔
1

𝑛
(𝐼 + 𝐷𝐷𝑇𝐴)∑𝒄𝒊

𝑛

𝑖=1

− 𝐴∑〈𝒄𝒊, 𝒅𝒊〉𝒅𝒊

𝑛

𝑖=1

.  

Here, the 𝒄𝒍 ∈ ℝ3 denote the position of the camera of view 𝑙. These positions are 

provided as one of the components of the Input Frames as they have been determined 

in the Camera Construction step in Chapter 4.4. Furthermore, the direction vectors 

𝒅𝒍 ∈ ℝ3 of the rays are, using (3.6), given as 

 𝒅𝒍 ≔
1

‖𝒗𝑙 − 𝒄𝑙‖
(𝒗𝑙 − 𝒄𝑙),  

with 

 𝒗𝒍̃ = 𝑃𝑙̃
−1
𝒖𝒍̃  

for any 𝑑 > 0. Lastly, the matrices are determined via 𝐷 ≔ [𝒅𝟏| … |𝒅𝒏] ∈ ℝ3×𝑛 and 𝐴 ≔

(𝑛𝐼 − 𝐷𝐷𝑇)−1 ∈ ℝ3×3. As only basic algebraic operations are used to determine the 

triangulation result 𝒙′ , the Generalized Midpoint Triangulation can be carried out 

efficiently. 

 

4.6.1.2 L∞ Triangulation 

The second triangulation algorithm which has been implemented is the L∞ 

Triangulation elaborated in Chapter 3.2.5. This triangulation approach determines the 

point 𝒙′ which minimizes the L∞ norm of the reprojection error, i.e. 

 𝒙′ = argmin
𝒙′

‖𝒇(𝒙′)‖∞ = argmin
𝒙′

‖(
‖𝒖𝟏 − 𝒖𝟏

′ ‖
⋮

‖𝒖𝒏 − 𝒖𝒏
′ ‖
)‖

∞

,  

whereby 𝒇(𝒙′) ≔ (‖𝒖𝟏 − 𝒖𝟏
′ ‖,… , ‖𝒖𝒏 − 𝒖𝒏

′ ‖)𝑇 and 𝒖𝒍
′̃ = 𝑃𝑙𝒙′̃. It has been shown that for 

this problem, there exists a single minimum in the chirality domain. Therefore, the L∞ 

Triangulation can be solved using a simple iterative algorithm, i.e. an initial 𝒙′
(𝟎)

∈ ℝ3 

in the chirality domain is determined and improved upon in every iteration step. For 

this, a way to compute the initial estimate 𝒙′
(𝟎)

 is required. Here, the result of the 

Generalized Midpoint Triangulation may be used. While the Generalized Midpoint 

Triangulation suffers from projective properties of the pinhole camera, its localization 

result can be used as a good initial estimate 𝒙′
(𝟎)

. The Generalized Midpoint 

Triangulation is also solved efficiently. In addition to this, because the Object 

Localization step of the RTL maintains an environment map in which all objects that 

have been localized yet are stored, the most recent position of the approximated object 

can also be used as an initial estimate for 𝒙′
(𝟎)

. Obviously, this can only be done if the 

object that is to be localized has already been localized by the triangulation in the past. 

In this case, the initial estimate 𝒙′
(𝟎)

 is either set to result of the Generalized Midpoint 

Triangulation or the approximated object position, depending on which of these points 
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has a lower L∞ distance. In either case, it must be assured that the initial estimate 𝒙′
(𝟎)

 

lies in front of all camera views, i.e. in the chirality domain. 

 

After an initial estimate 𝒙′
(𝟎)

 has been determined, iterations are performed which 

improve upon it. Given a point 𝒙′
(𝒎)

, the 𝑚-th iteration step with 𝑚 ∈ {0,… , 𝑜 − 1} 

determines a point 𝒙′
(𝒎+𝟏)

 in the chirality domain which has, when projected onto the 

image planes, a non-greater L∞  distance to the image points 𝒖𝟏, … , 𝒖𝒏  than 𝒙′
(𝒎)

. 

Using the notation of Chapter 3.2.5, this is equal to 

 ‖𝒇 (𝒙′
(𝒎+𝟏)

)‖
∞
≤ ‖𝒇(𝒙′

(𝒎)
)‖

∞
.  

More precisely, a line search is performed in each iteration. Because there is no 

termination criterium for the iterations, a fixed number of iterations to perform must be 

defined beforehand. This is realized via a constant value 𝑜. The exact operations 

performed by the 𝑚-th iteration step are elaborated in detail now.  

 

Firstly, a random line direction vector 𝒗(𝒎) ∈ ℝ3 of unit length has to be determined. 

This can be done by assigning random values in the interval [−1; 1]  to its three 

components and normalizing the vector afterwards. However, if the unnormalized 

vector generated this way has a length of greater than one, it must be rerandomized.  

If this rerandomization is not performed, the distribution of the vector 𝒗(𝒎) would not 

be even on the unit sphere. The resulting line 𝒍(𝒎) is, as before, denoted as 

 𝒍(𝒎)(𝑡) ≔ 𝒙′
(𝒎)

+ 𝑡𝒗(𝒎)  

with 𝑡 ∈ ℝ. 

 

As a next step, boundaries for the line parameter 𝑡 have to be determined. These will 

be referred to as 𝑡1  for the lower and 𝑡2  for the upper boundary. They should be 

generated in such a way the interval [𝑡1; 𝑡2] contains the minimum of the line 𝒍(𝒎). Here, 

the minimum of a line is defined as the parameter of the line point with the minimal L∞ 

distance in respect to all other line points in the chirality domain. Boundaries for the 

line parameter are necessary because the L∞ Triangulation only guarantees that there 

is exactly one line minimum in the chirality domain. Furthermore, they are required by 

the line search algorithm performed in the next step. 𝑡1 and 𝑡2 may be determined as 

the minimal or maximal line parameter, respectively, for which the corresponding line 

point still lies inside the chirality domain. This, however, results in two issues. Firstly, 

the chirality domain may not be limited in one or both of the line directions. Therefore, 

𝑡1 or 𝑡2 could be −∞ or ∞ respectively. Secondly, because these parameters are used 

in the line search of the next step, a smaller interval [𝑡1; 𝑡2] is of advantage in terms of 
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efficiency. The exact algorithm to generate the interval [𝑡1; 𝑡2]  may be chosen 

arbitrarily as long as the minimum of 𝒍(𝒎) lies in [𝑡1; 𝑡2] and the boundaries 𝑡1 and 𝑡2 

are finite. In the following, a simple iterative algorithm to determine these boundaries 

is described. This algorithm basically checks the L∞  distance of line points of 

parameters with doubled distance between one another in each iteration step. Once 

the L∞  distance allows for some conclusion about the minimum on the line, the 

boundary is set to the current parameter. In particular, the algorithm stats by setting  

 𝑡1
(0) ≔ 0,  

 𝑡1
′ (0) ≔ 0,  

 𝑝1
(0) ≔ 1,  

 𝑠1
(0) ≔ −1.  

In each iteration step 𝑙, the parameter 𝑡1
′  is calculated as 𝑡1

′ ≔ 𝑡1
(𝑙) + 𝑠1

(𝑙)𝑝1
(𝑙)

. If 𝒍(𝒎)(𝑡1
′) 

lies inside the chirality domain and if  

 ‖𝒇 (𝒍(𝒎)(𝑡1
′))‖

∞
≥ ‖𝒇(𝒍(𝒎) (𝑡1

′ (𝑙)))‖
∞
, (4.3) 

𝑡1 is determined as 𝑡1
′  as the line minimum cannot be smaller than 𝑡1

′ . If instead 𝒍(𝒎)(𝑡1
′) 

lies inside the chirality domain but (4.3) does not yield true, no knowledge about the 

interval containing the line minimum can be concluded. In this case, we set 𝑡1
(𝑙+1) ≔

𝑡1
(𝑙)

, 𝑡1
′ (𝑙+1) ≔ 𝑡1

′ , 𝑝1
(𝑙+1) ≔ 2𝑝1

(𝑙)
 and 𝑠1

(𝑙+1) ≔ 𝑠1
(𝑙)

. However, if 𝒍(𝒎)(𝑡1
′)  does not lie 

inside the chirality domain anymore, the parameter increment must be decreased. This 

can be achieved by resetting the current power of two, i.e. 𝑝1, and halving the scale 

parameter 𝑠1. Furthermore, the initial parameter for the search is set to the most recent 

determined parameter that still lies inside the chirality domain. This yields 𝑡1
(𝑙+1) ≔ 𝑡1

′ (𝑙), 

𝑡1
′ (𝑙+1) ≔ 𝑡1

′ (𝑙) , 𝑝1
(𝑙+1) ≔ 1 and 𝑠1

(𝑙+1) ≔ 0.5𝑠1
(𝑙)

. After the lower boundary 𝑡1  has been 

determined, an analogous iteration is repeated for the upper boundary. The 

initialization, however, is done by setting 

 𝑡2
(0) ≔ 𝑡1,  

 𝑡2
′ (0) ≔ 𝑡1,  

 𝑝2
(0) ≔ 1,  

 𝑠2
(0) ≔ 1,  

i.e. the search now begins at the lower boundary and, obviously, the search direction 

should now be along the positive line direction. This iterative algorithm is guaranteed 

to terminate at some iteration step as the L∞ Triangulation guarantees the existence of 

exactly one line minimum in the chirality domain, i.e. ‖𝒇 (𝒍(𝒎)(𝑡))‖
∞

 with 𝑡 ∈ [𝑡1; 𝑡2] is 

convex. Therefore, at some point (4.3) must be satisfied. 
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After a parameter interval [𝑡1; 𝑡2] for 𝑡 has been determined, any feasible line search 

algorithm may be used to determine the minimum of 𝒍(𝒎) in that interval. Again, the 

convex property of ‖𝒇 (𝒍(𝒎)(𝑡))‖
∞

 with 𝑡 ∈ [𝑡1; 𝑡2] may be used for this. In particular, 

one may select two parameters 𝑡1̇, 𝑡2̇ ∈ (𝑡1; 𝑡2)  with 𝑡1̇ < 𝑡2̇  and calculate their 

corresponding L∞ distances. Because of the convexity, the L∞ distance is highest for 

one of the two boundaries, i.e. 𝑡1 and 𝑡2. This boundary can then be replaced by the 𝑡𝑙̇ 

which is closest to it. Therefore, the search interval gets smaller in every iteration step. 

After a number of steps, the interval is sufficiently small. In this thesis, the Fibonacci 

Line Search [33] has been chosen as the line search algorithm of choice. This iterative 

algorithm follows the principle mentioned above while introducing a crucial advantage. 

Using the Fibonacci Fine Search, only one of the two parameters 𝑡1̇, 𝑡2̇  has to be 

recalculated in every iteration step. The other parameter can be directly adopted from 

the previous step, reducing the cost of the line search. The Fibonacci Line Search 

starts by determining the number of iteration steps necessary to guarantee an interval 

not greater than a given constant 𝑆. For this, the smallest value 𝑘 ∈ ℕ0 is determined 

which satisfies  

 𝐹𝑘 >
𝑡2 − 𝑡1
𝑆

. (4.4) 

Again, 𝐹𝑘 is the 𝑘-th Fibonacci number. After the number of iteration steps has been 

determined, initial values are set up as  

 𝑡1̂
(0)

≔ 𝑡1,  

 𝑡2̂
(0)

≔ 𝑡2,  

 𝑡1̇
(0)

≔ 𝑡1 +
𝐹𝑘−2
𝐹𝑘

(𝑡2 − 𝑡1),  

 𝑡2̇
(0)

≔ 𝑡1 +
𝐹𝑘−1
𝐹𝑘

(𝑡2 − 𝑡1).  

In the 𝑙 -th iteration step with 𝑙 ∈ {0,… , 𝑘 − 3} , the L∞  distance of the line points 

corresponding to the parameters 𝑡1̇
(𝑙)

 and 𝑡2̇
(𝑙)

 are determined. If 

 ‖𝒇 (𝒍(𝒎) (𝑡1̇
(𝑙)
 ))‖

∞
> ‖𝒇 (𝒍(𝒎) (𝑡2̇

(𝑙)
))‖

∞
, (4.5) 

then the lower boundary 𝑡1̂
(𝑙)

 has the highest L∞ distance out of all four parameters 

and can, therefore, safely be replaced by 𝑡1̇
(𝑙)

. In this case, we set 𝑡1̂
(𝑙+1)

≔ 𝑡1̇
(𝑙)

 and 

𝑡2̂
(𝑙+1)

≔ 𝑡2̂
(𝑙)

. In addition to this, the 𝑡1̇ to check the L∞ distance for in the next iteration 

step is then set to 𝑡2̇
(𝑙)

, i.e. 𝑡1̇
(𝑙+1)

≔ 𝑡2̇
(𝑙)

. Because of this, a new upper parameter to 

check has to be calculated via 
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 𝑡2̇
(𝑙+1)

≔ 𝑡1̂
(𝑙+1)

+
𝐹𝑘−𝑙−2
𝐹𝑘−𝑙−1

(𝑡2̂
(𝑙+1)

− 𝑡1̂
(𝑙+1)

).  

If, however, (4.5) does not yield true, then the upper boundary 𝑡2̂
(𝑙)

 is to be replaced. 

In this case, analogous operations are being performed, i.e. 

 𝑡1̂
(𝑙+1)

≔ 𝑡1̂
(𝑙)
,  

 𝑡2̂
(𝑙+1)

≔ 𝑡2̇
(𝑙)
,  

 𝑡1̇
(𝑙+1)

≔ 𝑡1̂
(𝑙+1)

+
𝐹𝑘−𝑙−3
𝐹𝑘−𝑙−1

((𝑡2̂
(𝑙+1)

− 𝑡1̂
(𝑙+1)

)),  

 𝑡2̇
(𝑙+1)

≔ 𝑡1̇
(𝑙)
.  

At the end of these iterations, the size of [𝑡1̂
(𝑘−2)

; 𝑡2̂
(𝑘−2)

] is guaranteed to be not 

greater than 𝑆. Finally, we determine the minimum of the line 𝒍(𝒎) as the point which 

has the smallest L∞ distance. Because the interval does not only contain a single point, 

the minimum must be approximated by sampling specific points. For this, the following 

points are being sampled: 

 𝒙𝟏
′ ≔ 𝒙′

(𝒎)
,  

 𝒙 
′ ≔ 𝒍(𝒎) (𝑡1̂

(𝑘−2)
),  

 𝒙 
′ ≔ 𝒍(𝒎) (

𝑡1̂
(𝑘−2)

+ 𝑡2̂
(𝑘−2)

2
),  

 𝒙 
′ ≔ 𝒍(𝒎) (𝑡2̂

(𝑘−2)
).  

The improved line point 𝒙′
(𝒎+𝟏)

 is then set to the 𝒙𝒍
′ with the smallest L∞ distance which 

finalizes the 𝑚-th iteration step. 

 

After all 𝑜 iteration steps of the L∞  Triangulation have been performed, we set the 

result of the triangulation to 𝒙′ ≔ 𝒙′
(𝒐)

 which concludes the L∞ Triangulation. 

