
Heterogeneous Computing With MPICH/Madeleine
and PACX MPI: a Critical Comparison

Daniel Balkanski, Mario Trams, Wolfgang Rehm

{danib,mtr,rehm}@informatik.tu-chemnitz.de

Technische Universität Chemnitz
Fakultät für Informatik∗

Straße der Nationen 62, 09111 Chemnitz

November 27, 2003

Abstract

Today, computational Clusters of Networked Workstations (usually off-the-shelf PCs
interconnected by high-speed, low-latency communication networks) are playing a major
role in redefining the concept of supercomputing. Sadly, the fierce competition and the
lack of common industry standards have lead to wide spread of clusters interconnected
with incompatible high-performance System Area Networks (Gigabit Ethernet, GigaNet,
Myrinet, SCI, QNet, etc.).

With the growing interest in grid technologies, aggregating such clusters into a bigger
heterogeneous Clusters of Clusters (CoC) is becoming a ‘hot’ issue. Lot of work was done
by the cluster community in past few years for developing message passing middleware
that effectively supports such configurations, but unfortunately most of this projects are
incomplete and/or didn’t show signs of any further development. Being interested mainly
in solutions providing the programmer with some single, portable and widely accepted
parallel programming model like the Message Passing Interface (MPI), we have narrowed
down our choice to a few alternatives: PACX-MPI, MPICH-Madeleine III and MPICH-G2.

Besides a brief overview of these three alternatives the paper presents our experiences
and benchmark results by using two of them: PACX-MPI and MPICH/Madeleine III in the
the heterogeneous CoC setup consisting of two sub-clusters equipped with Myrinet, SCI,
and Gigabit Ethernet.

1 Introduction
Huge advances of two modern age technologies - personal computers and high-speed networks
have allowed to break-down the price barriers and construct cost effective clusters of PCs which
provide comparable performance to super-computers at a fraction of the cost.

∗The work presented in this paper is funded within the framework for technology promotion by means of
the European Regional Development Fund (ERDF) 2000-2006 as well as by means of the Freistaat Sachsen,
Staatsministerium für Wissenschaft und Kunst (SMWK Project-Number 7455/1180).

1



Paraphrasing the indestructible and ever-working Moore’s law, computer’s processor power
doubles every 18 months. But with this rapid increase of computational power comes the prob-
lem that the bottleneck in such cluster system shifts from the nodes to the actual networks
which connect them. The industry responded to the problem by developing a wide variety of
high-performance interconnection technologies with different price and performance character-
istics. Today users have the freedom of choosing the most appropriate for their applications
and budget interconnection technology, but it faces them with interoperability problems when
clusters with incompatible SANs have to be interconnected into a bigger Cluster of Clusters.

This situation often arises when the users want to expand their clusters and discover that an-
other networking technology better suits their application requirements or budgetary constrains.
But sometimes even if the users decide to stay with the same type of interconnection technol-
ogy they discover that the current generation of network interfaces cannot be connected to the
existing networks of older generation or if it’s possible it would degrade the performance to an
unacceptable level. This is due to the changed mechanical, electrical and protocol specifications
of the network interfaces (optical vs. copper media, higher signal clocking, introduction of new
packet types, protocol changes, etc.)

The most straightforward way to circumvent the problem with interoperability of the inter-
cluster SANs is to introduce one or more gateway nodes at each sub-cluster. Beside the respec-
tive intra-cluster SAN’s interfaces, these gateway nodes have to be equipped with additional
network interfaces connecting them to one or more inter-cluster networks. To avoid becoming a
bottleneck, these inter-cluster networks must deliver same or higher network performance than
the fastest intra-cluster network. From point of view of minimization of the latencies between
the nodes participating in the different sub-clusters, optimal configurations are these with the
inter-cluster networks merged with the intra-cluster SANs, or in other words, with gateway
nodes directly connected to the SANs of the sub-clusters.

Unfortunately, running distributed message-passing applications on such heterogeneous CoC
configurations is still problematic, because these applications have to deal with multiple com-
munication interfaces, low-level protocols, data encodings, data compressions and quality of
service choices in order to achieve acceptable performance. One possible approach for de-
veloping such applications is the ad hoc method, which is based simply on reuse of multiple,
readily available program components, each specialized in different low-level communication
protocol. While effective, this approach is tedious, error prone, and leads to non-portable appli-
cations intricately bound to the specific configuration on which they were initially designed.

