
Higher type recursive program schemes

and the nested pushdown automaton

Andreas Goerdt∗), Technische Universität Chemnitz
Fakultät für Informatik, 09107 Chemnitz, Germany

On the occasion of the retirement of

Prof. Dr. Klaus Indermark, RWTH Aachen

November 2005

Abstract. When implementing recursive programs on a standard von Neumann random
access machine (RAM) it is natural and well known how to use a pushdown store in order
to keep track of the recursive procedure calls when the program runs. The more abstract
world of program schemes abounds with examples of this pushdown – recursion relation.
As a concrete example it is well known how to implement monadic recursive program
schemes (de Bakker Scott schemes) on a pushdown automaton with data storage. In this
case he reverse direction can be easily proved, too: The pushdown automaton considered
has exactly the same computational power as de Bakker Scott schemes.

Higher type concepts are at the heart of modern object oriented and functional pro-
gramming languages in particular. The aim of this paper is to develop a theoretically
well founded framework for implementing higher type recursion. We show that a natural
generalization of the classical pushdown store, the nested pushdown allows to extend the
equivalence above to a natural hierarchy of “higher type de Bakker Scott schemes ”.

∗) e-mail: goerdt@informatik.tu-chemnitz.de

1

Introduction

Background and motivation. For code generation the compiler has to translate the
control structures of the programming language considered into machine code. To this
end the compiler looks at the control structure as being separated from the underlying
data domain. Those features of modern programming languages known as “polymorphic ”
(or generic) realize an explicit form of this separation: Procedures can be defined to be
invoked with actual parameters of data types which are unspecified and unknown at the
time of writing the procedure.

In this note we are concerned with what may well be considered as one of the techni-
cally most complex control structures occurring nowadays: recursion based on functions of
higher types. Being popularized perhaps through the imperative programming language
ALGOL, higher type recursion is a characteristic feature in particular of functional but
also of object oriented languages.

Two similarly looking but conceptually different approaches to studying control struc-
tures are known: The “simple ” or “ monadic ”or “de Bakker Scott ” approach considers
control structures as computing only with a single atomic element of data. This view
studies the control structure in the purest form possible ensuring high generality and rel-
evance of the results obtained from a practical point of view. The second approach is to
allow computation with several data elements. Note that in this case it may even become
possible to store an unbounded amount of data elements during computation (using for
example local variables in a recursive procedure.)

It is well known that when computing over data domains containing classical arithmetic
standard recursive function declarations are universal.That is for any computable function
there exists an equivalent system of recursive function definitions. This is not at all true in
the present framework of program schemes. Here two function definitons are equivalent iff
they are semantically equal for all data domains possible. We use this notion of equivalence
classical in the theory of program schemes throughout. It is reassuring to know, but
not really needed in the sequel, that a generalization of Church’s thesis with respect
to computability over arbitrary strcutures is known: Generalizing the classical Turing
machine to compute over arbitrary structures yields a universal computing device with
respect to the present notion of equivalence [Sh]. Standard recursive function definitions
are well known not to be universal in this sense.

In order to approach higher type concepts some common notational background is
seemingly unavoidable. The most general type structure with one base type is given
by: ind (for “ individuals ”) and if τ, ρ are types then τ → ρ. We sometimes call τ

argument type and ρ result type. The model programming language of finitely typed
λ-terms with if − then − else and recursion (technically known as fixpoint) is based on
this type structure, cf. [LoSi 84]. This language may be considered an example of the
second approach to control structures mentioned above.

To the best of the author’s knowledge the de Bakker Scott approach to higher types
has not yet been considered for the preceding most general type structure. To exemplify
the generality of this structure we consider an example type like

ind →
(

((ind → ind) → ind) → ind
)

.

Here we have the argument type ind whereas the result type stands for a function even
taking a function as argument. This may be disturbing from a programmer’s point of
view. Consequently, restricted type structures closer to the programming practice have
been considered.

2

A conceptually interesting restricted type structure is that of “(general) homogeneous
types ” (for a definition see the subsection: Homogeneous types: Notation and Results,
below). From the literature on this type structure we only cite [Da 82] and [DaGo 86].
From the de Bakker Scott point of view standard context free grammars bear some sim-
ilarity to systems of recursive function definitions (nonterminals correspond to function
names, the nondeterminism inherent to grammars corresponds to the – being somewhat
generous here – if − then− else, unavoidable in recursive definitions.) With this anal-
ogy in mind [Da 82] looks at grammers with nonterminals being of higher homogeneous
type. [DaGo 86] gives an automata theoretical characterization of classes of languages
induced by a natural syntactic hierarchy with respect to the higher types allowed. This
hierarchy derives from the obvious classification of types according to their “(functional)
level ” (see the subsequent subsections.) The characterization uses the “nested pushdown
automaton ” as introduced in [Ma 76]. Disregarding the initial motivation, the results
obtained remain firmly in the realm of formal language theory.

In this note we show that the techniques from [DaGo 86] can be modified to be of
direct use for program schemes and therefore programming languages. We transfer the
aforementioned automata theoretical characterization of formal languages to yield an
automaton (with a nested pushdown store as characteristic feature) equivalent to the
hierarchy of de Bakker Scott schemes. This extends the recursion – pushdown equivalence
known for classical de Bakker Scott schemes to higher homogeneous types. Moreover, it
yields a seemingly new way to implement higher type recursive procedures.

The technical starting point of our results is the aforementioned and well known

Theorem 1 (Cited from [In 79]) (a) Each de Bakker Scott scheme can be implemented
on a pushdown automaton with data store.

(b) Each pushdown automaton with data store can be transformed into an equivalent
de Bakker Scott scheme.

A de Bakker Scott scheme is a system of recursive equations like

F0(y) = t0, . . . , Fm(y) = tm

where the right hand sides are build from applicative terms like
F (g (H (f (K (y))))) where g, f are operations on the underlying (unspecified) structure
and F,G,K are among the Fi being defined on the left hand sides. Each right hand
side either is an applicative term or it is a term like if p(y) then s1 else s2 fi, where
p is a relation (predicate) on the underlying structure and the si are purely applicative
terms. Given a data domain and an element a from this domain we start with F0(a) and
iteratively reduce the current term by plugging in the right hand sides until the result
appears. By convention we always reduce the innermost term possible (call-by-value).
The pushdown automaton with data store is visualized as

a ∈ A

Program

E F G . . .