 

4.6.1.3 Hybrid Triangulation 

Lastly, the so-called Hybrid Triangulation has also been integrated. This triangulation 

algorithm combines the Generalized Midpoint Triangulation and the L∞ Triangulation 

presented in Chapter 4.6.1.1 and 4.6.1.2 respectively. More specifically, it performs 

both algorithms yielding 𝒙𝟏
′  as the result of the Generalized Midpoint Triangulation and 

𝒙 
′  as the L∞ Triangulation’s result. After 𝒙𝟏

′  and 𝒙 
′  have been determined, the Hybrid 

Triangulation now compares the L2  distances of both of these points. The final 

triangulation result 𝒙′ of the Hybrid Triangulation is set to 𝒙𝟏
′  if 

 ‖𝒇(𝒙𝟏
′ )‖ ≤ ‖𝒇(𝒙 

′ )‖ (4.6) 
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yields true. Otherwise, 𝒙 
′  is chosen as the result of the Hybrid Triangulation. 

Therefore, it selects the triangulation result with the lower L2 distance as its final result. 

 

The Hybrid Triangulation performs two triangulation algorithms, the Generalized 

Midpoint Triangulation as well as the L∞ Triangulation. The goal is to always select the 

triangulation result with the lower L2 distance. Therefore, the minimization problem of 

the Hybrid Triangulation is equivalent to the one of the L2 Triangulation, i.e. (3.11). 

However, the L2 distance is only determined for two discrete sample points, 𝒙𝟏
′  and 𝒙 

′ . 

As a result, the Hybrid Triangulation may not select the more optimal point 𝒙𝒍
′, i.e. the 

point which is closer to the optimal solution 𝒙′. This is because the problem of finding 

the point 𝒙′ ∈ ℝ3 which minimizes the L2 distance usually does not imply that the lower 

the L2 distance of a point 𝒙̂, the closer 𝒙̂ to 𝒙′. Therefore, if provided with two object 

localization results 𝒙𝟏
′  and 𝒙 

′ , the point with the lower L2 distance does not have to be 

the point which is closer to the optimal solution 𝒙′. This is further amplified by the fact 

that for this minimization problem multiple minima may exist as shown in Chapter 3.2.4. 

Lastly, the L2  Triangulation only generates triangulation results 𝒙′  which are more 

likely to be optimal if only the Fundamental Points 𝒖𝟏, … , 𝒖𝒏 are afflicted by noise. 

Again, this is not the case for most UASs and certainly not for the APOLI project. 

Nevertheless, this algorithm is still worth being analyzed on several datasets to 

evaluate its performance. On another note, it may seem as the Hybrid Triangulation 

introduces overhead in comparison to the L∞ Triangulation. This is, however, not the 

case as the result of the Generalized Midpoint Triangulation, i.e. 𝒙𝟏
′ , has been directly 

used as a candidate for the initial estimate of the L∞ Triangulation. Therefore, the only 

overhead added by the Hybrid Triangulation is the trivial comparison (4.6). 

 

4.6.2 Ellipsoid Approximation 

The second object localization approach, which is elaborated in this chapter, is the 

ellipsoid approximation approach. Fundamentals of this approach have been 

introduced in Chapter 3.3. There, the object that is to be localized is approximated as 

an ellipsoid 𝑄 ∈ ℝ4×4. More specifically, an estimation of this ellipsoid, i.e. 𝑄′ ∈ ℝ4×4, 

is constructed as the reprojection of ellipses 𝐶1, … , 𝐶𝑛 ∈ ℝ3×3  in the image planes 

placed precisely inside bounding rectangles which describe the object’s detection. 

Therefore, unlike the triangulation approach elaborated in the previous chapter, the 

ellipsoid 𝑄 can be used to not only determine the object’s location but its shape as well. 

In regards to the APOLI project, the bounding rectangles can be constructed easily 

using four Fundamental Points around the object. The following subchapters describe 

the three ellipsoid approximation algorithms which have been integrated into the RTL. 

These algorithms are the Noiseless Ellipsoid Approximation, introduced in Chapter 
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3.3.1, the LfD Ellipsoid Approximation, presented in Chapter 3.3.2, as well as the LfDC 

Ellipsoid Approximation, described in Chapter 3.3.3. 

 

4.6.2.1 Noiseless Ellipsoid Approximation 

The Noiseless Ellipsoid Approximation is the first integrated ellipsoid approximation 

algorithm. It has been presented in Chapter 3.3.1. In this chapter, however, it will be 

applied to the more precisely formulated input data of the Object Localization step of 

the RTL. In particular, the bounding rectangle around an object which has been 

detected is axis-aligned. Let 𝒃𝒍 ∈ ℝ2 be the center, 𝑤𝑙 ∈ ℝ the width and ℎ𝑙 ∈ ℝ the 

height of the bounding rectangle of the 𝑙-th view. Consequently, the corresponding 

ellipse 𝐶𝑙 is determined as 

 𝐶𝑙 ≔

[
 
 
 
 
 
 
1

𝑤𝑙
2 0 −

𝑏𝑙1
𝑤𝑙
2

0
1

ℎ𝑙
2 −

𝑏𝑙2
ℎ𝑙
2

−
𝑏𝑙1
𝑤𝑙
2 −

𝑏𝑙2
ℎ𝑙
2

𝑏𝑙1
2

𝑤𝑙
2 +

𝑏𝑙2
2

ℎ𝑙
2 −

1

4]
 
 
 
 
 
 

∈ ℝ3×3. (4.7) 

Using these ellipses, the vectorizations of the ellipses of the dual space, i.e. 𝒄𝒍̂, are 

determined as 𝒄𝒍̂ ≔ vecs(adj(𝐶𝑙)). Furthermore, for each view 𝑙 a matrix 𝐺𝑙 exists for 

which a closed-form solution has been formulated which only uses the view’s camera 

matrix 𝑃𝑙 provided as input to the Object Localization step. The resulting system (3.19) 

of the Noiseless Ellipsoid Approximation, i.e.  

 𝑀𝒘 = 𝟎 (4.8) 

with 

 𝑀 ≔ [

𝐺1 −𝒄𝟏̂ 𝟎 ⋯ 𝟎
𝐺2 𝟎 −𝒄 ̂ ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝐺𝑛 𝟎 𝟎 ⋯ −𝒄𝒏̂

] ∈ ℝ6𝑛×(10+𝑛),  

𝒘 ≔ (

 ̂
𝑠1
⋮
𝑠𝑛

) ∈ ℝ10+𝑛, 

can be solved via an SVD leading to the dual space ellipsoid 𝑄′̂ ≔ vecs−1( ′̂). More 

specifically, the right singular value corresponding to the minimum singular value 

represents the solution of (4.8), i.e. 𝒘′, which further contains  ′̂. As the final step, the 

ellipsoid 𝑄′ of the Euclidean space is determined via 𝑄′ ≔ adj−1(𝑄′̂). Subsequently, 

the parameters of 𝑄′ can be extracted as described in Chapter 3.3.1. 
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As stated in Chapter 3.3.1, the Noiseless Ellipsoid Approximation is easily influenced 

by input noise in a way invalid ellipsoids, i.e. quadrics which do not represent ellipsoids, 

are approximated. Again, to test whether 𝑄′ represents a valid ellipsoid, (3.25) may be 

used. Because of this, the Noiseless Ellipsoid Approximation should not be used by 

systems operating on noise afflicted data, e.g. the APOLI project. That being said, the 

Noiseless Ellipsoid Approximation is a necessary component of other ellipsoid 

approximation algorithms, e.g. the LfD Ellipsoid Approximation. 

 

4.6.2.2 LfD Ellipsoid Approximation 

The second ellipsoid approximation which has been integrated is the LfD Ellipsoid 

Approximation introduced in Chapter 3.3.2. As a reminder, this ellipsoid approximation 

algorithm modifies the Noiseless Ellipsoid Approximation to preprocess the input data 

and, as a result, decrease the influence of noise. In particular, it normalizes the ellipses 

𝐶𝑙 of each view to 𝐶𝑙̇ so they are centered at the image planes’ centers and their axis 

lengths are normalized. In addition to this, the final ellipsoid 𝑄′ is also transformed to 

be located around the origin (0,0,0)𝑇. 

 

The LfD Ellipsoid Approximation begins by determining the transformation matrix 𝑇 

which transforms the origin of the three-dimensional Euclidean space to the center of 

the ellipsoid 𝑄′. For this, the Noiseless Ellipsoid Approximation of Chapter 4.6.2.1 is 

performed resulting in the dual space quadric 𝑄𝑁𝐿
′̂ . Even though 𝑄𝑁𝐿

′̂  may not represent 

a valid ellipsoid, the center of the quadric can still be determined via 

 𝒄𝑸𝑵𝑳′ ≔
1

𝑄′̂
𝑁𝐿4,4

(

 
 
𝑄′̂

𝑁𝐿1,4

𝑄′̂
𝑁𝐿2,4

𝑄′̂
𝑁𝐿3,4)

 
 
.  

Using this, the transformation matrix 𝑇 is given via (3.26), i.e. 

 𝑇 ≔ [
𝐼 𝒄𝑸𝑵𝑳′

𝟎𝑇 1
] ∈ ℝ4×4.  

 

Furthermore, the affine transformation matrices 𝐻𝑙, which normalize the ellipses, are a 

necessary component of the preprocessing as well. Using 𝒃𝒍 ∈ ℝ2, 𝑤𝑙 ∈ ℝ and ℎ𝑙 ∈ ℝ 

as the parameter of the bounding rectangle in view 𝑙 as defined before, 𝐻𝑙 is given as 
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 𝐻𝑙 ≔

[
 
 
 
 
 
 
√
𝑤𝑙
2

4
+
ℎ𝑙
2

4
0 𝑏𝑙1

0 √
𝑤𝑙
2

4
+
ℎ𝑙
2

4
𝑏𝑙2

0 0 1 ]
 
 
 
 
 
 

∈ ℝ3×3.  

The normalized ellipse 𝐶𝑙̇ is, therefore, calculated via 

 𝐶𝑙̇ ≔

[
 
 
 
 
 
 
 
𝑤𝑙
2

4 +
ℎ𝑙
2

4
𝑤𝑙
2 0 0

0

𝑤𝑙
2

4 +
ℎ𝑙
2

4
ℎ𝑙
2 0

0 0 −
1

4]
 
 
 
 
 
 
 

∈ ℝ3×3.  

The corresponding dual space ellipse 𝐶𝑙̇
̂  can then be determined as usual via 𝐶𝑙̇

̂ ≔

adj(𝐶𝑙̇) . Alternatively, one can also use 𝐶𝑙̇
̂ ≔ 𝐻𝑙

−1𝐶𝑙̂𝐻𝑙
−𝑇 . Again, the ellipses’ 

vectorizations are subsequently calculated via 𝒄𝒍̂̇ ≔ vecs (𝐶𝑙̇
̂).  

 

Using this preprocessing, a similar system as seen in the Noiseless Ellipsoid 

Approximation, i.e.  

 𝑀̇𝒘̇ = 𝟎,  

whereby 

 𝑀̇: =

[
 
 
 
𝐺1̇ −𝒄𝟏̂̇ 𝟎 ⋯ 𝟎

𝐺2̇ 𝟎 −𝒄 ̂̇ ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝐺𝑛̇ 𝟎 𝟎 ⋯ −𝒄𝒏̂̇]

 
 
 

,  

is used to approximate the ellipsoid 𝑄′. In particular, an SVD is applied on 𝑀̇ to derive 

 ′̇̂ . Note that each matrix 𝐺𝑙̇  is now constructed using the substituted camera matrix 

𝑃𝑙̇ ≔ 𝐻𝑙
−1𝑃𝑙𝑇 in contrast to the matrices 𝐺𝑙 which were calculated using 𝑃𝑙 directly. The 

final result 𝑄′ of the LfD Ellipsoid Approximation is then determined via 

 𝑄′ ≔ adj−1 (𝑇 vecs−1 ( ′̇̂ ) 𝑇𝑇).  

 

4.6.2.3 LfDC Ellipsoid Approximation 

The last integrated ellipsoid approximation algorithm is the LfDC Ellipsoid 

Approximation. This algorithm, described in Chapter 3.3.3, further modifies the LfD 

Ellipsoid Approximation by introducing additional linear systems. In particular, it uses 

the observation that the center of the ellipsoid 𝑄 shall project onto the center of each 
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ellipse 𝐶𝑙. As the introduced linear systems only utilize the substituted camera matrices 

𝑃𝑙̇, the LfDC Ellipsoid Approximation cannot be defined more precisely. Therefore, this 

chapter only gives a brief summary of the algorithm.  

 

The additional linear systems, which represent the observation about the centers of 

the ellipsoid and the ellipses, are given in (3.31), i.e. 

 𝟎 = 𝐺𝑙̇
′
 ̂̇, (4.9) 

whereby the matrix 𝐺𝑙̇
′
 is determined via 

 𝐺𝑙̇
′
≔ [

0 0 0 𝑃𝑙̇1,1 0 0 𝑃𝑙̇1,2 0 𝑃𝑙̇1,3 𝑃𝑙̇1,4

0 0 0 𝑃𝑙̇2,1 0 0 𝑃𝑙̇2,2 0 𝑃𝑙̇2,3 𝑃𝑙̇2,4
] ∈ ℝ2×10.  

 

Using these linear systems, the final system is derived as 

 𝑀̇′𝒘̇ = 𝟎  

with 

 𝑀̇′ ≔

[
 
 
 
 
 
 
 
 
𝐺1̇ −𝒄𝟏̂̇ 𝟎 ⋯ 𝟎

𝐺1̇
′

𝟎 𝟎 ⋯ 𝟎

𝐺2̇ 𝟎 −𝒄 ̂̇ ⋯ 𝟎

𝐺2̇
′

𝟎 𝟎 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝐺𝑛̇ 𝟎 𝟎 ⋯ −𝒄𝒏̂̇

𝐺𝑛̇
′

𝟎 𝟎 ⋯ 𝟎 ]
 
 
 
 
 
 
 
 

∈ ℝ8𝑛×(10+𝑛),  

Again, it is solved by applying an SVD on 𝑀̇′ resulting in 𝒘̇′. 𝒘̇′ is then used to derive 

the solution 𝑄′ via 

 𝑄′ ≔ adj−1 (𝑇 vecs−1 ( ′̇̂ ) 𝑇𝑇).  

 

Both, the LfD and the LfDC Ellipsoid Approximation are more stable when used on 

noise afflicted data. However, while the LfD Ellipsoid Approximation is more efficiently 

solved, the LfDC Ellipsoid Approximation supposably generates more accurate 

ellipsoids. To assess which of these algorithms is more suited for application in UASs, 

their performance in regards to their accuracy and computational cost is evaluated later 

on in Chapter 6. 

4.7 Output Processing 

As a last step of the RTL, the Output Processing utilizes the created environment map 

to generate output as discussed in Chapter 4.2.3. Most of the necessary output data 

can be derived in a trivial manner. For example, the L2 distance between the position 
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𝒑𝒍  of an object and the UAV’s position 𝒄𝑼𝑨𝑽  is simply calculated as ‖𝒑𝒍 − 𝒄𝑼𝑨𝑽‖ 

because the UAV position 𝒄𝑼𝑨𝑽 is directly provided in the input data of the RTL. 