A highly desirable approach would be to supply the programmers with some single, wide
accepted parallel programming model, like the Message Passing Interface (MPI) [13], [14] spe-
cially designed to support such heterogeneous CoC configurations. This MPI implementation
must provide mechanisms that allow the methods used for each communication calls to be de-
termined independently of the application code on the basis of the underlying communication
structure. However, the development of such multi-protocol message passing middleware re-
quires solving many challenging problems like: reliable ordered message delivery on top of
multiple communication methods, effective message packetization strategies, protocol conver-
sions and addressing issues in incompatible networks, application launch and data distribution
across the sub-clusters, runtime determination of the routing policies, routing load balancing
in a case of multi-gateway environment, effective topology-aware implementation of collective
operations, scalability, manageability, fault tolerance, etc.

Given the volume and complexity of these challenges, it becomes clear why most of the
projects targeting development of communication middleware systems for heterogeneous CoC
are incomplete or dead. Hence, because in this study we consider only the free open-source
software solutions available, we have to restrict our attention to only a few usable possibilities

2



described briefly in the following section.

2 Overview of available communication middleware suitable
for building CoC

2.1 PACX-MPI
PACX-MPI (PArallel Computer eXtension) [5], [8], [2] has been primarily designed to enable
running MPI applications across several MPP or PVP supercomputers, without having to intro-
duce changes to the source code of this applications and by fully exploiting the communication
subsystem of each machine.

To achieve this goal, PACX-MPI is designed as a library siting between the user application
and the local intra-machine MPI implementation. When the application calls a MPI function,
the call is intercepted by PACX-MPI and decision is made whether there is a need to contact
another MPP (or sub-cluster in our case) during the call execution. If not, the library sends
the message using the matching MPI call from the underlying local MPI library. This way, the
highly tuned vendor’s MPI implementations are used for all intra-machine communications.

When the MPI call involves another MPP the communication is forwarded via network by
using TCP/IP sockets, but in this act MPI processes do not exchange messages directly. Instead,
on each parallel system two special nodes are reserved, one for every (incoming and outgoing)
communication direction. On each of these nodes a daemon MPI process is running, which
takes care of communication with the local nodes, compression and decompression of data for
remote communication and communication with the peer daemons of other parallel machines.
This daemon approach bundles the communication and eliminates the need to open connections
between each process on every system, which saves resources and permits to handle security
issues centrally.

A weak point of this design is that the use of wide-area, heavy-weight protocol stacks like
TCP/IP for inter-cluster communication introduces significant latency overheads. The optimal,
single-hop route configurations for interconnecting a sub-clusters by providing a gateway nodes
equipped with interfaces to the both types incompatible intra-cluster SANs are not supported.
Instead the messages exchanged between the sub-clusters have additionally to traverse twice
the full protocol stacks of the wide-area protocols used for connection between the daemon
processes of each sub-cluster. This results in significant difference between the latencies of
the intra- and inter-cluster messages, which becomes bigger when low-latencies, and/or OS-
bypassing network interfaces are used for the intra-cluster communication.

Another problem is that direct TCP connections are needed between all nodes on which
forwarding daemon processes are running, which is not the case for the Beowulf-like clusters,
in which all nodes reside in a separate, insulated from the rest of the world private network
address space. This problem can be circumvented by putting the nodes of all clusters to be
connected in common physical or virtual network and rearranging all conflicting hostnames
and addresses. Better solution would be if the forwarding daemon processes can be ‘fixated’
to spawn always on the front-end nodes of the sub-clusters which normally have second fixed
routable Internet address. But this would be appropriate only to the relatively more rarely used
cluster setups, where the frontend have connection to the high-speed intra-cluster SAN.

PACX-MPI doesn’t provide convenient application launch on machines where each node
has different network address which is exactly the case for the Beowulf-like clusters. The most
appropriate startup method for PACX-MPI applications on CoC configurations is so called
“server startup”. For this method a special server computer with a fixed network address is

3



required to gather and exchange the information from the different partitions/clients for the net-
work addresses of the nodes on which the forwarding daemon processes are running. The main
inconvenience come from the fact that after launching own instance of startup server the user
have to launch the applications on every sub-cluster manually, typically with the means provided
by the sub-cluster vendor MPI, for instance mpirun. That’s why interfacing an PACX-MPI
CoC with batch system would be quite difficult.