½
½
½>

Z
Z
Z}

PP
PP

PPi

3

The instructions and programs of the automaton involve some technicalities specified in
due course. Only for expository reasons we cite the technically simple proof of Theorem
1 in section 1.

For motivation and readability we choose to present our results first for the possibly
simplest structure of higher types, that of “monadic (homogeneous) types”. The bulk
ot the technical contents of this note is contained in this case. Subsequently we treat
“(general) homogeneous types.”

Monadic types: Notation and results. The type structure of “monadic types”
is given by: The only base type is ind. Higher types are defined inductively: If τ is
a type then τ → τ is a type. Thus argument and result type are always the same
and we have only one argument. Throughout we will be concerned with the notion of
level of a type. We say that level(ind) = 0 and level(τ → τ) = level(τ) + 1. Note
that we have exactly one type of each level: ind of level 0, ind → ind of level 1, and
(ind → ind) −→ (ind → ind) of level 2 A monadic type τ of level n can be uniquely
decomposed as

τ = τn−1 → τn−1 = τn−1 → (τn−2 → τn−2)

= τn−1 → (τn−2 → · · · → (τ1 → (τ0 → τ0)) · · ·),

where level(τi) = i and therefore τ0 = ind. Througout we use the convention that → in
types associates to the right. This allows to simplify the bracketing as then

τn−1 → (τn−2 → · · · → (τ1 → (τ0 → τ0)) · · ·)

= τn−1 → τn−2 → · · · → τ1 → τ0 → τ0.

Thus an object (term) having a monadic homogeneous type of level n has n arguments of
level n − 1 through 0. We have a typed family of variables V ar = (V arτ | τ a type), a
set of operation symbols, Opsym. Our operation symbols are always of type ind → ind.
Additionally we have a set of relation symbols Relsym. The set of variables V arτ is
partitioned into formal parameters and function symbols. The family of applicative terms
Term = (Termτ | τ a monadic type) is defined by

V arτ ⊂ Termτ ,

Opsym ⊂ Termind→ind,

and if t ∈ Termτ→τ and s ∈ Termτ then t(s) ∈ Termτ .

Sometimes the notation t : τ is used instead of t ∈ Termτ . We use it also for typed
families different from Term. We set level(t) = level(τ) where t : τ.

Each non atomic applicative term t : τ can be uniqely decomposed as t = t′(t1)
where t1 : τ. This inductively implies that t : τ contains no subterm of level < level(t) =
level(τ). This is a characteristic feature of terms based on homogeneous type structures.
Inductively we can continue to decompose t′

t = t′(t1) = t′′(t2)(t1) = · · · = y(ts)(ts−1) · · · (t2)(t1)

where y : τs → τs−1 → · · · τ1 −→ τ1 is a variable (or operation symbol), ti : τi, and
τ1 = τ. Thus the type of a non-atomic term like t is equal to the type of its rightmost
argument (again reflecting homogeneity.)

The semantics of our syntactic objects introduced here and further below is given with
respect to an interpretation (or algebra) A = (A, φOps, φRel). Here A is an arbitrary set,

4

and φOps assigns to each function symbol f : ind → ind a total function denoted by
φ(f) : A → A. φRel assigns to each relation symbol r a subset denoted by φ(r) ⊆ A of
those individuals which make r true. Note that we consider only functions and relations
with one argument.

We define de Bakker Scott schemes with higher monadic types as considered here
analogously to de Bakker Scott schemes in Theorem 1. Section 1 has a more detailed
definition. The nested pushdown automaton is formally introduced in Section 2. Theorem
2 to be proved in Section 3 is an extension of Theorem 1 (a) to higher types. .

Theorem 2 Given a level n de Bakker Scott scheme with monadic higher types we can
construct a level n pushdown automaton equivalent to it.

At present it is not clear if the reverse direction of the theorem can be obtained. To
this end (among others) we consider the classical type structure of (general) homogeneous
types.

Homogeneous types: Notation and results. The type structure of “ homogeneous
types” is given by: The only base type is ind we have level(ind) = 0. The type ind → ind

is the only type of level 1. If
τ , τ1, . . . , τm, m ≥ 1 are all types of the same level n then (τ1 × · · · × τm) → τ is a type
of level n + 1. Thus for example all types of level 2 are
(τ × · · · × τ) → τ, where τ = ind → ind. As we adhere to the de Bakker Scott principle
we have only one individual and therefore no argument types like ind × . . .×ind. We have
analogous decomposition observations as in the monadic case where instead of a single
argument type we now have a tuple (τ1 × · · · × τm) of argument types of the same level.
As in ths monadic case we have a family of variables V ar now homogeneously typed,
operation and relation symbols. Applicative terms now are built with the rule

if t1 : τ1, . . . , tm : τm, t : (τ1 × · · · × τm) → τ then t(t1, . . . , tm) : τ.

Again we can decompose analogously to the monadic case substituting arguments by
argument lists of the same level. Consequently a term t contains no subterm of level
< level(t). de Bakker Scott schemes for this case are formally defined in Section 4 and we
can state our final

Theorem 3 (a) Each level n pushsdown automaton can be transformed into an equivalent
level n de Bakker Scott scheme with general homogeneous types.
(b) Given a level n de Bakker Scott scheme with homogeneous types we can construct an
equivalent level n pushdown automaton.

This characterization shows that Theorem 1 can be extended to higher types, item
(b) gives us a novel way implementing higher type recursion as announced. We leave a
comparison of this result to known ways to implement higher type recursion to future
work.

1 Schemes with monadic types

After introducing the schemes with monadic higher types, we introduce the classical push-
down automaton computing over an arbitrary structure and present the proof of Theorem
1 in order motivate the subsequent more complex considerations.