 

If specified by the corresponding constant and if ground-truth information for the 

localized object is provided, the output data also consists of ground-truth evaluation 

data. Again, the L2 distance between the localized object’s position and the position of 

the ground-truth object is trivial to determine. However, if the Ellipsoid Approximation 

localization algorithm is being used, the ground-truth evaluation data also consists of 

the two overlaps, each between two ellipsoids. As given by (4.1), the overlap 𝑜(𝑄1, 𝑄2) 

is defined as the volume of the intersection of 𝑄1 and 𝑄2 divided by the volume of the 

union of 𝑄1  and 𝑄2 . Because 𝑄1 ∩ 𝑄2 ⊆ 𝑄1 ∪ 𝑄2  yields true and also because the 

volume cannot be negative, the overlap 𝑜(𝑄1, 𝑄2) is a value in the interval [0; 1]. In 

particular, the overlap between the approximated ellipsoid 𝑄′  and the ground-truth 

ellipsoid 𝑄 as well as the overlap between the translated ellipsoid 𝑄′̅̅ ̅ and 𝑄 shall be 

determined. Because the ground-truth ellipsoid data of an object is given as constants 

only consisting of the ellipsoids center 𝒄𝑸  as well as its principle axes 𝒑𝑸𝒍  with 𝑙 ∈

{1,2,3}, a method must be defined which derives the quadric matrix form of 𝑄 ∈ ℝ4×4. 

This method is also needed to determine 𝑄′̅̅ ̅ ∈ ℝ4×4. 

 

Firstly, let 𝑄̇ ∈ ℝ4×4 be the unit sphere in quadric matrix form. Obviously, 𝑄̇ is a special 

ellipsoid which is centered at the origin (0,0,0)𝑇  and all of its principle axes have 

lengths of one. As before, any given point 𝒙 ∈ ℝ3 lies on 𝑄̇ if, and only if, 

 𝒙̃𝑇𝑄̇𝒙̃ = 0 (4.10) 

yields true [36]. Now, (4.10) can be modified so the derivation of the quadric matrix 

form 𝑄 of the ground-truth ellipsoid, given its center 𝒄𝑸 and the principle axes 𝒑𝑸𝒍 with 

𝑙 ∈ {1,2,3}, becomes clear. Instead of transforming the ellipsoid 𝑄̇ in (4.10), we can 

instead transform 𝒙. More specifically, this transformation, in the following referred to 

as 𝑇 ∈ ℝ4×4 , shall transform the principle axis 𝒑𝑸𝒍  to the base vector 𝒃𝒍 ∈ ℝ3  with 

𝑏𝑙𝑘 ≔ 0 if 𝑘 ≠ 𝑙 and 𝑏𝑙𝑘 ≔ 1 if 𝑘 = 𝑙. Furthermore, 𝑇 also transforms the center of the 

ellipsoid 𝒄𝑸 to the origin (0,0,0)𝑇. Using this information, 𝑇 is defined through 

 𝑇 ≔ [
𝒑𝑸𝟏 𝒑𝑸 𝒑𝑸 𝒄𝑸

0 0 0 1
]
−1

∈ ℝ4×4. (4.11) 

Note that 𝑇−1 does not represent a Euclidean transformation because the principle 

axes 𝒑𝑸𝒍 may have arbitrary lengths and, therefore, the determinant of the upper-left 

3 × 3  submatrix can be any value other than zero. Using 𝑇 , the condition to test 

whether 𝒙 lies on 𝑄 is now given as 

 𝒙̃𝑇𝑇𝑇𝑄̇𝑇𝒙̃ = 0.  
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Here we can see that the transformation of 𝒙, i.e. 𝑇, can also be directly applied to the 

ellipsoid itself. Therefore, 𝑄 ∈ ℝ4×4 is determined as 

 𝑄 ≔ 𝑇𝑇𝑄̇𝑇, (4.12) 

whereby a closed-form equation for 𝑇 is given in (4.11). Furthermore, knowing that 𝑄̇ 

is the unit sphere, it is obvious that it is defined as  

 𝑄̇ ≔ [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] ∈ ℝ4×4.  

This can also be derived by extending (4.7) to an ellipsoid. (4.12), therefore, provides 

a closed-form solution for 𝑄 . An analogous method can be used to determine 𝑄′̅̅ ̅. 

There, the ellipsoid’s principle axes are 𝒑𝑸′𝒍
 while its center remains 𝒄𝑸. 

 

After the quadric matrices 𝑄,𝑄′ and 𝑄′̅̅ ̅ have been provided, an approach is needed to 

calculate the volume of the union of two ellipsoids as well as the volume of their 

intersection used in the overlap. Because these are complex problems themselves and 

because the performance of such an approach is not the focus of it, as it is used in the 

evaluation only, the determination of these volumes can be done by simply sampling 

discrete points with fixed distances. If the sampling rate is sufficiently high, the volumes 

calculated using sampling approach their real volume. Therefore, the sampled overlap 

also approaches the real overlap.
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5 Implementation 

In this chapter, the implementation of the RTL is elaborated. The implementation of the 

Real-Time Object Localizer itself will be referred to as “the software” or simply “the 

implementation”. As stated in Chapter 1.2, the software shall be integrated into the 

APOLI project. However, currently there is no implementation of the only component 

of APOLI the RTL shall communicate with, namely the CTH. For this reason, the 

implementation communicates with lower-level components instead. As there was also 

no implementation of the FPD available at the time the RTL has been implemented, 

the communication is limited to the MAL only. 

 

In Chapter 5.1, some general information about the software are presented. After that, 

Chapter 5.2 lists and describes the C/C++ libraries that have been integrated into the 

software for different fields. A brief overview of the implemented software architecture 

is provided in Chapter 5.3 and, finally, Chapter 5.4 elaborates how to start and the use 

the software. 

5.1 Software Information 

The implemented software can be found on the enclosed CD. The folder structure of 

the project is elaborated in Attachment Error! Reference source not found.. The 

software is written in C++ using the C++17 standard. Furthermore, it has been 

developed using the Microsoft Visual Studio 2019 IDE. The Visual Studio solution is 

set up for building the software as a 64-bit application on Windows. In particular, 

Windows 10 has been used for this. Furthermore, the solution also supports building 

the software as a 32-bit application on a remote Linux machine. An ODROID-XU4 has 

been used as this remote machine. 

5.2 Utilized Libraries 

The software uses a number of C/C++ libraries for different areas. These are: 

 GSL [49] (Version 2.6), 

 OpenCV [50] (Version 3.4.5), 

 AirLib [51] (Git commit 659a7db), 

 OpenGL [52] (Version 4.3), 

 glad [53] (Version 0.1.33), 

 GLFW [54] (Version 3.3.2) and 

 GLM [55] (Version 0.9.9.8). 
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GSL (GNU Scientific Library) [49] is a C library providing a variety of functions for 

numerical calculations. The majority of vector and matrix operations of the RTL are 

implemented using this library. GSL is linked against statically on both, Windows and 

Linux. 

 

The C++ library OpenCV (Open Computer Vision Library) [50] provides functionality 

for image I/O as well as image manipulation and image operations in general. It is used 

in two separate areas. Firstly, for the evaluation a simple implementation of the FPD 

was required. Here, OpenCV is being used to generate the Fundamental Points given 

a camera image. Furthermore, OpenCV is also used to retrieve images themselves 

from a camera. This library is linked dynamically at runtime. 

 

Next, AirLib [51] is a C++ library which provides an interface between C++ and the 

AirSim [51] simulator used in the SITL simulation of APOLI. It is, among others, used 

to retrieve images shot from the camera mounted on the simulated UAV. On Windows, 

this library is linked statically. This library is also the reason the Windows project of the 

RTL does not support compiling a 32-bit version of the software as AirLib currently only 

supports 64-bit. On Linux, this library is supported in theory. However, because it 

requires an installation of the Unreal Engine and also because it is used for the 

integration of the simulation only, it was deemed too heavy for the utilized ODROID-

XU4 and, therefore, disregarded on Linux as a whole. 

 

OpenGL (Open Graphics Library) [52], in combination with glad [53] and GLFW 

(Graphics Library Framework) [54], are used for the hardware accelerated rendering 

of the software’s scene. This scene includes, but is not limited to, the UAV, the 

coordinate systems used to calculate the camera’s parameters, as elaborated in 

Chapter 4.4.1, and the objects of the environment map. Because the ODROID-XU4 

used does not support conventional OpenGL, all these libraries are only linked against 

on Windows. There, they are linked statically. 

 

Lastly, GLM (OpenGL Mathematics) [55] is a header-only C++ library which provides 

basic functionality for numerical operations on vectors and matrices with a focus on 

application in OpenGL. In particular, while GLS stores matrices row-major, GLM uses 

a column-major layout. Because this library is a header-only library, it does not need 

to be linked against at all. 
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5.3 Architecture 

ArgumentParser

+Parse(argc, argv, arguments)

Arguments

+configurationName

ConfigurationParser

+Parse(configurationName, configuration)

Configuration

RTL

+Start(configuration)

+Update()

InputGatherer

+GetInput(input)

InputFileWriter

+WriteToFile(input)

InputProcessor

+ProcessInput(input)

InputArtificialNoiseAdder

+AddNoise(input)

CameraCalculator

+Update(input)

InputFilter

+Update(objectInputFrames, input, cameraCalculator)

ObjectLocalizer

+LocalizeObjects(objectInputFrames)

OutputProcessor

+GenerateOutput(input, environmentMap)

OutputPrinter

+Print(output)

OutputCSVFileWriter

+Write(output)

RendererInterface

+Update()

0..1

1

0..1

1

1

1

1

1

1

0..1

0..1

0..1

Renderer

+Update()

 
Figure 5.1: Simplified UML Class Diagram of the Software. 

 

In this chapter, a brief overview of the architecture of the implemented software is 

given. For this, Figure 5.1 illustrates a simplification of the software’s architecture as 

an UML class diagram. The figure only shows a handful of classes for which only some 

functions are visualized. Furthermore, to improve the readability of the figure, the 

composition relationships between the RTL class and the classes of its member objects 

below it are combined into one relationship even though all member objects have a 

separate composition relationship with the RTL. The main procedure begins by 

processing the command-line arguments provided using the ArgumentParser class. 

As there is only one argument, the name of the configuration file to load, the 

implementation of this class is simply. In the context of the implemented software, a 

configuration is defined as the set of all constants of the RTL. These configurations are 

saved and loaded as files. In particular, the main procedure calls the 
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ArgumentParser::Parse() function with the number of arguments, argc, as well 

as an array containing all provided command-line arguments, argv. The 

ArgumentParser then parses the given arguments into an object of the Argument 

structure. 

 

After the command-line arguments have been parsed into the Argument object, the 

main procedure of the software then parses the corresponding configuration file via the 

ConfigurationParser class. When being provided with the name of the 

configuration file to read, the ConfigurationParser::Parse() function parses all 

read configuration values into the provided Configuration object. An elaboration on 

the structure of any configuration file can be found in Attachment B. It should be noted 

here, however, that the configuration files consist of sections which may be structured 

hierarchically. For this reason, each of these sections possesses a corresponding 

section parser class which parses only the section’s part of the configuration file. 

Consequently, ConfigurationParser and the other section parser classes parse 

the keyword-value pairs of their corresponding section themselves but outsource the 

parsing of subsections to their corresponding parsers. 

 

Finally, the main procedure is ready to start the RTL. As seen in Figure 5.1, the name 

of the RTL class as well as the names for a majority of its members’ classes, are given 

in italics. This indicates that these are either abstract C++ classes, i.e. classes which 

cannot be initialized because they are missing logic, or template classes. In the 

following, both of such classes will simply be referred to as abstract classes. Abstract 

functions are also written in italics. As the control flow of the RTL, or more specifically 

its individual steps, varies depending on the configuration of the FPD, the templates of 

these abstract classes differentiate between data used for the triangulation or the 

ellipsoid approximation approach. In addition to this, some of the subclasses of these 

abstract classes implement more specific logic for the corresponding localization 

approach. In general, the names of the subclasses end with their corresponding 

localization approach, i.e. …Triangulation and …EllipsoidApproximation. 

The main procedure starts by allocating an RTL object of the approach to use as 

specified by the Configuration object, i.e. RTLTriangulation or 

RTLEllipsoidApproximation. The RTL class itself does not implement much 

logic. Instead, the logic of each individual step of the RTL is outsourced to dedicated 

classes. In the figure, each member object of RTL represents such a step, i.e. there 

are a total of eleven steps. While some of these steps correspond exactly to one step 

of the RTL’s pipeline as elaborated in Chapter 4, other steps represent an extension 

of the RTL’s pipeline. The specific step classes to allocate are defined by the two 
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subclasses of RTL, i.e. RTLTriangulation and RTLEllipsoidApproximation. 

After the main procedure allocated a subclass of RTL, it starts the RTL via the 

RTL::Start() function. This function allocates and starts all classes of the steps to 

use as specified by the Configuration object. Once the RTL and its steps are 

started, the main procedure enters a loop in which it updates the RTL via the 

RTL::Update() function for as long as it is started. Note that the RTL does only stop 

if its input could not be gathered and the Configuration specifies that the RTL shall 

stop in such cases. Otherwise, the main procedure remains in this loop indefinitely. 

 

Now, the update procedure of the RTL will be elaborated briefly. As this procedure 

represents one pass of the RTL’s pipeline, it starts by gathering input data of the RTL. 

For this, the InputGatherer::GetInput() function is called. The source of the 

input data is specified in the Configuration object and implemented via subclasses 

of InputGatherer. After valid input data has been gathered and if desired, the 

InputFileWriter::WriteToFile() function is then used to write this input data 

into a file. This is useful to create input datasets which later can be directly used as 

input to the RTL. The next step represents the first step of the RTL’s concept, i.e. the 

Input Processing, as elaborated in Chapter 4.3. In particular, this Input Processing step 

is performed via InputProcessor::ProcessInput(). The RTL continues, if 

specified by the Configuration, by adding artificial noise to some input data using 

the InputArtificialNoiseAdder::AddNoise() function. This can be used to 

evaluate the influence of input data noise on the localization’s result. Subsequently, 

CameraCalculator::Update() is called to calculate the camera’s parameters, i.e. 

perform the second step of the RTL’s concept. Note that this is the only step which is 

not implemented as an abstract class. As discussed in the conceptualization of the 

RTL, the next step is the Input Filtering. This is integrated into the RTL via the 

InputFilter::Update() function. Afterwards, the Object Localization step is 

executed using ObjectLocalizer::LocalizeObjects(). The final step of the 

concept, i.e. the Output Processing, is then performed by calling 

OutputProcessor::GenerateOutput(). The next steps of the RTL, i.e. 

OutputPrinter::Print() and OutputCSVFileWriter::Write(), are only 

executed if specified by the Configuration object. These procedures provide 

functionality to scatter the output of the RTL. In particular, while the OutputPrinter 

class provides functionality to print the output to the console, OutputCSVFileWriter 

can be used to write it into so-called comma-separated values (CSV) files. Additional 

ways to scatter the output can be implemented easily by adding additional steps. 

Obviously, the exact order in which these output scattering steps are executed does 
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not matter. Finally, as the last step the RTL updates, if specified by the configuration, 

the rendered scene by calling the RendererInterface::Update()function. Note 

that an interface is used for this because the class which implements some of the 

rendering logic, i.e. the Renderer class, may not be available. In particular, the 

Renderer, all its subclasses as well as their dependencies are only included in the 

project when building on Windows as the ODROID-XU4 board does not support 

OpenGL. 

 

A more in-depth elaboration of some of the individual steps’ classes of the RTL and 

their implementation can be found in Attachment A.1. Additionally, Attachment A.2 also 

provides a description of some of the modifications made to the MAL to allow for the 

communication with the RTL. 

5.4 Usage Guide 

As elaborated previously, the software must be started via the command line as 

additional command-line arguments are required. Otherwise or if the command-line 

arguments provided are of invalid format, a dialog is printed to the console describing 

the arguments needed. In particular, the software only possesses a single argument. 