We want to mention here that to solve this application startup inconveniences, a tool called
the “Configuration Manager” is currently under development in the frame of the DAMIEN
project [15]. The primary goal of this Configuration Manager is to ease the handling of re-
sources and applications for PACX-MPI jobs.

2.2 MPICH/Madeleine III
With it’s last third major revision MPICH/Madeleine becomes one of the most promising MPI
implementations for CoC, because it is specially designed to support natively setups of multiple
heterogeneous networks.

MPICH/Madeleine, like many other MPIs for high-performance low-latency intra-cluster
SANs is actually a port of MPICH [10]. MPICH is probably the most widely used, free re-
alization of MPI, which design goal was to combine portability with high performance within
a single implementation. To achieve these goals MPICH employs multi-layered architecture,
defining an intermediate interface called Abstract Device Interface (ADI) [9], which allows to
plug modules (a.k.a. ADI devices) to support different communication protocols. While it is
theoretically possible in this way to support network heterogeneity in MPICH, it is quite com-
plicated and requires a rather heavy integration work to be done each time when a new device
is to be added in order to preserve inter-device co-existence. Therefore the authors choose an
alternative approach to add heterogeneous support in MPICH by interfacing it with the already
available multi-protocol communication library called Madeleine [4], [3]. This approach makes
possible to reuse readily available software components and prevents feature modifications in
the MPICH’s ADI code to cause incompatibilities, although, maybe, it is not the best perfor-
mance wise solution.

Madeleine III, which is a part of the PM2 [18] programming environment, is a native multi-
device communication library, which transparently supports most of the important intra-cluster
SAN protocols like TCP, VIA, GM, BIP, SISCI, MPI, PVM, SBP. While providing a high-
level of abstraction the Madeleine III communication library is able to effectively exploit some
low-level characteristics of the underlying network devices (like preallocated buffers, DMA
operations, etc.). In addition it has a builtin efficient inter-device forwarding functionality [17].

Because Madeleine III can natively forward messages between all maintained protocols, it
fully supports the optimal, single-hop route configurations, and don’t need to use intermediate
WAN protocols. Furthermore, due to the careful design of the routing functionality double
traversal of the data through the full protocol stacks on the gateway nodes is avoided, which
minimizes the latency of forwarded messages.

To enable the routing functionalities of Madeleine, merging this way several sub-clusters
into a single CoC, one must supply two configuration files. First file, which we would call
network configuration file contains the description of the topology of all physical networks
available inside and between the sub-clusters. Second file, which we would call channel config-
uration file contains description of the physical channels, which simply overlap a given physical
network or only a segment of it. In addition it can also contain one or more virtual channels
which are built out of many physical channels, this way creating a virtual communication chan-
nels encompassing different physical heterogeneous networks. Applications can use for com-

4



munication both physical and virtual channels. The virtual channels are slower than the physi-
cal one and they should be used only by applications that are running over the nodes which do
not have direct physical network connection in between. In this case Madeleine automatically
chooses the best physical network available to route the data.

Unfortunately this method of topology description is quite inflexible and restricts the use
of the quite powerful routing functionalities of Madeleine. The problem comes from the fact
that in the configuration files networks and channels topologies can be described only by using
hostnames, and there is no distinguishing between actual hosts, hostnames and network inter-
faces. This makes impossible to describe some more complex topologies, especially in case
when some of the hosts posses several kernel-resident network interfaces.

An other problem (or rather, inconvenience) is that to launch a MPI application one should
use a special loader called Leonie instead the familiar mpirun command. During the startup
MPI applications are supplied only with a default communication channel but not with some-
thing like machine-file. It is simply assumed that instances of the application has to be spawned
on all hosts that participate on this default channel. This forces the user to deal with lots of
configuration files when they want to change often the number of the hosts involved in the com-
putation, while in practice using always the same channel and restricts them from possibility to
unload the gateway nodes from computation for performance reasons.

2.3 MPICH-G2

MPICH-G2 [7], [12] is a grid-enabled MPI implementation, which is also a port of MPICH,
built on top of services provided from the Globus Toolkit R©. The Globus Toolkit is a collection
of software components designed to support development of applications for high-performance
distributed computing environments, or “Grids”. The services provided by this toolkit help
MPICH-G2 to support efficient transparent execution in these heterogeneous environments,
while providing application-level management of heterogeneity.