5

Syntax. Given an applicative term t : τn−1 → τn−2 → τn−3 → . . . → τ0 → τ0 where
τ0 = ind, we sometimes use the notation

t ↓= t(yn−1)(yn−2)(yn−3) . . . (y0) : ind

where yi is a formal parameter of type τi. We use this notation mostly when t is just a
function symbol. Our program schemes are systems of recursive equations between terms
of base type. The set of right hand sides RHS is larger than the set of applicative terms
of base type in that we allow for the if − then − else control structure. That is

Termind ⊂ RHS,

and if r(y) then t else s fi ∈ RHS,

where r is a relation symbol, y : ind is a formal parameter, and t, s ∈ Termind. Note
that our right hand sides can all be considered as of type ind. The definition of the
condition of the if − then − else − fi construct seems arbitrarily restrictive, one might
expect the condition r(t) where t : ind. We have not checked in how far our restriction
can be removed, but even with this definition non-trivial programs become possible as the
example further below shows. Now we come to the actual program schemes. A monadic
recursive program scheme of higher type is a system of equations as

F0(y0) = t0, F1 ↓= t1, . . . , Fm ↓= tm,

where the Fi are different function symbols (making the scheme deterministic), F0 : ind →
ind is the main function (symbol), y0 is a formal parameter of type ind, ti ∈ RHS, and
the variables allowed in ti are all the Fj and the formal parameters from Fi ↓ . Thus each
variable in ti is bound, either as a formal parameter or as a function symbol defined by
one of the equations. The level of a scheme is the maximal level of the Fj and thus the
maximal level of all symbols occurring. In our case it is simply the maximal number of
arguments an Fj can have. Note that the de Bakker Scott schemes from the Introduction
correspond to schemes of level 1 according to our definition.

Example. To introduce the semantics of our schemes we give an example (of a level
2 scheme). We consider the following interpretation: A is the set of all words over the
symbols a and b, that is A = {a, b}∗. We have the operation symbols a, b : ind → ind

with the interpretation φ(a)(w) = aw ∈ A and similarly for b. Thus our interpretation
is a so called “free ” interpretation. r is interpreted as φ(r) = {anbn |n ≥ 0} ⊂ A. We
use the function symbols

F : ind → ind, and

C, G : (ind → ind) → (ind → ind).

Our scheme is given by

F (y0) = G(a)(y0) (Here a is the operation symbol.)

G(y1)(y0) = if r(y0) then y1(y0) else G(C(y1))(b(y0)) fi

(Generation of the same number of C’s and b’s.)

C(y1)(y0) = y1(y1(y0))

(Iterated copying depending on the number of C’s.)

6

Semantics.The semantics of our schemes is given by a deterministic reduction or
evaluation strategy. The evaluation strategy transforms computation terms of base type.
Computation terms are defined as the family of applicative terms, but with two modifi-
cations: Each individual of the interpretation considered is a computation term of type
ind. Such a term is what we call an evaluated computation term . Moreover, we allow
no formal parameters in computation terms (reflecting the call-by-value character of our
reduction strategy below.) Only function symbols occurring in the program scheme under
consideration and operation symbols are admitted in computation terms.

Our evaluation strategy is a call-by-value strategy defined as follows: Only computa-
tion terms of type ind can be reduced. Always the innermost computation term of type
ind which is not yet evaluated is reduced. Computation terms like f(t) where f is an
operation symbol therefore are only reduced when t ∈ A is an individual. In this case
φ(f) is applied to t giving another individual. Computation terms like F (tn−1) · · · (t0)
where F is a function symbol are only reduced when the term t0 is evaluated, that is an
individual. In this case we reduce the term F (tn−1) · · · (t0) in the natural way: plugging
in the right hand side of the equation for F ↓ substituting the formal paramters with
the actual parameters ti. In case that the right hand side of F ↓ is an if − then − else

we first evaluate the condition of the if − then − else. This is possible without further
reduction steps as t0 is already evaluated, the condition reads r(y0) where r is a relation
symbol, and y0 corresponds to t0. Then our reduction strategy branches directly. Note
that this allows us to consider only purely applicative terms as computation terms. No
further cases can arise and our reduction strategy is defined at this point. We denote the
execution of one reduction step of our reduction strategy by ⇒, and i reduction steps are
denoted by ⇒i .

Example (continued). We evaluate our scheme above starting with F (a) where a

is the individual a ∈ A.

F (a) ⇒ G(a)(a) (The first a is the operation symbol, the second

a the individual, if − then − else is evaluated directly.)

⇒ G(C(a)) (ba) (Note ba ∈ φ(r),

the if − then − else is evaluated directly.)

⇒ C(a)(ba)

⇒ a(a(ba))

⇒ a(aba) ⇒ aaba = aaba.

As a second example we evaluate

F (aa) ⇒ G(a)(aa)

⇒4 G(C(C(a)))(bbaa) (Two times G and two times b.)

⇒ C(C(a))(bbaa)

⇒ C(a)(C(a)(bbaa))

⇒ C(a)(a(a(bbaa))) (Two function evaluations of a.)

⇒2 C(a)(aabbaa))

⇒ a(a(aabbaa))

⇒2 aaaabbaa = a4bbaa.

The function computed is an 7→ a2n

bn an, it is undefined for arguments 6= an. The scheme
exhibits what we think is one characteristic feature of higher type schemes, an iterated

7

copying process leading to exponential growth.

The (classical) pushdown automaton. Conceptually all the automata considered
here are heavily restricted versions of Friedman’s generalized Turing machine [Sh]. We
recall the visualization from the introduction.

The data store always stores one individual. The pushdown store is as usual; it stores
elements from a given set of storage symbols Γ (the storage alphabet). Moreover, we need
a finite set of states Q. Given an interpretation, the automaton can evaluate the operations
and relations with the individual stored as argument in one step. The configurations of
the automaton are triples (q, W, a), where q ∈ Q, W ∈ Γ∗ , and a is an individual
of the interpretation considered. To program the automaton we have a specified set of
instructions.

Delete instruction: (q, A, pop, p), here A ∈ Γ, p, q ∈ Q.

Push instruction: (q, A, push(W), p), here W ∈ Γ+ = Γ∗ \ {e}.

Function evaluation: (q, A, exec(f), p), f is an operation symbol.

Relation evaluation: (q, A, exec(r), p, p′), r is a relation symbol.

Finally given operation and relation symbols a program is a finite sequence (or set) of
instructions as above with a given initial state q0 ∈ Q and a given initial symbol A0 ∈ Γ
for the store. As we want our programs deterministic we require that for each pair q, A

we have exactly one instruction (q, A, . . .) in our program.
Given an interpretation we give the natural semantics to our instructions. The instruc-

tion (a, A . . .) induces one computation step on the configurations (q, AV,−), V ∈ Γ∗.