This is the name of the configuration file to load. More specifically, the software 

appends the file extension .cfg and looks for the configuration file inside the 

Configurations/ subdirectory in respect to the working directory. To specify the file 

name, the command-line argument --configuration or -c must be used. This 

indicates that the next argument stands for the name of the configuration file. For 

example, starting the software with the command-line arguments --configuration 

development loads the development configuration file being located at 

Configurations/development.cfg. A list of preexisting configuration files can be 

found in Attachment B. 
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Figure 5.2: Rendered Scene containing the UAV, the Camera Coordinate System, the localized Objects 

(Red) and the Ground-Truth Objects (Blue). 

 

Once the software has been started, its output can be handled in any combination of 

three different ways as specified by the read configuration file. It may be printed to the 

console, written into a CSV file and/or rendered as a three-dimensional scene. In 

Figure 5.2 a rendered scene comprised of multiple objects is shown. On the left-hand 

side of the figure, the UAV as well as the Camera coordinate system can be seen. 

Here, it is obvious that at least one offset vector which was specified in the 

corresponding configuration was unequal to the zero vector. The Camera coordinate 

system, alongside all other coordinate systems that may be rendered, is visualized via 

three colored arrows each of one meter length. In particular, the x-axis is rendered red, 

the y-axis is colored green and the z-axis is blue. In addition to this, the scene also 

contains the localization of two objects. More specifically, while the objects’ 

approximated ellipsoids are rendered red, the ground-truth objects are visualized as 

blue ellipsoids. Lastly, a ground plane is also rendered to allow for easy orientation in 

the scene. Using the configuration, the user can specify which objects are to be 

rendered. 

 

The user may only directly interact with the software if the scene is rendered. There, 

they are able to, among other things, manipulate the camera used for rendering or print 

output information corresponding to specific object localizations. A full list of user 

interactions with the rendered scene can be found in Attachment C.
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6 Evaluation 

This chapter evaluates the general performance of the Real-Time Object Localizer 

(RTL) using the two supported FPD configurations, i.e. the configurations in which 

either one or four Fundamental Points per detected object are provided. In particular, 

in Chapter 6.1 the triangulation approach, which has been elaborated in Chapter 4.6.1, 

is being used for evaluation while Chapter 6.2 evaluates the RTL using the ellipsoid 

approximation presented in Chapter 4.6.2. For both of these object localization 

approaches, the integrated localization algorithms are analyzed and evaluated in 

regards to accuracy and computation cost.  

 

For this, a number of input datasets have been generated in different environments. 

The outputs of the RTL generated using these datasets, i.e. the objects’ localizations, 

are then compared to the ground-truth information of these objects. In particular, three 

different environments have been used to generate the input datasets. Firstly, input 

datasets were produced in a synthetically generated environment. Furthermore, the 

SITL simulation of APOLI was utilized to simulate the second environment. Finally, the 

RTL is also evaluated on input datasets generated in a real-world outdoor environment 

using the UAV of the Indoor Flight Center, or IFC, of the APOLI project. 

 

For the evaluation of the computational performance, the number of inputs the RTL is 

able to process per second using the corresponding localization algorithm is measured 

on two different systems. For this, a desktop workstation as well as an ODROID-XU4, 

which is also used in the APOLI project, have been used. The hardware components 

integrated into the ODROID-XU4 have already been described in Chapter 2.3.1. The 

desktop workstation, on the other hand, features an AMD Ryzen™ 9 3900X processor. 

This is a twelve core CPU with a base clock speed of 3.8GHz. In addition to this, the 

desktop workstation possesses 16GB of main memory. It should be mentioned that 

the software implementation of the RTL only supports multi-threading for limited areas. 

In particular, these areas are the generation of the ground-truth evaluation information 

of the RTL’s output data as well as the scene rendering. Because both of these 

procedures are not executed for the evaluation of the computational performance, the 

RTL only uses a single core of the CPU for this evaluation. 

6.1 Triangulation 

In this chapter, the RTL which uses the triangulation approach is evaluated. Therefore, 

the FPD configuration in which one Fundamental Point per detected object is being 
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provided in the input data is used. The following subchapters evaluate the RTL using 

the triangulation approach in the different environments used to gather the datasets. 

 

In the following, the RTL used the Spherical Input Filter as presented in Chapter 4.5.2. 

The number of regions generated by it was defined differently for the different 

environments and is, therefore, specified in their corresponding chapter. However, the 

maximum number of Input Frames that could be selected by the Spherical Input Filter 

was always set to 20. Furthermore, for the L∞  Triangulation and the Hybrid 

Triangulation, a total of 𝑜 = 100 line searches in random directions were performed for 

each localization and the constant which defines the maximum distance between the 

parameter of the found minimum of each line and the real minimum’s parameter was 

set to 𝑆 = 0.01. 

 

6.1.1 Synthetic Environment 

Object to localize

Viewpoint

I1

I2

I3

I4

 
Figure 6.1: Top-Down View of the Synthetical Environment. 

 

The first environment in which the RTL has been evaluated in is a synthetically 

generated environment. A top-down view on it can be seen in Figure 6.1. There, the 

object that is to be localized was placed at a fixed position and is colored red. For the 

generation of the input data, four different viewpoints located around the object have 

been used. These viewpoints are labelled I1, I2, I3 and I4 in the figure. This is also the 

order in which the input data was generated. After I4 was reached, the input sequence 

started anew until a total of 1000 inputs were generated, i.e. each viewpoint has been 

used to generate input 250 times. The location of the viewpoints were specified as 

𝒄𝑰𝟏 ≔ (0,0,0)𝑇 , 𝒄𝑰 ≔ (10,40,0)𝑇 , 𝒄𝑰 ≔ (20,0,0)𝑇  and 𝒄𝑰 ≔ (10,−40,0)𝑇  in the UAV 

Local NED coordinate system. Further, the position of the object was 𝒄 ≔ (10,0,0)𝑇 

while its principle axes were defined as 𝒑𝟏 ≔ (2,0,0)𝑇 , 𝒑 ≔ (0,5,0)𝑇  and 𝒑 ≔

(0,0,3)𝑇. Therefore, two of the viewpoints, i.e. I1 and I3, have a distance of ten meters 

to the object’s center while I2 and I4 are located 40 meters away from the object. Each 

input’s virtual camera was placed at the same position as the viewpoint itself while 
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pointing directly at the object’s center. In the figure, the view direction of each camera 

is visualized as a blue arrow. Lastly, the resolution of the virtual camera image has 

been specified as 1000 × 1000 with a field of view of 80°.  

 

This synthetical environment has further been used to generate a number of datasets 

on which different kinds of artificial noise is applied. More specifically, for each kind of 

noise seven datasets have been generated for evaluation as the noise as well as the 

L∞  Triangulation and, therefore, the Hybrid Triangulation themselves are non-

deterministic. An evaluation for the noiseless scenario, i.e. using the input dataset 

directly, is not included in this thesis as all of the triangulation algorithms integrated 

into the RTL generated optimal solutions. Furthermore, as only four distinct viewpoints 

are used, the number of regions generated by the Spherical Input Filter was set to 

2000 to allow input data noise to switch into neighboring regions consistently. 

 

6.1.1.1 Fundamental Point Noise 

Triangulation Algorithm Avg. RMSE [m] 

Avg. 95th 

Percentile [m] 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Generalized Midpoint ~0.37 ~0.61 ~46,052.63 12,500 

L∞ ~0.48 ~0.85 ~616.36 ~180.66 

Hybrid ~0.39 ~0.69 ~615.76 ~180.24 

Table 6.1: Evaluation Data for Input Datasets generated using the Synthetic Environment with 
Fundamental Point Noise. 

 
Figure 6.2: Reverse Percentile of Ground-Truth Position Errors for Input Datasets generated using the 

Synthetic Environment with Fundamental Point Noise. 

 

The first evaluation is performed on datasets on which noise has been applied to the 

positions of the Fundamental Points. These Fundamental Points, which are for the 

noiseless scenario always located at (500,500)𝑇, are displaced in a random direction 

by a random distance. More specifically, the displacement distance is generated using 

a Gaussian distribution with a mean of 𝜇 = 0 and a standard deviation of 𝜎 = 16. Here, 
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a negative displacement factor simply means that the displacement is performed in 

negative direction. Some of the evaluation results can be seen in Table 6.1. In 

particular, the table lists the average root mean square error (RMSE) as well as the 

average 95th percentile of each of the triangulation algorithms in respect to the ground-

truth position of the object. Given a vector of errors 𝒆 ≔ (𝑒1, … , 𝑒𝑛)
𝑇 ∈ ℝ𝑛, the RMSE 

is defined as  

 RMSE(𝒆) ≔ √
1

𝑛
∑𝑒𝑙

𝑛

𝑙=1

.  

Therefore, larger errors 𝑒𝑙  have a disproportionally large effect on the RMSE. 

Furthermore, Figure 6.2 plots the so-called reverse percentile against certain ground-

truth position errors. Here, this reverse percentile is simply defined as one minus the 

percentile.  

 

The results indicate that the Generalized Midpoint Triangulation performs the best 

even if noise is applied on the Fundamental Points. Not only was its average RMSE 

and average 95th percentile the lowest, but the distribution of errors shown in Figure 

6.2 demonstrate that it generated the least number of localizations with large errors to 

the ground-truth position. The L∞  Triangulation generated worse results than the 

Generalized Midpoint Triangulation because it is, as stated in Chapter 3.2.5, heavily 

afflicted by outliers in the input data. However, the RTL does not perform any removal 

of outliers and, therefore, these outliers in the input data are used for the triangulation. 

Furthermore, as long as the Input Filtering is not being provided with new input 

corresponding to the same region as the outliers, such outliers are stored in the Input 

Frame database indefinitely and potentially selected for future triangulations. In fact, 

another disadvantage of the Spherical Input Filter is that the ratio between the number 

of outlying and non-outlying Input Frames in the Input Frame database is 

disproportional to the actual ratio between outlying and non-outlying inputs given to the 

Input Filtering step. Regarding the Hybrid Triangulation, while it generated more 

accurate object positions than the L∞  Triangulation, it was still outclassed by the 

Generalized Midpoint Triangulation for a majority of datasets. In particular, even 

though Figure 6.2 indicates that the Hybrid Triangulation is able to generate a greater 

number of localization results with a low error to the ground-truth position, it also 

generated a greater number of results with high errors. In fact, the Hybrid Triangulation 

only generated the overall most accurate localizations for a handful of datasets 

throughout the whole evaluation. The reasons for this lie in the non-trivial minimization 

problem of the Hybrid Triangulation as elaborated in detail in Chapter 4.6.1.3. 
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Figure 6.3: Distance to Ground-Truth Position for one Input Dataset of the Synthetic Environment with 

Fundamental Point Noise. 

 

The impact of outliers in the input data is also illustrated in Figure 6.3 in which the 

distance between the ground-truth object position and the position of the localized 

object is plotted for all considered triangulation algorithms on the same noise afflicted 

input data. There, it can be seen that, for example, around the 140th input data provided 

to the RTL was an outlier. This outlier then greatly influenced the triangulation result 

for the rest of the localization. In cases for which the ground-truth error of the L∞ or the 

Hybrid Triangulation decreased, the RTL was either provided with outliers that negated 

the effect of previous outliers or the outliers’ Input Frames were not selected by the 

Spherical Input Filter. In general, it can also be seen that the Generalized Midpoint 

Triangulation generates localization results which were much more stable than the 

results of the L∞ Triangulation or the Hybrid Triangulation. In addition to this, Figure 

6.3 also illustrates that for all three triangulation algorithms, the accuracy is low at the 

beginning. This is because the implementation of the RTL begins to triangulate as soon 

as possible, i.e. as soon as there are two Input Frames. By doing so, however, noise 

influences the localization results greatly as it cannot be smoothed out effectively. 

These inaccuracies in the beginning of datasets can easily be avoided by determine a 

higher threshold than two for the required number of Input Frames. All of these 

observations apply to all of the seven input datasets. 

 

Lastly, Table 6.1 also lists computational performance criteria for all three triangulation 

algorithms, i.e. the number of inputs the RTL is able to process per second, for the two 

reference systems. It can be seen that the Generalized Midpoint Triangulation is, as a 

closed-form solution was being provided, by far the most efficient algorithm. The L∞ 

and Hybrid Triangulation performed 100 line searches each which themselves are, as 

described in Chapter 4.6.1.2, implemented iteratively. Therefore, to improve the 

performance of these algorithms, the number of line searches 𝑜  or the maximum 
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distance 𝑆  have to be adjusted. This, however, will also negatively influence the 

accuracy. 

 

6.1.1.2 Limited Fundamental Point Noise 

Triangulation Algorithm Avg. RMSE [m] 

Avg. 95th 

Percentile [m] 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Generalized Midpoint ~0.33 ~0.53 ~46,979.87 ~12,681.16 

L∞ ~0.29 ~0.55 ~697.21 ~205.16 

Hybrid ~0.3 ~0.52 ~697.14 ~204.59 

Table 6.2: Evaluation Data for Input Datasets generated using the Synthetic Environment with Limited 
Fundamental Point Noise. 

 
Figure 6.4: Reverse Percentile of Ground-Truth Position Errors for Input Datasets generated using the 

Synthetic Environment with Limited Fundamental Point Noise. 

 

For the next evaluation, another set of datasets on which artificial noise was applied to 

the Fundamental Points’ positions, has been generated. Again, a Gaussian distribution 

with 𝜇 = 0 and 𝜎 = 16 was used for this. However, the magnitude of the artificial noise 

was limited to 32 = 2𝜎 meaning that if the displacement distance generated using the 

Gaussian distribution has a greater distance to 𝜇 = 0  than 32 , the value was 

rerandomized. By limiting the noise applied to the Fundamental Points, outliers were 

effectively removed from the datasets. Some of the evaluation’s results can be seen in 

Table 6.2 and Figure 6.4. As expected, the L∞  and Hybrid Triangulation now 

outperform the Generalized Midpoint Triangulation in regards to accuracy. The reverse 

percentile clearly indicates this as the Generalized Midpoint Triangulation produced a 

larger percentile of object locations with ground-truth errors between 0.05𝑚 and 0.5𝑚. 

In regards to ground-truth errors larger than 0.5𝑚 , the triangulation algorithms 

performed nearly identical. 
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6.1.1.3 Limited UAV Position Noise 

Triangulation Algorithm Avg. RMSE [m] 

Avg. 95th 

Percentile [m] 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Generalized Midpoint ~0.58 ~0.98 ~47,297.3 ~13,133.21 

L∞ ~0.72 ~1.25 ~2,324.04 ~664.01 

Hybrid ~0.67 ~1.15 ~2,322.5 ~663.82 

Table 6.3: Evaluation Data for Input Datasets generated using the Synthetic Environment with Limited 
UAV Position Noise. 

 
Figure 6.5: Reverse Percentile of Ground-Truth Position Errors for Input Datasets generated using the 

Synthetic Environment with Limited UAV Position Noise. 

 

The results of the third evaluation performed using the synthetic environment are 

illustrated in Table 6.3 as well as Figure 6.5. For this evaluation, artificial noise was not 

applied on the Fundamental Points’ positions but instead on the positions of the UAV 

themselves displacing them in a random direction. Once more, the magnitude of the 

translation was generated using a Gaussian distribution with 𝜇 = 0𝑚 and 𝜎 = 1𝑚. To 

avoid generating outliers, the displacement distance was limited to 2𝑚 = 2𝜎 . 

Therefore, the noise added to the UAV’s positions were of high magnitude as a 2𝑚 

displacement is unrealistically high for real-world applications using reasonable GNSS 

sensors. It can be seen that the Generalized Midpoint Triangulation provides the most 

accurate triangulation results out of all three algorithms integrated into the RTL. This 

is also to be expected as the noise is directly applied to the cameras’ positions, i.e. the 

start points of the rays or rather the lines, in the three-dimensional Euclidean space. 

Because the Generalized Midpoint Triangulation fully operates on this exact space, it 

is, theoretically, able to smoothen out the applied noise perfectly. The L∞ Triangulation 

and Hybrid Triangulation, on the other hand, operate on the two-dimensional image 

planes and use reprojections to generate their localization results. When doing so, the 

applied noise does not influence the localization linearly like it does if the Generalized 

Midpoint Triangulation is used. For these reasons and also because the Generalized 

Midpoint Triangulation provides a closed-form solution, it is the triangulation algorithm 

of choice when dealing with input on which the cameras’ positions have been afflicted 

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

R
ev

er
se

 P
er

ce
n

ti
le

Error to GT Position [m]

Midpoint

L-Infinity

Hybrid



82 
 

by noise. It should be noted that, because noise was added to the UAV positions, the 

view directions of one viewpoint were always the same. Therefore, the same viewpoint 

was associated with the same region of the Spherical Input Filter at all times and the 

Object Localization step of the RTL was provided with the four most recent Input 

Frames. For this reason, the L∞  and Hybrid Triangulation were not influenced by 

outliers as much as such outliers were overwritten with new input data as soon as the 

same viewpoint was used. 

 

When comparing the computation performance of each triangulation algorithm with 

their corresponding costs in Table 6.1, it can be seen that while the RTL using the L∞ 

and Hybrid Triangulation generated their triangulation results significantly faster. For 

the Generalized Midpoint Triangulation this performance gain was neglectable. The 

overall cause of the increased performance is the fact that the number of Input Frames 

selected is limited to four. Before, the selected Input Frames easily reached twenty, 

i.e. the maximum input size of the Object Localization step. As the Generalized 

Midpoint Triangulation can be solved extremely efficiently, the decreased number of 

Input Frames only had a small influence on the overall performance. On the other hand, 

solving the L∞ and Hybrid Triangulation has high computational costs and, therefore, 

the reduced input size drastically improved their performance. 

 

6.1.1.4 Limited Fundamental Point and UAV Position Noise 

Triangulation Algorithm Avg. RMSE [m] 

Avg. 95th 

Percentile [m] 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Generalized Midpoint ~0.44 ~0.73 ~46,357.62 ~12,567.32 

L∞ ~1.38 ~2.63 ~698.18 ~203.87 

Hybrid ~0.49 ~0.83 ~696.79 ~203.48 

Table 6.4: Evaluation Data for Input Datasets generated using the Synthetic Environment with Limited 
Fundamental Point and UAV Position Noise. 

 
Figure 6.6: Reverse Percentile of Ground-Truth Position Errors for Input Datasets generated using the 

Synthetic Environment with Limited Fundamental Point and UAV Position Noise. 
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Table 6.4 and Figure 6.6 illustrate the result of the last evaluation performed on the 

synthetic environment. For this evaluation, both kinds of noise, i.e. limited noise on the 

Fundamental Points and limited noise on the UAV’s positions, were used to generate 

the input datasets. The results clearly indicate that the Generalized Midpoint 

Triangulation performs the best when faced with such datasets. The combination of 

both kinds of noises produced a higher number of outliers in the input data which 

influenced the L∞  Triangulation drastically. Because the Hybrid Triangulation 

occasionally selected localization results of the L∞ Triangulation, i.e. those results with 

a lower L2 distance, it did not generate more accurate results than the Generalized 

Midpoint Triangulation. 

 

6.1.2 Simulation Environment 

First Object to localize

Second Object to localize

Starting Point

Viewpoint

SI1

I2 I3

I4

 
(a) 

S

I2
I3

I4

I1

 
(b) 

Figure 6.7: Top-Down View (a) and Diagonal View (b) of the Simulation Environment. 
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The next environment in which the RTL has been evaluated in is an environment 

simulated in the SITL simulation of the APOLI project. A top-down as well as a diagonal 

view of it can be seen in Figure 6.7. The environment consisted of a power pole as well 

as two cylindrical objects that were to be localized. These objects, in the figure colored 

red and green respectively, were placed at two of the power pole’s insulators while 

their bases were parallel to the ground. Therefore, this environment represents a 

concrete test environment for the RTL in the APOLI project. While the red cylinder’s 

center 𝒄 , its radius 𝑟𝑅 and its height ℎ𝑅 were defined as 𝒄 ≔ (10.04,−3.49,−15.92), 

𝑟𝑅 ≔ 0.5 and ℎ𝑅 ≔ 1.03, the corresponding parameters of the green cylinder were 

given as 𝒄𝑮 ≔ (10.04,3.42, −16.37) , 𝑟𝐺 ≔ 0.13  as well as ℎ𝐺 ≔ 0.63 . Again, these 

values are in the UAV Local NED coordinate system. Figure 6.7 also illustrates the 

flight path the simulated UAV had taken in order to gather the input data. Note that, 

while the input data of the synthetic environment was generated using discrete 

viewpoints, the simulation environment’s flight path was continuous. This flight path 

started at the point 𝒄𝑺 ≔ (0,0, −16). The UAV then traversed the viewpoints 𝒄𝑰𝟏 ≔

(0,−9.75, −16) , 𝒄𝑰 ≔ (20,−9.75,−16) , 𝒄𝑰 ≔ (20, 9.75, −16)  and 𝒄𝑰 ≔

(20, 9.75, −16)  in this order. After reaching the viewpoint I4, the four-viewpoint 

sequence was repeated once. Once the UAV reached I4 a second time, it returned to 

the starting position S which concluded the flight path. 

 

As this environment was used to evaluate the RTL in the context of the APOLI project, 

its integration into the project was used to gather input. Therefore, the MAL was used 

to provide all of the UAV’s flight data. However, as there is currently no implementation 

of the FPD, the interface of the SITL simulation was utilized to generate the object 

detection input. More specifically, a virtual camera mounted on the simulated UAV with 

a resolution of 1280 × 720 and a field of view of 90° was utilized to retrieve images 

from the simulation. This camera was pointed at (10,0, −16), i.e. the power pole, at all 

times. Simple color-based object detection algorithms were then applied to generate 

bounding rectangles around the detected objects which consequently resulted in the 

Fundamental Points. Lastly, the gimbal was set up to keep a roll angle of 0° at all times, 

i.e. keep the camera aligned to the horizon. 

 

The simulation environment was used to generate seven input datasets on which the 

following evaluation has been performed. To weight all of the datasets equally in the 

evaluation, each of them contained exactly 4500 inputs. Furthermore, the number of 

regions generated by the Spherical Input Filter was set to 100. 
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Triangulation Algorithm 

Red Object Green Object 

Avg. RMSE [m] 

Avg. 95th 

Percentile [m] Avg. RMSE [m] 

Avg. 95th 

Percentile [m] 

Generalized Midpoint ~0.19 ~0.29 ~0.22 ~0.35 

L∞ ~0.24 ~0.34 ~0.25 ~0.4 

Hybrid ~0.21 ~0.32 ~0.36 ~0.36 

Table 6.5: Evaluation Data for Input Datasets generated using the Simulation Environment. 

 
(a) 

 
(b) 

Figure 6.8: Reverse Percentile of Ground-Truth Position Errors of Red (a) and Green (b) Object for Input 
Datasets generated using the Simulation Environment. 

 

Some of the results of the evaluation are illustrated in Table 6.5 as well as Figure 6.8. 

As can be seen, the RTL is able to localize both objects reasonably accurate with all 

triangulation algorithms. This is also to be expected as the MAL provided UAV flight 

data only afflicted by small noise. It should be noted that the timestamps of the input 

received from the MAL were not equal to one another and, therefore, input processing, 

as described in Chapter 4.3, had to be applied. However, further noise comes from the 

generation of the object detection input. In particular, an image received from the 

simulation was used for this. While the detection of object pixels worked perfectly, the 

digitalization of the image lead to noise in the precise determination of the Fundamental 

Points’ positions. As the green object was smaller than the red one, its detection was 
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more affected by this issue. In addition to this, the object detection was not able to 

gather valid input if the corresponding object that is to be detected was occluded by 

another object, i.e. the other object or the power pole. In those scenarios, the objects’ 

centers where determined incorrectly. Overall, the results indicate that the Generalized 

Midpoint Triangulation provides the most accurate object localization even if the 

occlusion issue is omitted. 

 

6.1.3 Outdoor Environment 

10m

5
m

First Object to localize

Starting Point

Viewpoint

S I1I2

 
Figure 6.9: Simplified Top-Down View of the Outdoor Environment. The visualized Red Object is larger 

than its Real-World Correspondence. 

 

The final environment utilized for the evaluation of the RTL is a real-world outdoor 

environment for which the UAV of the APOLI’s IFC was used. A simplified top-down 

view of this environment is illustrated in Figure 6.9. In particular, the figure shows the 

red object that was to be localized as well as the flight path the UAV took. The object, 

which was placed on a tripod, was a cylinder with a radius 𝑟 = 0.06𝑚 and a height of 

ℎ = 0.5𝑚. Furthermore, it was oriented so its base was parallel to the ground. Because 

the whole setup itself was not aligned to the real north direction, i.e. there was a 156.2° 

offset, for simplicity reasons the following coordinates are given in respect to a 

coordinate system based on the UAV Local NED coordinate system being rotated to 

align with a different north direction. In particular, north is then located at the top of 

Figure 6.9 while east is on its right side. The red object’s center was defined as 𝒄′ ≔

(5𝑚, 0𝑚,−1.75𝑚). Again, the flight path of the UAV, which is also visualized in Figure 

6.9, is continuous. It starts at the point 𝒄𝑺
′ ≔ (0𝑚, 0𝑚,−1.7𝑚). The UAV began by 

relocating to the first viewpoint being located at 𝒄𝑰𝟏
′ ≔ (0𝑚, 5𝑚,−1.7𝑚). Afterwards, it 

moved to 𝒄𝑰 
′ ≔ (0𝑚,−5𝑚,−1.7𝑚). After reaching the viewpoint I2, the UAV completed 
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the flight path by returning to the starting position S. As a consequence, the distance 

between the UAV and the red object to localize ranged from 5𝑚 to approximately 7𝑚. 

 

As the UAV of the IFC was used to gather the input datasets in this environment, the 

RTL’s provisionally integration into the APOLI project was, once again, utilized. In 

particular, while the MAL directly provided the RTL with the flight data of the UAV, the 

object detection input was generated by the RTL itself. For this, camera images shot 

from a camera mounted on the UAV passed through the same color-based object 

detection algorithm as used in the simulation environment. The used camera was a 

Logitech® HD Pro Webcam C920 [56]. This camera is capable of capturing 15 

megapixels RGB images at a resolution of 1920 × 1080 and at a framerate of up to 

30Hz. However, for the input datasets generated in the outdoor environment, the 

camera images were downscaled to a resolution of 640 × 480  to achieve better 

runtimes. In addition to this, images can be retrieved from the C920 camera using a 

USB 2 interface. The camera was directly mounted on the UAV without the use of a 

gimbal. In particular, the camera’s orientation matched the UAV’s orientation at all 

times. Therefore, the gimbal orientation input simply matched the UAV’s orientation. 

Finally, the UAV itself pointed at the red object throughout its flight. 

 

As with the previous environments, seven input datasets were generated for 

evaluation. All of these datasets were composed of exactly 250 inputs. As only a limited 

variety of direction vectors between the UAV’s camera and the red object to localize 

could be achieved using the described flight path, the number of regions generated by 

the Spherical Input Filter was set to 800. 

 

Triangulation Algorithm Avg. RMSE [m] 

Avg. 95th 

Percentile [m] 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Generalized Midpoint ~0.53 ~0.64 ~29,166.67 ~12,733.72 

L∞ ~0.69 ~1.28 ~811.69 ~243.43 

Hybrid ~0.51 ~0.68 ~799.45 ~241.85 

Table 6.6: Evaluation Data for Input Datasets generated using the Outdoor Environment. 
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Figure 6.10: Reverse Percentile of Ground-Truth Position Errors for Input Datasets generated using the 

Outdoor Environment. 

 

Some of the evaluation’s results can be seen in Table 6.6 and Figure 6.10. The results 

demonstrate that the RTL is able to localize the red object reasonably well using any 

of the triangulation algorithms even when using real-world sensors to determine the 

input data. Obviously, such sensors are always subject to some kind of noise. As 

before, while object detection algorithm performed nearly perfectly, the camera 

image’s digitalization and, subsequently, its downscaling lead to additional noise in the 

position of the Fundamental Points. Moreover, the influence of noise is further 

amplified if similar view directions are used for the triangulation. The flight path, 

however, only covers a 90° angle in front of the object. If the flight path is extended to 

cover more view directions, the accuracy of all triangulation algorithms is improved. In 

particular, the position errors resulted for the most part from inaccurate localizations in 

the north-south direction in Figure 6.9. Regarding the specific triangulation algorithms, 

it can be concluded that the L∞ Triangulation performed the worst out of the three 

algorithms. Again, this is caused by its susceptibility for outliers in the input dataset. 

The Generalized Midpoint Triangulation and the Hybrid Triangulation, on the other 

hand, performed nearly identical for most of the input datasets. In particular, while the 

Generalized Midpoint Triangulation performed slightly better than the Hybrid 

Triangulation for six of the seven input datasets, there was one dataset for which the 

Hybrid Triangulation generated the best object localizations. However, the Hybrid 

Triangulation only outperformed the Generalized Midpoint Triangulation at the 

beginning of this input dataset where just a few Input Frames were utilized. Overall, 

the Generalized Midpoint Triangulation should be the preferred triangulation algorithm 

because of its robustness to outliers in the input as well as its low computational cost. 

6.2 Ellipsoid Approximation 

This chapter evaluates the RTL using all integrated ellipsoid approximation algorithms. 

For this, the FPD configuration providing four Fundamental Points per detected object 
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in the input data was being used. Because the ellipsoid approximation approach does 

not only localize objects, i.e. estimates their positions, but also approximates their 

shapes, the overlap between the localized objects’ ellipsoids and their ground-truth 

ellipsoid is evaluated in addition to their ground-truth position errors. More specifically, 

to separate the error in the position from the shape error, the translated overlap as 

introduced in Chapter 4.7 is used. All of the ellipsoid approximation algorithms may 

also fail to approximate a valid ellipsoid with the given Input Frames. Therefore, the 

failure rate at which the localization failed to generate valid ellipsoids instead of generic 

quadrics is also evaluated. 

 

To allow a direct comparison between the triangulation’s and the ellipsoid 

approximation’s evaluations, the same fundamental constants have been used. 

Therefore, the Spherical Input Filter with the corresponding number of regions in 

respect to the environment as well as a maximum selection size of 20 Input Frames 

was utilized. As the overlap is implemented via sampling, a value had to be chosen for 

the number of samplings performed. In the following, 250 samples were performed in 

each dimension leading to a total of 15,625,000 sample points. 