We denote it by ` .

Delete instruction: (q, AV, −) ` (p, V,−).

Push instruction: (q, AV,−),` (p,WV,−).

Function evaluation: (q, AV, a)) ` (p,AV, φ(f)(a)).

Relation evaluation: (q, AV, a) ` (p,AV, a) or (p′, AV, a)

depending on φ(r)(a).

Given an individual a the automaton starts in the configuration (q0, A0, a) and transforms
the current configuration in a deterministic way until the store is empty. Then and only
then the automaton stops and the stored individual is the output. Clearly the automaton
need not always stop.

Proof of Theorem 1 (a). The proof relies on the observation that computation
terms of a given program scheme can be naturally represented as configurations,

F1(F2(· · · (Fm(a)) · · ·)) ; (q, Fm . . . F2F1, a),

where q will be treated by the program to be defined as a designated “ normal state ”.
Given a level 1 scheme

F0(y) = t0, . . . , Fn(y) = tn

the automaton is programmed to simulate the execution of the equations. This is greatly
simplified when we assume that te scheme is in (Chomsky) normalform. That is as right
hand sides t of F (y) = t we only have five possibilities.

G(y), H(G(y)), y, f(y), if r(y) then G(y) else H(y) fi,

8

where G, H are variables, f is an operation symbol and r is a relation symbol. A simple
inductive process transforms a given scheme into normalform by decomposing the given
right hand sides. For example the equation
F (y) = G(H(f(K(y)))) is decomposed as

F (y) = L1(K(y)), L1(y) = L2(Lf (y)),

Lf (y) = f(y), L2(y) = G(H(y)),

where Li and Lf are new variables not yet occurring in the program scheme.

To translate a scheme in normalform into a program we translate each equation sep-
arately. Given the equation F (y) = t, we distinguish the five cases for t and translate
them as

G(y) ; (q, F, push(G), q),

G(H(y)) ; (q, F, push(HG), q),

y ; (q, F, pop, q),

f(y) ; (q, F, exec(f), qF), and (qF , F, pop, q),

if r(y) thenG(y) else H(y) fi

; (q, exec(r), qG, qH), and (qG, F, push(G), q) and

(qH , F, push(H), q).

Here the qG, qH , qF are new states occurring only at this place. To be syntactically fully
correct, we have to add some “dummy instructions ” (qH , A, . . .), . . . which however never
are used in our simulation. Clearly Γ consists of all variables of the program, Q contains
the normal state q and some additional states like the qG, qH , qF above, used to control
the simulation of equations. The initial symbol of the store is F0 from the scheme. Clearly
the initial state has to be the normal state q.

As each reduction step is simulated by one or two computation steps of the automaton,
the equivalence of automaton and scheme follows easily.

Proof of Theorem 1 (b) The proof relies on the observation that configurations can
be naturally represented as computation terms

(p, A1 A2 . . . Am, a) ; Am(· · ·A2(pA1(a)) · · ·).

The next computation step of the automaton depends on the state p and the top symbol
A1 of the store . The next reduction step induced by the scheme to be defined will
depend on the variable called pA1. Problems arise when the automaton executes the
delete instruction (p, A1, pop, p

′). To simulate this, the scheme should have the equation
pA1(y) = y. This would yield the computation term Am(· · ·A2(a)) · · ·)), unfortunately we
have lost the state p′. We cannot add p′ to A2 because we cannot syntactically construct
variables depending on information obtained during the reduction process. Moreover, we
cannot store p′ as p′A2 when A2 is stored because we do not really know the right p′ at
this moment of the computation. Therefore we impose an additional syntactic restriction
on our programs.

Definition 1.1 For any program of the pushdown automaton there is a state d such that
all delete instructions are like (−, −, pop, d).

9

That is, d is a fixed “(post-)delete state ”. Fortunately, the automaton constructed above
satisfies this restriction, the delete state is q, the normal state of the simulation. With
this restriction it is clear how configurations are represented, as

(p,A1 A2 . . . Am, a) ; dAm(· · · dA2(pA1(a)) · · ·),

where d is the delete state of the program.
Given a program with delete state d we construct a program scheme with exactly one

equation pA(y) = t for each instruction (p,A, . . .) of the automaton.

(p, A, pop, d) ; t = y,

(p, A, push(A1 A2 . . . Am), p′) ; t = dAm(· · · (dA2(p
′A1(y))) · · ·),

(p, A, exec(f), p′) ; t = p′A(f(y)),

(p, A, exec(r), p′, p′′) ; t = if r(y) then p′A(y) else p′′A(y) fi.

The main equation of the program scheme is the unique equation q0A0(y) = . . . where
A0 is the start symbol of the store and q0 is the initial state of the automaton. Starting
with the computation term q0A0(a) the scheme induces a reduction sequence directly
corresponding to the computation of the automaton.

2 The nested pushdown automaton

The nested pushdown store. The nested pushdown storage structure has been orig-
nally introduced by Maslov [Ma 76]. The storage structure of the level 2 pushdown store
is given by a classical level 1 pushdown store where each element stored points to another
level 1 pushdown store. In a level 3 store each element of a classical pushdown store ponts
to a level 2 store. This is best visualized nesting pushdown stores:

A L

...

. . .

B
C D . . .

E
F G . . .

I
J K . . .

M
N O . . .

P
F G . . .

One can also write instead:

C D F G J K N O Q R
B E I M P

A L

In the nested pushdown store we allow for an arbitrary nesting depth indicated by the
nesting depth of brackets in

Definition 2.1 Given a set of storage symbols Γ the set configurations of the nested
pushdown store over Γ is given by the set NPU defined as

Γ∗ ⊂ NPU,

if A ∈ Γ and W ∈ NPU, W non-empty then A[W] ∈ NPU,

if V, W ∈ NPU, then V W ∈ Γ.

10

For example A1

[

A2[A3] C[D[E]]
]

BE stands for the store

E
A3 D

A2 C
A1 B E

Each occurrence of a symbol occurs in a specified nesting depth. A1 in nesting depth
1, A2 in nesting depth 2, A3 in nesting depth 3. A symbol can occur in several nesting
depths, like E above first in nesting depth 2 and then in 1. Note that each non-empty
configuration X from NPU can be uniquely decomposed as

X = A1[A2[A3[· · · [Am−1[AmXm]Xm−1] · · ·]X3]X2]X1

where Ai ∈ Γ and Xi ∈ NPU. The NPU “ belonging ” to A1 is A2 . . . X2 the one be-
longing to Am−1 is AmXm , to Am belongs only the empty store. The nested pushdown
automaton to be defined will have access to the whole top of the store, consisting of the
string A1 . . . Am. For X ∈ NPU the level of X is defined to be level(X) = the maximal
nesting depth of any occurrence of a symbol in X. So classical pushdown store configu-
rations are of level 1, the store in the preceding picture is of level 3.

Operations defined on NPU. Let X be a non-empty nested pushdown store, spec-
ified as

X = A1[A2[A3[· · · [Am−1[AmXm]Xm−1] · · ·]X3]X2]X1 ∈ NPU.

For n ≤ m the pushdown store popn(X) ∈ NPU is obtained by deleting An with the
pushdown belonging to An, that is An[An+1 . . . Xn+1]. It is defined by

Definition 2.2

popn(X) =











A1[A2[· · · [An−1[Xn]Xn−1] · · ·]X2]X1, if Xn non empty

A1[A2[· · · [An−1Xn−1] · · ·]X2]X1, if Xn is empty.

For example we have

pop2(A[B]C) = AC pop1(A[B]C) = C

pop1(A[B[CD]E]F) = F, pop2(A[B[CD]E]F) = A[E]F,

in the third example above the NPU belonging to A is B[CD]E and is deleted together
with A, in the fourth example the NPU of B is CD and consequently gets deleted.

For X as above 1 ≤ n ≤ m+1 and W ∈ Γ+ = Γ\{e} the NPU pushn(W, X) ∈ NPU

is obtained by to pushing W = B1 · · ·Bk in place of An or on top of Am if n = m + 1. It
is defined by

Definition 2.3 pushn(W, X) =










































A1[A2[· · · [Am−1[Am[W]Xm]Xm−1] · · ·]X2]X1 ∈ NPU if n = m + 1

A1[A2[· · · [Am−1[WXm]Xm−1] · · ·]X2]X1 ∈ NPU if m = n

A1[A2 · · · [An−1[B1[Z]B2[Z] . . . Bk[Z]]Xn−1] · · ·]X2]X1 ∈ NPU

if n < m and Z = An+1[. . . [AmXm] · · ·]Xn+1

is the NPU belonging to An.

11

Thus pushn(W, X) substitutes An with the word W copying the NPU belonging to An

such that it belongs to each symbol of W . This copying ability seems to be a characteristic
feature of the nested pushdown store. Thus for example we have

push1(DE,A[B]C) = D[B]E[B]C push1(DE,A[X]C) = D[X]E[X]C,

for X ∈ NPU

push2(DE,A[B]C) = A[DE]C push3(DE,A[B]C) = A[B[DE]]C,

note how the nesting depth increases in the fourth example and how the X as a whole is
copied in the second example.

The nested pushdown automaton. The level n pushdown automaton to be de-
fined next is the natural extension of the level 1 pushdown automaton considered above,
where the pushdown store configurations are of level ≤ n as opposed to 1. An example
configuration of the automaton is

A

B D

C E

Fq a

Program

Thus the configurations are triples (q,X, a) where level(X) ≤ n, a is an individual of
the interpretation considered, and q is a state from a given finite set of states. Next we
give syntax and semantics of the instructions. Throughout we assume m ≤ n. The delete
instructions are

(q, A1 . . . Am, popl, p), where l ≤ m.

This instruction is only applicable to configurations (q, X, −) where

X = A1[A2[A3[· · · [Am−1[AmXm]Xm−1] · · ·]X3]X2]X1,

that is, in order to apply this (and any other) instruction the automato checks the whole
sequence of symbols at the top of the NPU . The computation step then is the obvious
one,

(q,X,−) ` (p, popl(X), −).

The push instructions are treated totally analogously. They are

(q, A1 . . . Am, pushl(W), p)

where l ≤ m + 1 if m < n and l ≤ m if m = n and W is a non empty word over the
storage alphabet. Semantically we get

(q,X,−) ` (p, pushl(X), −).

As for operation evaluation we have the instructions
(q, A1 . . . Am, exec(f), p) with the obvious semantics. Relation evaluation is introduced
totally analogously and we omit the formal definition at this point.

For reasons as stated in the proof ot Theorem 1 (b) we restrict the delete instructions.

12

Definition 2.4 We require that for any level n automaton there is a fixed state d such
that all instructions deleting in level 1 are like (−, −, pop1, d).

That is, d is a fixed “(post-)deletion in level 1 state ”. We do not need such a restriction
for popl, l > 1. It becomes only necessary for the proof of Theorem 3(a).

Finally, a program is a finite sequence (or set) of instructions as above together with
a given initial state q0 and a given initial symbol A0 for the pushdown store. As we
want our programs deterministic and do not want that they abort irregularly, we re-
quire that for each pair q, A1 . . . Am, where 1 ≤ m ≤ n we have exactly one instruction
(q, A1 . . . Am, . . .). Given an interpretation and an individual a the automaton starts in
the configuration (q0, A0, a) and transforms the current configuration in a deterministic
way until the store is empty which is the only case in which it stops. The current element
in the data storage is the output.

3 Proof of Theorem 2

The proof follows the principles of the proof of Theorem 1 in section 2 above. However it
is more complex as already the representation of the computation terms is not so obvious.
Our representation derives from that used in [DaGo 86].

Representing computation terms. For a term r : ind → ind let Rep(r) ∈ NPU

denote the representation to be defined in Definition 3.1. Any computation term r can be
decomposed as r = r1(r2(· · · (rm(a)) · · ·)) where ri : ind → ind as follows from the type
structure. We will present r by the following configuration (q will be the normal state of
the simulation),

r ; (q, Rep(rm) . . . Rep(r1), a). (1)

Recall that the top of the pushdown store is on the left. The ordering corresponds to
our call-by-value semantics; the scheme reduces rm first, the automaton has access to
rm. Interestingly, subterms of level > 1 will be stored the other way round, in the same
ordering in which they occur in the term. We are left with the problem to define Rep(r) for
r : ind → ind. If r = F is atomic clearly Rep(r) = F. Otherwise r = s1(· · · (sm(F)) · · ·),
with

si : (ind → ind) → (ind → ind)

and F : ind → ind. We let

Rep(r) = F [Rep(s1) . . . Rep(sm)] (note the ordering).