 

6.2.1 Synthetic Environment 

The first environment used for the evaluation of the ellipsoid approximation algorithms 

is the synthetic environment which has been described in detail in Chapter 6.1.1. The 

following chapters present evaluations for the different kinds of noise applied to the 

dataset of the synthetic environment. In the scenario in which artificial noise was 

applied to the positions of the Fundamental Points, the upper-left and lower-right 

Fundamental Points were modified. Consequently, the positions of the upper-right and 

lower-left Fundamental Points were adjusted to form an axis-aligned rectangle. Again, 

the scenario in which no noise has been applied to the input dataset is neglected as 

all three integrated ellipsoid approximation algorithms provide optimal object 

localization results for such noiseless input. 

 

6.2.1.1 Fundamental Point Noise 

Ellipsoid 

Approximation 

Algorithm 

Avg. 

Failure 

Rate 

Avg. Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Noiseless ~99.61% ~9.53 ~60.7% ~7,927.52 ~2,119.29 

LfD ~30.12% ~3.26 ~53.09% ~4,164.19 ~1,097.52 

LfDC ~30.13% ~3.25 ~53.08% ~3,695.88 ~968.05 

Table 6.7: Evaluation Data for Input Datasets generated using the Synthetic Environment with 
Fundamental Point Noise. 
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(a) 

 
(b) 

Figure 6.11: Reverse Percentile of Ground-Truth Position Error (a) and Translated Overlap (b) for Input 
Datasets generated using the Synthetic Environment with Fundamental Point Noise. 

 

For the first evaluation, artificial noise was applied to the position of the Fundamental 

Points by displacing them in a random direction and with a distance generated using a 

Gaussian distribution with 𝜇 = 0 and 𝜎 = 16. Some of the evaluation results can be 

seen in Table 6.7 and Figure 6.11. Firstly, the Noiseless Ellipsoid Approximation was 

not feasible for this kind of input at all as it failed to approximate valid ellipsoids nearly 

at all times. More specifically, it was only able to generate valid ellipsoids at the 

beginning of each dataset for a few inputs, i.e. when the Input Frame dataset was 

barely filled with noise afflicted Input Frames. After an Input Frame with small noise 

was added to the Input Frame dataset, the Noiseless Ellipsoid Approximation never 

succeeded to localize the object again. Therefore, it cannot be used when faced with 

such input data as inaccurate approximations of ellipsoids then remain in the 

environment map for the rest of the RTL’s lifespan. 

 

The LfD and LfDC Ellipsoid Approximation, on the other hand, failed to generate valid 

ellipsoids only at a rate of ~30%. In particular, their success range spanned the entirety 

of each input dataset making them much more feasible. Accuracy-wise, the LfDC 
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Ellipsoid Approximation only outperformed the LfD Ellipsoid Approximation marginally, 

both in terms of error in the position of the approximated ellipsoids as well as their 

translated overlap error. This is, in fact, true for all further evaluations as well. When 

comparing the results with the corresponding triangulation results in Chapter 6.1.1.1, 

it can be seen that the ellipsoid approximation algorithms generated way larger ground-

truth position errors than the triangulation approach. Therefore, if only the position is 

of interest, the triangulation approach should be preferred. This is also true for the 

majority of evaluations. The accuracy of the shape of the approximated ellipsoid has 

been measured using the translated overlap. The results indicate a medium accuracy 

meaning that while it may be sufficient for some real-world applications, other systems 

might require more accurate ellipsoids. The exact shape of each approximated 

ellipsoids also changed frequently over the RTL’s lifespan. 

 

Lastly, while the LfDC Ellipsoid Approximation only leads to a small performance 

overhead in respect to the LfD Ellipsoid Approximation, the nearly identical accuracies 

of these algorithms lead to the conclusion that the LfD Ellipsoid Approximation should 

be the algorithm of choice on this particular input data. 

 

6.2.1.2 Limited Fundamental Point Noise 

Ellipsoid 

Approximation 

Algorithm 

Avg. 

Failure 

Rate 

Avg. Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Noiseless ~99.54% ~7.62 ~51.9% ~9,283.82 ~2,539.91 

LfD ~43.09% ~2.6 ~54,87% ~4,954 ~1,351.61 

LfDC ~43.11% ~2.6 ~54.91% ~4,450.1 ~1,205.44 

Table 6.8: Evaluation Data for Input Datasets generated using the Synthetic Environment with Limited 
Fundamental Point Noise. 
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(a) 

 
(b) 

Figure 6.12: Reverse Percentile of Ground-Truth Position Error (a) and Translated Overlap (b) for Input 
Datasets generated using the Synthetic Environment with Limited Fundamental Point Noise. 

 

For the second evaluation, the Fundamental Point Noise had been limited to a 

maximum displacement distance of 32 = 2𝜎  which removed potential outliers. The 

results are illustrated in Table 6.8 and Figure 6.12. It can be seen that the Noiseless 

Ellipsoid Approximation still failed to generate valid ellipsoids at a very high rate making 

it unusable even if the Fundamental Point noise is limited. That being said, by removing 

the outliers the overall accuracy of the ellipsoid approximation algorithms improved in 

regards to the positional error. Once more, the LfD and the LfDC Ellipsoid 

Approximations generated ellipsoids of nearly identical accuracy and, also, the 

positional error was greater than the positional error using the triangulation approach 

as seen in Chapter 6.1.1.2. 
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6.2.1.3 Limited UAV Position Noise 

Ellipsoid 

Approximation 

Algorithm 

Avg. 

Failure 

Rate 

Avg. Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Noiseless ~46.74% ~0.7 ~46.85% ~19,178.08 ~5,902.19 

LfD ~61.05% ~0.51 ~47.51% ~12,006.86 ~3,769.52 

LfDC ~61.05% ~0.51 ~47.52% ~11,475.41 ~3,569.61 

Table 6.9: Evaluation Data for Input Datasets generated using the Synthetic Environment with Limited 
UAV Position Noise. 

 
(a) 

 
(b) 

Figure 6.13: Reverse Percentile of Ground-Truth Position Error (a) and Translated Overlap (b) for Input 
Datasets generated using the Synthetic Environment with Limited UAV Position Noise. 

 

The results of the next evaluation for which limited noise was added to the UAV’s 

positions instead of the positions of the Fundamental Point are illustrated in Table 6.9 

and Figure 6.13. Again, a Gaussian distribution with 𝜇 = 0𝑚, 𝜎 = 1𝑚 and a maximum 

displacement distance of 2𝑚 = 2𝜎  was used to generate the artificial noise. The 

evaluation results show that the Noiseless Ellipsoid Approximation now only failed at 

a rate of ~47%. This is because the Spherical Input Filter’s database only consisted of 

a maximum of four Input Frames as the view directions of one viewpoint always stayed 

the same regardless of the noise. Therefore, Input Frames of the same viewpoint 
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constantly overwrote one another and noise afflicted input which caused the Noiseless 

Ellipsoid Approximation to fail before now influenced at most four localizations. That 

being said, the Noiseless Ellipsoid Approximation was yet again outperformed by the 

LfD and the LfDC Ellipsoid Approximation regarding the positional error. Shape-wise, 

however, it is not clear which of these algorithms performed the best. While the 

Noiseless Ellipsoid Approximation generated ellipsoids with the lowest translated 

overlap RMSE on average, the distribution of the translated overlap must also be 

considered. This distribution is illustrated in Figure 6.13(b). There, it can be seen that 

the Noiseless Ellipsoid Approximation estimated a lower percentile of ellipsoids with 

large shape errors but it also produced a lower number of approximated ellipsoids with 

low translated overlap errors. It is worth mentioning that with this kind of artificial noise, 

the ellipsoid approximation approach generated more accurate object positions than 

the triangulation. That being said, whether this holds true in other environments heavily 

depends on the exact environment. 

 

6.2.1.4 Limited Fundamental Point and UAV Position Noise 

Ellipsoid 

Approximation 

Algorithm 

Avg. 

Failure 

Rate 

Avg. Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Noiseless ~15.5% ~313.59 ~99.09% ~9,271.52 ~2,530.73 

LfD ~58.19% ~3.26 ~55.8% ~4,950.5 ~1,345.9 

LfDC ~58.25% ~3.26 ~55.45% ~4,396.99 ~1,200.48 

Table 6.10: Evaluation Data for Input Datasets generated using the Synthetic Environment with Limited 
Fundamental Point and UAV Position Noise. 
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(a) 

 
(b) 

Figure 6.14: Reverse Percentile of Ground-Truth Position Error (a) and Translated Overlap (b) for Input 
Datasets generated using the Synthetic Environment with Limited Fundamental Point and UAV Position 

Noise. 

 

The results of the last evaluation using the synthetic environment can be seen in Table 

6.10 and Figure 6.14. Here, limited artificial noise was applied to the Fundamental 

Point positions as well as the positions of the UAV. The results demonstrate that, while 

the Noiseless Ellipsoid Approximation was able to approximate valid ellipsoids at a rate 

of ~84.5% , its localizations were grossly inaccurate. Not only did the Noiseless 

Ellipsoid Approximation generate ellipsoids with an average positional error of 

~313.59𝑚, these ellipsoids were, for the most part, way too large. On the other hand, 

the LfD and the LfDC Ellipsoid Approximation approximated reasonable accurate 

ellipsoids. 

 

6.2.2 Simulation Environment 

The second environment utilized to evaluate the RTL using the ellipsoid approximation 

approach is the simulation environment. It has been elaborated in detail in Chapter 

6.1.2. This environment contained two objects that were to be localized, a larger red 

one as well as a smaller green one. 
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Ellipsoid 

Approximation 

Algorithm 

Red object Green Object 

Avg. 

Failure 

Rate 

Avg. 

Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Avg. 

Failure 

Rate 

Avg. 

Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Noiseless ~85.57% ~2.74 ~77.86% ~66.98% ~4,267.89 ~99.78% 

LfD ~3.55% ~0.16 ~20.16% ~58.05% ~0.82 ~92.33% 

LfDC ~3.54% ~0.16 ~20.12% ~58.05% ~0.8 ~92.38% 

Table 6.11: Evaluation Data for Input Datasets generated using the Simulation Environment. 

 
(a) 

 
(b) 

Figure 6.15: Reverse Percentile of Ground-Truth Position Error (a) and Translated Overlap (b) for Input 
Datasets generated using the Simulation Environment. 

 

The evaluation’s results are illustrated in Table 6.11 and Figure 6.15. They indicate 

that the Noiseless Ellipsoid Approximation was not feasible for the input datasets of 

this environment. Not only did the generated quadrics more often than not represent 

invalid ellipsoids, the accuracy of valid ellipsoids was not satisfying as well. Regarding 
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the red object in particular, the results show that the approximation of the object’s 

ellipsoid was very accurate using the LfD and the LfDC Ellipsoid Approximation. These 

algorithms even generated ellipsoids with an, overall, lower positional error than the 

triangulation approach. In addition to this, the approximated ellipsoids also had high 

translated overlaps indicating good accuracy in terms of shape. 

 

The same, however, cannot be said about the localizations of the smaller green object. 

Here, the Noiseless Ellipsoid Approximation generated ellipsoids with extremely large 

positional errors at times making this algorithm completely infeasible. While the 

positional accuracy did improve using the LfD and LfDC Ellipsoid Approximation, the 

shape of the object could not be estimated well at all. This was mostly caused by the 

object detection algorithm used for the generation of the Fundamental Points. As this 

algorithm used an image shot from the UAV to detect objects, the precision of the 

object detection was limited by the image’s resolution. This was further amplified by 

the fact that the green object was only a few pixels wide for some of the images. This 

resulted in an Input Frame database containing inputs afflicted by stronger object 

detection noise. Therefore, whenever the LfD or the LfDC Ellipsoid Approximation were 

able to generate valid ellipsoids, their shape was heavily afflicted by this noise. This 

leads to the conclusion that the RTL using the ellipsoid approximation approach is not 

feasible if the object detection input is afflicted by relatively high noise in comparison 

to its ground-truth information. To deal with this digitalization issue, the implementation 

of the RTL features a configuration value effectively allowing the user to filter out object 

detections in images which result in axis-aligned bounding rectangles of small area 

which are defined by the Fundamental Points. This configuration, however, was not 

used for this evaluation. 

 

6.2.3 Outdoor Environment 

Finally, the outdoor environment, which has been presented in Chapter 6.1.3, has also 

been used to evaluate the RTL using the ellipsoid approximation approach. For this 

environment, one red object was to be localized. It is worth noting that the absence of 

a gimbal results in some issues when using an ellipsoid approximation algorithm for 

object localization. In particular, in contrast to the previous environments, the camera’s 

roll angle may be unequal to 0°  as the camera’s orientation matched the UAV’s 

orientation precisely. As a consequence, the assumption that the axis-aligned 

bounding rectangle around the detected object in the image is equal to the object’s 

bounding rectangle of minimal size does not hold true anymore. Therefore, the 

resulting ellipse may not represent the object in the image well. That being said, the 
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UAV was, for the most part, up straight, i.e. its absolute roll angle was no higher than 

10°. 

 

Ellipsoid 

Approximation 

Algorithm 

Avg. 

Failure 

Rate 

Avg. Position 

RMSE [m] 

Avg. Translated 

Overlap 

RMSE 

Avg. Inputs/s 

(Desktop) 

Avg. Inputs/s 

(ODROID) 

Noiseless ~95.74% ~234.85 ~99.34% ~5,319.15 ~1,493.17 

LfD ~46.2% ~0.52 ~92.72% ~2,892.56 ~781.95 

LfDC ~46.2% ~0.52 ~92.79% ~2,655.54 ~684.66 

Table 6.12: Evaluation Data for Input Datasets generated using the Outdoor Environment. 

 
(a) 

 
(b) 

Figure 6.16: Reverse Percentile of Ground-Truth Position Error (a) and Translated Overlap (b) for Input 
Datasets generated using the Outdoor Environment. 

 

Table 6.12 and Figure 6.16 illustrate some results of the evaluation. The results show 

that, once more, the Noiseless Ellipsoid Approximation cannot be used for noise 

afflicted input data at all. It does not only have a rate of ~95.74% at which it does not 

generate a valid ellipsoid, the valid ellipsoids produced by the Noiseless Ellipsoid 

Approximation are neither accurate regarding their positions nor shapes. On the other 
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hand, the LfD and the LfDC Ellipsoid Approximation did not generate valid ellipsoids 

at a rate of ~46.2%. As before, these algorithms performed nearly identical. Regarding 

their positional errors, it can be seen that the position of the object could be determined 

reasonably well. That being said, the triangulation approach performs better if only the 

object’s position is of interest.  

 

However, the shape of the object could not be approximated well for any of the ellipsoid 

approximation algorithms at all. For this, there are several reasons. Firstly, just like with 

the green object of the simulation environment, the object to localize itself was rather 

thin. Therefore, even small noise in any input data may have a high influence on the 

object’s localization. Secondly, the limited direction vectors between the camera and 

the object amplifies the influence of noise. In fact, similarly to the observation of 

Chapter 6.1.3, the approximated ellipsoids are for the most part stretched in the north-

south direction. By observing the red object from a greater variety of view angles, the 

overlap error will decrease drastically. In addition to this, the camera was not aligned 

to the horizon, and therefore to the object itself, anymore, i.e. the roll angle may be 

unequal to 0°. This, however, can be dealt with easily by adding a gimbal which keeps 

the camera aligned. It can be concluded that, when attempting to localize such small 

objects, a greater variety of view angles is a necessity to localize the object accurately. 