We are left with the problem to define Rep(s) for

s : (ind → ind) → (ind → ind).

This goes in the same way. We decompose s = t1(· · · (tm(G)) · · ·) where ti : τ → τ and

τ = (ind → ind) → (ind → ind).

Then
Rep(s) = G[Rep(t1) . . . Rep(tm)].

Clearly this yields a (surprsingly simple) inductive definition of Rep(r) where level(r) ≥ 1.
It is subsumed as

13

Definition 3.1

Rep(F) = F (the atomic case),

Rep(s1(· · · (sm(G)) · · ·)) = G[Rep(s1) . . . Rep(sm)] (non atomic case.)

Note that a term containing symbols of maximum level n is represented by a pushdown
store of level n. A symbol of level l always occurs in nesting depth l of the store. For
example for F : ind → ind

G(H(K))(F) ; F [K[GH]],

G′(H ′(K ′))
(

G(H(L(K)))
)

(F) ; F
[

K ′[G′H ′]K[GHL]
]

.

Note that the level of F is 1, that of K, K ′ is 2 and that of G, H, L, G′, H ′ is 3. The
sequence of top symbols in the first example is FKG and in the second example FK ′G′.

When we consider the configuration encoding the computation term in (1) we see
that the head symbol of rm being responsible for the next reduction step is Ak when
B1B2 . . . Bk−1Ak is the sequence of top symbols of the pushdown store Rep(rm) . . . Rep(r1).

(Chomsky) normalform. To simulate the reduction steps of a monadic scheme on
our pushdown automaton, matters are simplified considerably when we restrict the right
hand sides of equations. A level n scheme is in (Chomsky) normalform iff it only has
equations F (ym)(ym−1) · · · (y1)(y0) = t where m ≤ n − 1 and the right hand side t is as
in one of the following cases (capital letter F,G,H, . . . are function symbols).

Case 1. G(ym)(ym−1) · · · (y1)(y0) (Renaming the head.)

Case 2. ym(ym−1) · · · (y1)(y0), m ≥ 0

(Deleting the head (projection). The level of the head may decrease.)

Case 3. G(ym−1) · · · (y1)(y0), m > 0

(The level of the head decreases.)

Case 4. f(y0) only if m = 0

(Operation evaluation. The whole equation reads F (y0) = f(y0))

Case 5a. G
(

H
)

(ym)(ym−1) · · · (y1)(y0), m ≤ n − 2

(Level of the head increases , level(G) = m + 2.)

Case 5b. G
(

H(ym)
)

(ym−1)(ym−2) · · · (y1)(y0)

Case 5c. G(ym)
(

H(ym)(ym−1)
)

(ym−2)(ym−3) · · · (y1)(y0)

Case 5d. G(ym)(ym−1)
(

H(ym)(ym−1)(ym−2)
)

(ym−3) · · · (y1)(y0)

. . .

. . .

Case 5e. G(ym)(ym−1) · · · (y2)
(

H(ym)(ym−1) · · · (y1)
)

(y0)

Case 5f. G(ym)(ym−1) · · · (y1)
(

H(ym)(ym−1) · · · (y1)(y0)
)

14

(5c through 5f exhibit the seemingly characteristic copying feature

– 5f only when m > 0 but m = 0 is possible then it is as 5b.)

Case 6. if r(y0) thenH(ym) · · · (y0) else G(ym) · · · (y0) fi

An inductive argument some details of which are presented in Section 5 shows

Lemma 3.2 Each monadic level n scheme can be transformed into an equivalent level n

scheme in normalform.

Construction of the automaton. Given the level n scheme

F0(y0) = t0, F1 ↓= t1, . . . , Fm ↓= tm

in normalform we construct an equivalent level n pushdown automaton. The construction
is based on the representation of computation terms as configurations as given above. Each
equation

F(ym)(ym−1) · · · (y1)(y0) = t

where m ≤ n− 1 of the scheme is simulated by a dedicated set of instructions, depending
on which case of the normalform applies to t. The state q is our normal state Γ is the
storage alphabet, it simply consists of the function symbols and operations of the scheme.

Case 1.
(q, K1 . . . KmF, pushm+1(G), q), for all Ki.

The Ki will be universally quantified throughout. This reflects that the reduction step
depends only on the head F, the rest of the term is not “read”, but only formally plugged
into the equation. The automaton on the other hand is required to read all top symbols
in order to determine which instruction to execute.

Case 2.

(q, K1 . . . KmF, popm+1, q) again for all Ki. Recall Definition 2.4 .

Only the F is deleted.

Case 3.

The restriction in Definition 2.4 causes a minor problem. First we treat the easy case
,m > 1. An example reduction step with m = 2,

F(A)
(

D(E)(H)
)

(a) ⇒ I
(

D(E)(H)
)

(a),

the F(A) is substituted with the I. We have

Rep

(

F(A)
(

D(E)(H)
)

)

= H[A][F]E[D]], Rep

(

I
(

D(E)(H)
)

)

= H[IE[D]]

15

The first (set of) instructions is

(q, K1 . . . KmF, popm, qF1), qF1 a new state ,

and as m > 1 Definition 2.4 is respected.
In our example we get

H[A[F]E[D]] ` H[E[D]].

The next instruction (set) is

(qF1, K1 . . . Km−1L1 . . . Lk, pushm(GL1), qF2) all Ki, Li, k, m − 1 + k ≤ n.

In our example

H[E[D]] ` H[I[D]E[D]] (D is copied.)

Finally we have

(qF2, K1 . . . Km−1GL2 . . . Lk, popm+1, q) all Ki, Li, k.

In the example

H[I[D]E[D]] ` H[IE[D]],

and the instructions fulfill their task.

Now we come to the case where m = 1. The equation reads

F (y1)(y0) = G(y0),

here the first of our instructions above would violate Definition 2.4. Instead we first push
the G and then pop iteratively until level 2 is empty. The instructions are (for all K)

(q, KF, push1(G), qF1), (qF1, GK, pop2, qF1), (qF1, G, push1(G), q),

and we end up in the normal state. In the case m > 1 we could avoid this iterative
deleting in level m+1 because the same effect could be obtained by deleting once in level
m, but with a different state.

Case 4.

(q, F, exec(f), qF), (qF , F, pop1, q) (Recall Definition 2.4).

Case 5a.

(q, K1 . . . KmF, pushm+1(H), qF1), (qF1, K1 . . . KmH, pushm+2(G), q)

Case 5b.

We simply get the instruction

(q, K1 . . . KmF, pushm+1(GH), q).

An example with m = 2 is

F
(

B(C)(D)(A)
)

(E(I))(a) ⇒ G
(

H (B(C)(D)(A))
)

(E(I))(a)

16

and the instruction in fact yields the correct transformation of the representation

I[A[F[D[C[B]]]E ` I[A[GHD[C[B]]]E.

Case 5c.
We get the instructions

(q, K1 . . . KmF, pushm+1(H), qF1),

(qF1, K1 . . . KmH, pushm(KmKm), qF2) (copying ym),

(qF2, K1 . . . KmH, pushm+1(G), q).

This calls for an example.

F (A(B)) (E(L)) (I(J)) (a) ⇒ G (A(B))
(

H(A(B))(E(L))
)

(I(J))(a)

Our instructions, here we have the case m = 3, yield

J
[

L [B [FA] E] I
]

` J
[

L [B [HA] E] I
]

` J
[

L [B [HA]B [HA]E] I
]

` J
[

L [B [GA]B [HA]E] I
]

,

and the representation of the first computation term is transformed into the representa-
tion of the second computation term.

Cases 5d. through f.
These cases are treated analogously, only the m of the second instruction above needs

to be adapted. We get

(qF1, K1 . . . KmH, pushm−1(Km−1Km−1), qF2) for 5d and

(qF1, K1 . . . KmH, pushm−2(Km−2Km−2), qF2)

for the next (omitted) the case. The cases indicated with the dots are treated alike,
adapting the level of the push instruction as before. In case 5e the aforementioned push

operation is push2.

F(A)(B)(C)(D)(a) ⇒ G(A)(B)(C)
(

H(A)(B)(C)(D)
)

(a).

the simulation runs as

D
[

C [B [A [F]]]
]

` D
[

C [B [A [H]]]
]

` D
[

C [B [A [H]]] C [B [A [H]]]
]

` D
[

C [B [A [G]]] C [B [A [H]]]
]

17

Case 5f.

Due to the call-by-value reduction strategy of the semantics, this case is treated differ-
ently from the preceding cases. We have to push first the G and then the H. For m > 0
we get the instructions

(q, K1 . . . KmF, pushm+1(G), qF1),

(qF1, K1 . . . KmG, push1(K1K1), qF2),

(qF2, K1 . . . KmG, pushm+1(H), q).

For m = 0 the second push is omitted and we use qF1 instead of qF2.
Another example

F(A)(a) ⇒ G(A)(H(A)(a))

leads to
A[F] ` A[G] ` A[G] A[G] ` A[H] A[G]

and the head symbol H is accessible to the automaton, see also (1).

Case 6.

This case is easy we state it for completeness. The instructions are

(q, K1 . . . KmF, exec(r), pH, pG),

(pH, K1 . . . KmF, pushm+1(H), q),

(pG, K1 . . . KmF, pushm+1(G), q).

This brings the construction of the automaton to the end. To be fully in line with the
definition some dummy instrutions – never occurring in simulations – must be added. As
the simulation of each single equation is correct the automaton is equivalent to the initial
scheme.

4 Proof of Theorem 3 (sketch)

The syntax and semantics of schemes with general homogeneous types is as for the
monadic case we give a characteristic

Example (continued from page 6). We let

G : (ind → ind) × (ind → ind) → (ind → ind)

and a, b, C as before. Our scheme is

F (y0) = G(a, b)(y0) (Here a, b are the operation symbolsd.)

G(y1, y2)(y0) = if r(y0) then y2(y1(y0)) else G(C(y1), C(y2))(b(y0)) fi

(Generation twice the same number of C’s as b’s.)

C(y1)(y0) = y1(y1(y0))

(Iterated copying depending on the number of C’s.)

18

The semantics is given by the call-by-value reduction strategy. The semantics of the
scheme over the interpretation as on page 6 is an 7→ b2n

a2nbnan and undefined for the
remaining arguments.

We do not see how to get an equivalent monadic scheme. However, a level 2 automaton
can easily be obtained: Generate n C’s on level 2. Then execute push1(AB) copying the
C’s. Finally delete the C’s. With each deletion execute push1(AA) first , then for each A

append the a on the data store. This yields the a2n

. After this our store reads B[C . . . C]
and we proceed in the same way with the B’s and b’s.

Proof of Theorem 3 (a). We are given a level n pushdown automaton. We need
to represent configurations from NPU as computation terms. Our representation almost
the same as the one used in [DaGo 86]. The head symbol of the term must consist of
all top symbols of the store plus the state of the automaton. The function symbols of
level 1 , that is of type ind → ind are all symbols like qA, q any state and A ∈ Γ. Those
of level 2 are qA1A2 and Ai ∈ Γ. Their type is τ = (ind → ind)×m → (ind → ind)
where m =] function symbols of level 1, that is]qA’s. This can naturally be extended
to higher levels. Thus the symbols of level 3 are all qA1A2A3. Their type is throughout
τ l → τ where l =] symbols of level 2.

The representation of a given NPU is defined decreasing with respect to the nesting
level in which the NPU “starts”. Repl is the representation of an NPU which is consid-
ered as being nested in level l, its nesting level itself in this case is ≤ n − l + 1. It will
turn out that

Repl(X) =











a (argument) list of level l − 1 terms for l ≥ 2,

a single level 1 term for l = 1.

For W = AV a non empty word over Γ we have

Repn(W) = (F1ARepn(V), . . . , FkARepn(V)),

where the Fi are all level n − 1 symbols and FiA is to be understood as the appropriate
level n symbol. If W is empty we simply get Repn(W) = (F1, . . . , Fk). And for 2 ≤ l < n

we get in the same way for a non-empty NPU decomposed as

X = A1[A2[A3[· · · [Am−1[AmXm]Xm−1] · · ·]X3]X2]X1 ∈ NPU, m ≤ n − l + 1

Repl(X) =
(

G1A1 . . .AmRepl+m−1(Xm) Repl+m−2(Xm−1) . . . Repl(X1), . . .