This is especially true if the object’s shape is of interest. 
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7 Conclusion 

7.1 Summary 

The objective of this master thesis was to develop an object localization algorithm to 

localize objects in a three-dimensional Euclidean space. In particular, this algorithm 

had to be applicable on UASs and, therefore, fulfill certain requirements, e.g. real-time 

capability and its inputs are limited to information which can be gathered via a UAS 

only. In particular, this localization algorithm was to be integrated into the Automated 

Power Line Inspection (APOLI) project. In the context of this thesis, the Real-Time 

Object Localizer (RTL) was developed, implemented and evaluated as such an object 

localization algorithm. When provided with a sufficient number of input data each 

consisting of some of the UAV’s flight data, the gimbal orientation as well as object 

detection information, the RTL is able to reliably and accurately localize the detected 

objects. It has also been shown that this is the case even if the input data is afflicted 

by some noise. For this reason, the RTL is feasible to generate environment maps for 

the purpose of collision avoidance. However, the evaluation also demonstrated that 

the RTL is susceptible to outliers in the input data, i.e. input information which is either 

heavily afflicted by noise or fundamentally incorrect. In particular, the RTL does not 

integrate any technique to remove such outliers.  

 

For the object localization itself, two approaches have been integrated into the RTL’s 

pipeline. These approaches are the triangulation and the ellipsoid approximation. 

While the RTL using the triangulation approach only provides the object’s position as 

object information output, the ellipsoid approximation generates an ellipsoid 

corresponding to the detected object. Therefore, not only does the RTL using this 

approach estimate the object’s location but it also provides an approximation of the 

object’s shape as its output. For the triangulation, three algorithms have been 

integrated and evaluated. These are the Generalized Midpoint Triangulation, the L∞ 

Triangulation as well as the Hybrid Triangulation. The evaluations showed that not only 

is the Generalized Midpoint Triangulation by far the most efficient algorithm, it is also, 

overall, the triangulation algorithm generating the most accurate estimations of the 

objects’ locations. Therefore, the Generalized Midpoint Triangulation should be the 

triangulation algorithm of choice. The ellipsoid approximation approach has also been 

integrated into the RTL via three algorithms, i.e. the Noiseless Ellipsoid Approximation, 

the LfD Ellipsoid Approximation and the LfDC Ellipsoid Approximation. Evaluations 

proofed that the Noiseless Ellipsoid Approximation performs poorly when dealing with 

input data being slightly noise afflicted. This means that not only were the object 
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localizations grossly inaccurate in some scenarios, the algorithm also more often than 

not failed to approximate valid ellipsoids at all. The LfD and the LfDC Ellipsoid 

Approximation, on the other hand, demonstrated to be more robust and also more 

accurate. While the LfDC Ellipsoid Approximation generated, in most cases, 

marginable more accurate ellipsoids, it also added a performance overhead when 

compared to the LfD Ellipsoid Approximation. For these reasons, the LfD Ellipsoid 

Approximation is the most feasible ellipsoid approximation algorithm for usage in 

UASs. 

7.2 Outlook 

The evaluations showed that the RTL using any of the two object localization 

approaches, i.e. the triangulation or the ellipsoid approximation, may heavily be 

affected by outliers in the input data. In particular, these outliers are stored in the Input 

Frame database of the Spherical Input Filter until either a similar outlier or valid input 

corresponding to the outlier’s region is provided. Because there might never be valid 

input which corresponds to this region, the outlier could potentially influence all future 

object localizations. For the Generalized Midpoint Triangulation, this outlier may only 

have a limited effect if enough valid Input Frames are provided along with it as the 

noise will be smoothed out. However, if only a low number of valid Input Frames are 

given, the object localization most likely fails to generate an accurate object location. 

When using the LfD Ellipsoid Approximation, the outlier may potentially have an even 

higher influence. Not only does it decrease the accuracy of the approximated ellipsoid, 

the LfD Ellipsoid Approximation may fail to estimate an ellipsoid at all. For these 

reasons, an adequate technique to remove outliers should be integrated into the RTL. 

In particular, the RANSAC approach may be used. 

 

Another potential extension of the RTL modifies the object detection input information. 

As a reminder, this information does not only consist of the detected object’s 

Fundamental Points but also its label. Throughout this thesis, the object labels were 

always assumed to be unique, i.e. there must not be two objects possessing the same 

label. However, the corresponding object detector may not provide such unique object 

labels. Therefore, one could consider the scenario in which the object labels are 

removed from the input. In particular, the RTL itself now has to generate such labels. 

For this, it may use all or a selection of Input Frames and determine object labels using 

a number of localizations, i.e. RANSAC. As a high number of localizations may be 

carried out, the performance of the RTL, or more specifically its Object Localization 

step, is of crucial importance for this. Therefore, even when using the LfD Ellipsoid 

Approximation, the object labels could be determined via RANSAC in combination with 
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the Generalized Midpoint Triangulation. The performance of the object label 

determination can further be improved if the object detection input includes class labels 

for each object. 
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A. Implementation Details 

In this appendix, some implementations are elaborated in greater detail. In particular, 

while Chapter A.1 presents more in-depth descriptions of some of the RTL’s steps’ 

implementations, some of the modifications implemented in the MAL are introduced in 

Chapter A.2. 

A.1 Steps of the implemented Real-Time Object Localizer 

A.1.1 Input Gatherer 

FileReaderInputGatherer

+GetInput(input)

InputGatherer

+GetInput(input)

SyntheticInputGatherer

+GetInput(input)

ImageProcessingInputGatherer

#getUAVFlightData(input)

#getGimbalOrientation(input)

#getImage(image, imageTime)

+GetInput(input)

MALImageProcessingInputGatherer

#getUAVFlightData(input)

SimulationImageProcessingInputGatherer

#getGimbalOrientation(input)

#getImage(image, imageTime)

FullSimulationInputGatherer

#getUAVFlightData(input)

MALSimulationInputGatherer MALCameraInputGatherer

#getGimbalOrientation(input)

#getImage(image, imageTime)

 
Figure A.1: Simplified UML Class Diagram of the Input Gathering Step. 

 

In the first step of the RTL, input is gathered from one or more sources which is 

specified via the Configuration object. Depending on the corresponding 

configuration value, the RTL allocates a specific subclass of the InputGatherer 

class. Figure A.1 illustrates the fundamental abstract subclasses of InputGatherer. 

The only logic the final subclasses, i.e. the classes which are not further inherited in 

the figure, are missing depends on the FPD configuration. Therefore, for each of these 

classes two subclasses exist, one for the triangulation and one for the ellipsoid 

approximation approach. It should be noted that when using the ellipsoid 

approximation approach the number of Fundamental Points per object in the object 

detection input of the RTL is two, rather than four, in contrast to the convention used in 

this thesis. More specifically, while the software’s first Fundamental Point denotes the 

upper-left corner of the bounding rectangle, the second Fundamental Point specifies 

the lower-right corner. However, there occurs no information loss as the four 
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Fundamental Points generated by the FPD result in an axis-aligned bounding 

rectangle. 

 

As can be seen in the figure, there are three top-level input sources. The input can 

either be synthetically generated via SyntheticInputGatherer, read from an input 

dataset file using FileReaderInputGatherer or generated with 

ImageProcessingInputGatherer. In particular, the Image Processing Input 

Gatherer ImageProcessingInputGatherer class itself only implements logic to 

generate the object detection input from an image, i.e. detecting objects in the image 

by generating their Fundamental Points and the objects’ labels. For this, a pixel mask 

is determined by performing a simple color range check. For each object to detect, the 

Configuration provides the object’s color, a maximum color distance, the object 

label as well as a minimum contour area. Note that the color range check is not 

performed in the RGB color space but instead in the so-called CIELAB color space [57] 

in which the light intensity is more appropriately separated from the object’s color itself. 

After the pixel mask has been computed, the Image Processing Input Gatherer 

generates contours around accumulations of positive mask entries and selects the 

contour of the largest area. By using these contours, noise and outliers are removed. 

Furthermore, the contour of the largest area is only utilized for further calculations if its 

area is sufficiently large, i.e. not smaller than the minimum contour area provided. If, 

instead, the area is too small, the corresponding object is not detected in the image. 

This process prevents incorrect object detections of small area. Finally, the minimal-

sized axis-aligned bounding rectangle is determined around the contour of largest area 

which is then used to determine the exact positions of the Fundamental Points. 

 

Subclasses of ImageProcessingInputGatherer provide the rest of the input data, 

i.e. the UAV flight data using getUAVFlightData() and the gimbal orientation input 

via getGimbalOrientation(), as well as the image itself through getImage(). In 

particular, SimulationImageProcessingInputGatherer uses the AirLib library 

to connect to the SITL simulation of APOLI. Using this connection, this class captures 

images directly shot from the simulated UAV and also provides the gimbal orientation 

input as the orientation of the virtual camera used to capture the image. 

MALImageProcessingInputGatherer, on the other hand, connects with the MAL 

by opening a shared memory block. As the MAL writes all UAV flight data input into 

this memory block, the MALImageProcessingInputGatherer uses this 

information and provides it as the UAV flight data input directly. 
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Finally, the three classes on the lowest level of Figure A.1 make use of these 

connections to fill out the rest of the input data. More specifically, 

FullSimulationInputGatherer utilizes the position and orientation of the virtual 

camera to generate the UAV flight data. Next, MALSimulationInputGatherer 

combines both connections. This means that the UAV flight data input is retrieved from 

the MAL while the gimbal orientation and the object detection input are generated from 

simulation data. Lastly, MALCameraInputGatherer captures the image from a 

physical camera connected to the system directly and the gimbal orientation is further 

set to match the UAV’s orientation exactly. 

 

A.1.2 Input Filter 

InputFilterEllipsoidApproximation

#updateInputFrame(...)

InputFilterTriangulation

#updateInputFrame(...)

InputFilterSpherical

+Update(...)

InputFilterLinear

+Update(...)

InputFilter

#updateInputFrame(inputFrame, detectedObjectInput, cameraCalculator)

+Update(objectsInputFrames, input, cameraCalculator)

 
Figure A.2: Simplified UML Class Diagram of the Input Filtering Step. 

 

The Input Filtering step of the RTL is implemented via the InputFilter class and its 

subclasses. A simplified model of their architecture is illustrated in Figure A.2. The 

InputFilter base class defines two abstract functions. Firstly, the Update() 

function is used to iterate over all detected objects in the input data. For each of these 

objects, it creates a new Input Frame database corresponding to this object, if it does 

not already exist. Subsequently, it generates or retrieves the exact Input Frame which 

shall be updated using the input data and calls updateInputFrame(). This function 

updates a single Input Frame of an object by setting its values.  

 

As elaborated in Chapter 4.5, the Input Frames could theoretically consist only of the 

input data as well as the camera parameters. However, the subclasses corresponding 

to the two localization approaches, i.e. InputFilterTriangulation and 

InputFilterEllipsoidApproximation, preprocess this information as much as 

possible to improve the performance of the Object Localization step. In particular, the 

exact data stored in the Input Frames depends not only on the used localization 

approach but also the exact localization algorithm. For the triangulation approach, the 

Input Frames always contains the camera matrix 𝑃 ∈ ℝ3×4 as well as preprocessed 
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information for the Generalized Midpoint Triangulation, i.e. the starting point 𝒄 ∈ ℝ3 of 

the casted ray as well as the ray’s direction 𝒅 ∈ ℝ3. This data can easily be determined 

using the camera matrix 𝑃 . If the L∞  Triangulation or the Hybrid Triangulation is 

selected, the position of the object’s Fundamental Point is also contained in the Input 

Frame. If, however, the ellipsoid approximation approach is the localization approach 

of choice, the preprocessing is more complex. It begins by always determining 

preprocessed information used for the Noiseless Ellipsoid Approximation. In particular, 

two variables are determined being the matrix 𝐺 ∈ ℝ6×10, as defined in [35], as well as 

the negative of the vectorized dual space ellipse, i.e. −𝒄̂ ∈ ℝ6. If either the LfD or the 

LfDC Ellipsoid Approximation algorithm is selected via the configuration, further 

information is computed. This data is the negative of the vectorization of the normalized 

dual space ellipse −𝒄̂̇ ∈ ℝ6  as well as 𝐻−1𝑃 ∈ ℝ3×4  which is a component of the 

calculation of the substituted camera matrix 𝑃̇ ∈ ℝ3×4. In the software, 𝐻−1𝑃 is referred 

to as the half-transformed camera matrix. 

 

As the process of selecting the Input Frame to update depends on the Input Filtering 

algorithm used, the Update() function is implemented in InputFilterLinear and 

InputFilterSpherical. These classes provide an implementation of the Linear 

Input Filter and the Spherical Input Filter respectively. As a reminder, while the Linear 

Input Filter is simple and leads to nearly no overhead, it amplifies the influence of noise 

drastically. For this reason, this Input Filter should not be used and the 

InputFilterLinear class was mainly created for debugging purposes. Both of 

these classes maintain an Input Frame database which itself consists of multiple Input 

Frame databases, one for each object that has been detected in the past. While the 

number of the object’s Input Frames is set to the number of Input Frames to select for 

the Linear Input Filter, the Spherical Input Filter instead allocates memory proportional 

to the number of regions as defined by the configuration. The selection of the Input 

Frame to update is implemented via a ring buffer for the Linear Input Filter. The 

Spherical Input Filter, on the other hand, has to iterate over all regions and determine 

the one region for which its vector has minimal distance to the normalized view 

direction vector pointing from the camera to the center of the detected object. This 

region corresponds to exactly one Input Frame which is the Input Frame to update. 

Lastly, a selection of Input Frames which shall be further used for the Object 

Localization step is made. For the Linear Input Filter, this is trivial as it simply selects 

all Input Frames. For the Spherical Input Filter, however, the number of regions may 

be higher than the maximum number of Input Frames to select. Therefore, it selects 

the appropriate number of Input Frames by maximizing the minimal distance between 

their indices. To further improve the runtime of the RTL, if the selection of Input Frames 
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using the Spherical Input Filter does not include the Input Frame which has been 

updated, the Input Frame selection is not passed to subsequent steps preventing a 

localization of this object because the newly gathered input is not included. 

 

Finally, the Linear and the Spherical Input Filter each possess two subclasses, one for 

each localization approach. These subclasses inherit from both, the Linear or the 

Spherical Input Filter class respectively as well as from 

InputFilterTriangulation or InputFilterEllipsoidApproximation. 

Therefore, a total of four non-abstract Input Filter classes exist, e.g. 

InputFilterSphericalTriangulation. 

 

A.1.3 Output Processor 

OutputProcessor

#copyBasicObjectInformation(...)

#calculateObjectGroundTruthEvaluationInformation(...)

+GenerateOutput(input, environmentMap)

OutputProcessorTriangulation

#copyBasicObjectInformation(...)

#calculateObjectGroundTruthEvaluationInformation(...)

OutputProcessorEllipsoidApproximation

#copyBasicObjectInformation(...)

#calculateObjectGroundTruthEvaluationInformation(...)

1

1..*

OutputProcessorEllipsoidApproximationOverlapThread

 
Figure A.3: Simplified UML Class Diagram of the Output Processing Step. 

 

After the ObjectLocalizer, or more specifically its subclasses, determined the 

localization of objects and updated the environment map accordingly, the 

OutputProcessor generates the output of the RTL. Again, Figure A.3 illustrates a 

simplification of the architecture of OutputProcessor and its subclasses. In 

particular, the output is generated using the GenerateOutput() function. The format 

of the RTL’s output depends on the localization approach used as the localization of 

an object may not only consist of its position but also its shape when using the ellipsoid 

approximation approach. To generate the output information corresponding to this 

basic object information, the abstract copyBasicObjectInformation() function is 

used. The implementations of this function in the two subclasses of Output Processor, 

each corresponding to one of the localization approaches, simply copy the localization 
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information of objects from the object in the environment map into the output object 

provided.  