. . .

GkA1 . . .AmRepl+m−1(Xm) Repl+m−2(Xm−1) . . . Repl(X1)
)

,

where the Gi now are all symbols of level l − 1 and GiA1 . . .Am is to be understood as
the respective symbol of level l + m − 1. If X is empty we just get

Repl(X) = (G1, . . . , Gk).

For l = 1 and X = A1[Y] that is, referring to our decomposition above we have X1

empty, we let

Rep1(X) = dA1 . . . Am(Repm(Xm))(Repm−1(Xm−1)) · · · (Rep2(X2))

19

where d is our unique fixed deletion state, cf. Definition 2.4.
Finally we consider a general configuration (q, X, a) with X now decomposed as above

and X1 = Z1 . . . Zk where the Zi (necessarily of the form B[Y]) are all NPU ’s of X1

starting in level 1. We represent this configuration as

Rep1(Zk)
(

Rep1(Zk−1)
(

· · ·
(

Rep1(Z1)

(

qA1 . . . Am(Repm(Xm)) · · · (Rep2(X2))(a)
))

· · ·
))

.

Note that Rep1(Zi) = dBi . . . reflecting our call-by-value strategy on the one hand and
Definition 2.4 on the other hand. The instruction
(q, A1 . . . Am, pop1, d) is simulated by the equation

qA1 . . . Am(ym) · · · (y1)(y0) = y0,

which results in a correct simulation. Higher level deletion is simulated by a projection
onto one of the arguments. Note that our (long) lists of arguments allow to pick the
right projection, such that the head symbol after the projection corresponds to the top
symbols and state of the automaton. To simulate the push operation causes no principal
difficulties any more, we need just translate it into the representation. Note that push1

is to be treated differently from pushl, l > 1.

Proof of Theorem 3(b). We can essentially reduce the proof to the monadic case.
First observe that we can restrict attention to right hand sides in normalform. The
right hand side of an equation F (ym) · · · (y1)(y0) = t in normalform looks as follows
(analogously to the monadic case.) We list only a few not totally obvious cases.

Case 2. ym,k(ym−1) · · · (y1)(y0),m ≥ 0 where

ym,k the k’th parameter of ym (Deleting the head (projection).

The level of the head may decrease.)

Case 5a. G
(

H
)

(ym)(ym−1) · · · (y1)(y0), m ≤ n − 2

(Level of the head increases , level(G) = m + 2.)

Case 5b. G
(

H1(ym), · · · , Hk(ym)
)

(ym−1)(ym−2) · · · (y1)(y0)

. . .

. . .

Inductively we have the following

Lemma 4.1 Let (t1, t2, . . . , tm−1, tm) be a list of arguments occurring somewhere in a
computation term of a scheme in normalform. Then we have symbols Hi all of the same
argument type and one list of terms s = (s1, . . . , sk) such that ti = Hi(s) for all i.

Note that this holds trivially for monadic schemes. Now writing H1 . . . Hk(s) for the list
in the lemma and proceeding in this way inductively we can translate such a computation
term into a monadic term. We consider H1 . . . Hk as one symbol. We are somewhat
generous here because the Hi have no common result type. But this causes no problem

20

because we never hit on a term like H1 . . . Hk(s)(t) in which case we would need the result
type. Instead we have a projection before leading to something like Hi(s)(t).

With the preceding reduction in mind ourn representation of terms now is as in the
monadic case. Concerning the simulation we only consider

Case 2.

Here we have to distinguish 2 subcases. If m = 0 we only have k = 1 simulate with
(q, F, pop1, q) recall Definition 2.4. For m > 0 we have

(q, K1 · · ·KmF, popm+1, qF), (qF,K1 . . . KmH1 . . . Hl, pushm+1(Hk), q)

for all H1 . . . Hl considered as one symbol of the storage alphabet.

5 The (Chomsky) normalform proof (short sketch)

The normalform proof relies on the following observation: If we have a general equation
F (ym) · · · (y1)(y0) = t which is not an if − then − else then we can decompose

t = t1(t2)(t3) · · · (tm)(t0)

with level(ti) decreasing from left to right. This implies due to homogeneity that t0 can
contain all parameters, t1 all except of y0, t2 all except y0 and y1 Using the cases
numbered 5a to 5f of the Chomsky normalform we can inductively unwind the right hand
sides. The remaining cases are essentially for the end of this process when no unwinding
is possible any more. We leave it at these remarks.

Conclusion

Guided by the formal language theoretic result of [DaGo 86] we have extended the classical
recursion –pushdown relation to higher type concepts. Some questions may be worth of
further study.

- Can we extend the results to non homogeneous types? Or are de Bakker Scott
schemes with non homogeneous types provably more powerful?

- With real programming languages in mind, one may ask how this can be transferred
to programming schemes with several variables of base type ind. What about most
general language here the typed λ-terms?

- Concerning formal language theory one may ask, if ideas used here may lead to an
automata theoretical characterization of languages from the “IO-hierarchy” [Da 82].
Here the derivation mode is call-by-value, therefore the question at this place. Per-
haps the difference between IO and OI only is the fixed deletion state.

- How efficient is it to use the nested pushdown for an actual implementation of higher
type recursion with appropriate type concept?

- Semantic hierarchy results for the de Bakker Scott schemes considered here should
be provable.

21

References

[Da 82] Werner Damm. The IO- and OI- hierarchies. Theoretical Computer Science 20,
1982, 95 – 207.

[DaGo 86] Werner Damm, Andreas Goerdt. An automata theoretic characterization of
the OI-hierarchy. Information and Control 71, 1986, 1 – 32.

[In 79] Klaus Indermark. Vorlesung Kontrollstrukturen WS 1979/80 (Course on control
structures, winter term 1979/80) RWTH Aachen.

[LoSi 84] Jacques Loeckx, Kurt Sieber. The foundations of program verification. Wiley-
Teubner 1984.

[Ma 76] A. N. Maslov. Multilevel stack automata. Problemy Peredachi Informatsii 12
(1) , 1976, 55 – 62.

[Sh] J. C. Shepherdson. Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theory. In Harvey Friedman’s Research on the Foundations
of Mathematics, Studies in Logic and the Foundations of Mathematics 117,
edited by L. A. Harrington et al., North Holland.

22