 

Furthermore, the calculateObjectGroundTruthEvaluationInformation() 

function determines ground-truth evaluation information if desired, i.e. if specified by 

the configuration and if there is ground-truth information about the localized objects. In 

particular, for the triangulation approach this ground-truth evaluation information only 

consists of the distance between the ground-truth position and the localized object’s 

position which is derived in a trivial manner. This ground-truth evaluation information 

is also computed for the ellipsoid approximation approach where the position of an 

object is considered its center’s position. As elaborated in Chapter 4.2.3, however, the 

ground-truth evaluation output also consists of two ellipsoid overlaps if the ellipsoid 

approximation is used for localization, i.e. 𝑜(𝑄, 𝑄′) and 𝑜(𝑄, 𝑄′̅̅ ̅). In particular, these 

overlaps are determined by sampling discrete points. As a high sampling rate is 

desired, which however impacts the performance of the Output Processing step 

drastically, the computation of the overlaps between two ellipsoids is outsourced to 

threads of the OutputProcessorEllipsoidApproximationOverlapThread 

class. In particular, the Output Processor of the ellipsoid approximation approach 

allocates a number of objects of this thread class matching the number of concurrent 

threads the platform supports. To decrease thread creation overhead, these threads 

stay allocated until the RTL is stopped. That being said, they change into the blocked 

state whenever they finished calculating their corresponding share of the overlap. 

When every thread finished determining their share, the Output Processor of the 

ellipsoid approximation simply accumulates the sample results.  
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A.1.4 Renderer 

Renderer

#createRenderingThread(...)

+Update()

-renderingInput

RendererTriangulation

#createRenderingThread(...)

RendererEllipsoidApproximation

#createRenderingThread(...)

RenderingThreadEllipsoidApproximation

#createLocalizedObjectRenderedObject(...)

#updateModelMatricesSubClass()

1

1

1

*

1

1

1

8..*

RenderingThread

#createLocalizedObjectRenderedObject(...)

#updateModelMatricesSubClass()

-mostRecentRenderingInput

-currentRenderingInput

+AddObjectToWorld(model)

+RemoveObjectFromWorld(object)

+RenderFrame()

GraphicEngine

RenderedObject

+SetModelMatrix(modelMatrix)

RenderingThreadTriangulation

#createLocalizedObjectRenderedObject(...)

#updateModelMatricesSubClass()

 
Figure A.4: Simplified UML Class Diagram of the Rendering Step. 

 

As the last step of the RTL and if specified by the configuration, the rendered scene 

and its environment is updated via Renderer::Update(). Figure A.4 visualizes a 

simplified architecture of the Renderer, its subclasses alongside some additional 

classes used for the rendering process. The Renderer class itself does not implement 

much logic. Instead, the rendering and the corresponding logic is implemented in a 

separate thread, the RenderingThread. For this reason, the subclasses of Renderer 

simply specify which subclass of RenderingThread to allocate. By outsourcing the 

rendering process to a separate thread, not only is the rendered scene more 

responsive to user interaction but the performance impact on the RTL itself is also 

minimized. In particular, the Renderer::Update() function simply notifies the 

RenderingThread about updated rendering input by copying its own rendering input 

into the mostRecentRenderingInput member variable of the thread. The rendering 

input of the Renderer itself is updated by the RTL and some of its steps earlier. The 

Rendering Thread renders the scene in a loop whereby it copies the value of its 

mostRecentRenderingInput member into the currentRenderingInput 

variable which will then be used for the rendering itself. This allows the Renderer to 

copy its rendering input into mostRecentRenderingInput nearly at all times further 

reducing the performance impact on the RTL.  

 

For the low-level rendering, a simple graphic engine has been implemented via the 

GraphicEngine class. It allows to add, manipulate and remove objects from the 

scene easily. In particular, when being provided with an object model, it creates and 
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returns an object of the RenderedObject class which represents the added object in 

the scene. Using this class, the scene object can be manipulated. 

 

After updating its currentRenderingInput variable, the Rendering Thread begins 

by updating the RTL’s output object information of all localized objects. While doing so, 

it also checks for additional as well as deleted objects in the rendering input, i.e. objects 

which are not present in the scene. Note that currently neither the RTL nor any of its 

steps delete objects from the environment map. As a result, objects which were present 

in the RTL’s output once stay localized. However, future extensions of the RTL may 

lead to such scenarios in which objects are removed from the output of the RTL. 

Therefore, the implementation of all steps of the RTL are able to deal with such cases. 

Whenever the RenderingThread detects newly localized objects in the RTL’s output, 

it calls the createLocalizedObjectRenderedObject() function which creates a 

RenderedObject scene object corresponding to the localized object. Analogously, if 

there are objects in the scene which are not present in the output of the RTL anymore, 

they are deleted from the scene. Next, the Rendering Thread updates the model 

matrices of all rendered objects. For the rendered objects corresponding to localized 

objects, the updateModelMatricesSubClass() function is used. Subsequently, 

the RenderingThread also handles user input and updates the virtual camera of the 

rendered scene. Finally, the scene is rendered using the GraphicEngine class by 

calling GraphicEngine::RenderFrame(). 

A.2 Modification of the MAVLink Abstraction Layer 

FileReaderInputGatherer

+GetInput(input)

SyntheticInputGatherer

+GetInput(input)

ImageProcessingInputGatherer

#getUAVFlightData(input)

#getGimbalOrientation(input)

#getImage(image, imageTime)

+GetInput(input)

MALImageProcessingInputGatherer

#getUAVFlightData(input)

SimulationImageProcessingInputGatherer

#getGimbalOrientation(input)

#getImage(image, imageTime)

FullSimulationInputGatherer

#getUAVFlightData(input)

MALSimulationInputGatherer MALCameraInputGatherer

#getGimbalOrientation(input)

#getImage(image, imageTime)

MavlinkAbstraction

+Arm(response)

...

+TakeOff(response)

+GetDeviceData(responses)

TestVehicle

+VehicleRoutine()

EXSVehicle

+VehicleRoutine()

CTHVehicle

+VehicleRoutine()

RTLVehicle

+VehicleRoutine()

Vehicle

+VehicleRoutine()

 
Figure A.5: Simplified UML Class Diagram of the MAL. 

 

The MAVLink Abstraction Layer (MAL) of the APOLI project acts a software-in-the-

middle between the higher-level decision-making components and the lower-level 

hardware-controlling components of APOLI. Such an abstraction layer simplifies the 

usage of the complex MAVLink protocol, which is used for the communication with the 

lower-level components, significantly. An overview of the MAL’s implementation prior 
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to any modifications is given in [4]. In particular, the class MavlinkAbstraction and 

its members’ classes implement the complete abstraction. As there are different use 

cases for the MAL, the MavlinkAbstraction class is further inherited to the 

Vehicle class. In the context of the MAL, a vehicle simply denotes a specialization of 

MavlinkAbstraction for a specific use case. Originally, there were three such 

vehicles. These were the Test Vehicle, used for testing and debugging purposes, the 

EXS Vehicle, which communicates with the Expert System of APOLI, as well as the 

CTH Vehicle demonstrating how the communication with APOLI’s Control Handler 

shall be implemented. To select the vehicle which is to be used, the --vehicle or -v 

argument is utilized. This argument indicates that the next argument specifies the 

name of the vehicle to start. In particular, test, exs and cth were the corresponding 

vehicle names. In the following, the two most important modifications implemented in 

the MAL are elaborated. A simplified overview of the MAL’s architecture with these 

modifications applied is illustrated in Figure A.5. 

 

Firstly, as none of the preexisting vehicles were feasible for usage with the RTL, a 

fourth vehicle has been added. In particular, this is the RTL Vehicle implemented in 

the RTLVehicle class. To start the MAL using this vehicle, the vehicle name rtl 

must be used. Upon being started, the RTL Vehicle requests the timestamp indicating 

when the FLC was started, given as the number of microseconds since the UNIX 

epoch, as well as the position of the origin of the UAV Local NED coordinate system 

in GNSS coordinates. Note again that, currently, this is the home position. In the near 

future, however, a release of ArduCopter will most likely change the origin of the UAV 

Local NED coordinate system to be set only once when the FLC boots. As soon as the 

FLC is flashed with a release which correctly fixes this issue, the implementation of the 

MAL’s request which retrieves the origin of the UAV Local NED system should be 

adjusted accordingly. In particular, a TODO comment has been added in the source 

code of the corresponding class which also specifies the necessary modifications. After 

the initial information has been retrieved from the FLC, the MAL executes the vehicle’s 

routine, i.e. RTLVehicle::VehicleRoutine(), in a loop. In its routine, the 

RTLVehicle requests information about the UAV’s position in the UAV Local NED 

system as well as its orientation. Once this information has been retrieved, the RTL 

Vehicle gathered all data of the RTL’s UAV flight data input. This information is then 

written into a shared memory block so it is available to the RTL. Afterwards, the vehicle 

routine is executed anew. 

 

Next, to retrieve data from the FLC, the MAL only provided a single abstraction 

function. In particular, MavlinkAbstraction::GetDeviceData() requested all 



118 
 

flight data there was from the FLC. While this was done so all flight data was available 

for further evaluation as one object, it led to overhead in most cases as the user will 

rarely use all of the retrieved flight data. This issue was already acknowledged in [4]. 

Because the flight data provided to the RTL should be as synchronous as possible, 

this problem has been addressed resulting in the second modification. For this, the 

parameter of the GetDeviceData() function has been changed to a vector of 

responses. In particular, these responses inherit the abstract 

ResponseGetDeviceDataBase class. Now, each of the objects in the response 

vector specify which flight data shall be requested from the FLC via their own request 

implemented as a subclass of RequestGetDeviceDataBase. As a result, the user 

can now easily request only a subset of flight data from the FLC by defining vector of 

those responses corresponding to the flight data they require. Therefore, the overhead 

is minimized. 
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B. Configuration Files 

B.1 Structure of Configuration Files 

 
Figure B.1: Snippet of a Configuration File. 

 

The format of configuration files used by the implemented software of the RTL is 

inspired by the INI format. Therefore, it contains keyword-value pairs separated by the 

= sign, i.e. keyword=value. As a convention, the names of keywords only consist of 

lower-case characters. Each of these keyword-value pairs corresponds to exactly one 

section which is defined by its name. In contrast to INI files, however, a section does 

not only start via [SECTION], whereby SECTION stands for the section’s name, but it 

also explicitly defines a scope. More specifically, a line only consisting of { denotes 

the start and a single } on a line stands for the end of the scope. This allows for the 

most crucial distinction to INI files. The sections in configuration files can be structed 

hierarchically which means that a section may contain an arbitrary number of 

subsections improving the readability of configuration files. A snippet of a configuration 

file is illustrated in Figure B.1. There, the INPUT section is comprised of the keyword-

value pair source=synthetic as well as the SYNTHETIC section which itself 

contains another keyword-value pair, i.e. input_amount=2000. The naming 

convention used for section names defines them as fully capitalized. That being said, 

the parsing of configuration files is case-insensitive meaning that section names, the 

names of keywords and even some of the values’ names may be capitalized arbitrarily. 

Furthermore, the parsing process also ignores empty lines, leading and trailing 

whitespace characters as well as whitespace characters around the = sign of keyword-

value pairs. Lastly, a comment may start at any position in a line via the # sign and 

lasts until the end of that line. 

B.2 Preexisting Configuration Files 

The software’s resources also include a number of preexisting configuration files. 

These are 

 full_simulation_ellipsoid_approximation, 

[INPUT] 

{ 

 source = synthetic 

 

 [SYNTHETIC] 

 { 

  input_amount = 2000 

 } 

} 
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 full_simulation_triangulation, 

 mal_simulation_ellipsoid_approximation, 

 mal_simulation_triangulation, 

 mal_camera_ellipsoid_approximation, 

 mal_camera_triangulation, 

 development and 

 template. 

The full_simulation… configuration files are set up to use the RTL in the SITL 

simulation of APOLI. Furthermore, the input is retrieved from the simulation only. This 

stands in contrast to the mal_simulation… files where the input is gathered from the 

simulation and the MAL. Next, the configuration files starting with mal_camera… are 

intended to be used together with the UAV of the Indoor Flight Center (IFC) of APOLI. 

Here, the input is retrieved from the MAL and the object detection input is generated 

using camera images. Finally, development and template are auxiliary 

configurations. While development was used in the development process, 

template contains a complete list of all configuration sections and their keyword-

value pairs each paired with a detailed description. For the keyword-value pairs, this 

description also contains the range of allowed values as well as the default value. 
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C. User Interactions with the Scene 

Key Bind Action 

Escape Closes the window of the rendered scene 

P Pauses/resumes the update process of the rendered scene 

W Moves the camera forwards 

S Moves the camera backwards 

A Moves the camera leftwards 

D Moves the camera rightwards 

Page Up Moves the camera upwards 

Page Down Moves the camera downwards 

Up Arrow Rotates the camera upwards 

Down Arrow Rotates the camera downwards 

Left Arrow Rotates the camera leftwards 

Right Arrow Rotates the camera rightwards 

Space Increases the movement/rotation speed while being hold 

1 Toggles the visibility of the UAV 

2 Toggles the visibility of the UAV Local NED coordinate system 

3 Toggles the visibility of the UAV NED coordinate system 

4 Toggles the visibility of the UAV coordinate system 

5 Toggles the visibility of the Gimbal NED coordinate system 

6 Toggles the visibility of the Gimbal coordinate system 

7 Toggles the visibility of the Camera coordinate system 

8 Toggles the visibility of the localized objects 

9 Toggles the visibility of the ground-truth objects 

0 Toggles the visibility of the ground plane 

Table C.1: Key Binds and their corresponding Actions available for User Interaction with the rendered 
Scene. 

 

The user can interact with the rendered scene of the software implementation in 

various ways. For a majority of these user interactions, keyboard input is used. A 

complete list of key binds as well as their corresponding action is illustrated in Table 

C.1. The camera movement is performed at a speed of 1𝑚/𝑠  while its increased 

speed, i.e. while holding Space, is 5𝑚/𝑠. Analogously, the rotation speed is 90°/𝑠 and 

180°/𝑠 respectively. It should be emphasized that pausing or resuming the update 

process by pressing P does not pause or resume the RTL nor does it pause/resume 

the rendering process itself. Instead, by pausing using P the content of the rendered 
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scene’s environment is simply not updated which allows to inspect specific 

localizations more easily. In addition to key binds, the user may also directly click on 

object localizations in the scene using the mouse cursor. By doing that, the output 

information corresponding to the clicked object is printed to the console. 
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von ausgewählten Datentypen in Datenbanksystemen zur Berechnung des
Grades der Anonymisierung, Februar 2018, Chemnitz

CSR-18-02 Liang Zhang, Guido Brunnett, Efficient Dynamic Alignment of Motions,
Februar 2018, Chemnitz

CSR-18-03 Guido Brunnett, Maximilian Eibl, Fred Hamker, Peter Ohler, Peter Prot-
zel, StayCentered - Methodenbasis eines Assistenzsystems für Centerlotsen
(MACeLot) Schlussbericht, November 2018, Chemnitz

CSR-19-01 Johannes Dörfelt, Wolfram Hardt, Christian Rosjat, Intelligente Gebäude-
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