Such complex issues concerning the application startup, typical for wide-area multi-site
Grid environments, like cross-site authentication, the need to deal with multiple schedulers with
different characteristics, coordinated process creation, heterogeneous communication struc-
tures, executable staging, collation of the standard output are successfully hidden.

By the use of few commands additionally to the the familiar mpirun command user gains
access to powerful features of Globus Toolkit like Monitoring and Discovery Service (MDS) for
selective search of computational resources, Grid Security Infrastructure (GSI) for obtaining a
(public key) proxy credential used to transparently authenticate it to each site, Global Access
to Secondary Storage to stage executable(s) from remote locations (indicated by URLs), and
finally Dynamically-Updated Request Online Coallocator (DUROC) in conjunction with Grid
Resource Allocation and Management (GRAM) to start and subsequently manage the applica-
tion instances on every site (possibly in assistance with the corresponding batch system).

Once the MPICH-G2 application is started the most efficient communication method pos-
sible between two processes is automatically used, selecting vendor supplied MPI if available,
or Globus Communication (Globus IO) with Globus Data Conversion (Globus CD) for inter-
machine messaging over TCP, otherwise. While in contrast PACX-MPI forwards all off-cluster
communication operations to intermediate gateway nodes, here any process may use both local
area and wide-area communication protocols. This causes certain problems with configura-
tions where part of the application processes are behind firewalls, which are now solvable [19]
by opening several holes and ranges in the firewalls for the ports used by each service of the
Globus and by forcing the randomly chosen ports for Globus IO to fit into allowed range.

5



While the firewalls are not so typical for the CoC setups of our interest, the bigger prob-
lem comes from the fact that most of the Beowulf-like clusters use private address space for
their nodes, which is incompatible with the current versions of the Globus Toolkit, because the
security mechanisms employed, requires knowledge of the actual IP of the host that is being
connected to. To circumvent this, a common TCP network and a consistent name resolution
must be provided between all sub-clusters. In addition establishing a own Certification Au-
thority (CA) would be needed to sign the certification requests of the nodes of all sub-clusters,
because they do not have unique public Internet addresses and hostnames.

The distinguishing feature of MPICH-G2 is that in addition to the task to hide heterogeneity
of the underlying configurations aims to enable the users to manage heterogeneity, when is
required within the standard MPI framework. This is done by associating additional attributes
to the MPI communicator, expressed within each process in terms of topology depths and colors.
The two processes have same color at a particular level, when they can communicate directly
with each other at this level. Currently four levels of topology depths are distinguished — wide,
local and system (intra-machine) TCP messaging and vendor MPI. MPICH-G2 applications
can query communicators to retrieve attribute values and structure themselves appropriately,
for example by creating the new communicators that reflect the underlying network topology.

In addition, the gathered and maintained information about the actual network organization
enables very effective multilevel topology-aware implementation of the collective operations
in MPICH-G2, which brings substantial improvements relative to the typically used topology-
unaware binomial trees approaches.

Despite all these attractive features of MPICH-G2 we do not include it in our performance
evaluation because at the time of this study it was not possible to use an other MPICH-based
implementation of MPI as an underlying vendor-supplied MPI. This was a very restrictive lim-
itation because most of the commonly used free implementations of MPI and especially these
for high-performance SANs (like MPICH-GM for Myrinet, MP-MPICH for SCI, MVICH for
VIA over Ethernet and GigaNet, MVAPICH for Infiniband, etc.) are based on MPICH. With
the latest versions 1.2.5.1 of MPICH-G2 this limitation is a little bit relaxed, to the the require-
ment that the underlying MPICH-based implementation is an MPICH version 1.2.5 or later and
the mpirun of that underlying MPICH exports environment variables to the application. Un-
fortunately this still prevents to use as an underlying vendor-supplied MPI, implementations
that are forked from some older MPICH versions and don’t follow MPICH evolution any more
(like MP-MPICH, MVICH, etc.) and implementations which follow close latest MPICH de-
velopment, but have modified startup scripts that cannot export environment variables (like
MPICH-GM). 1

The most important key features and limitations of the MPI implementations discussed in
this section are summarized in table 1.

3 Details about our CoC testbed

Our Cluster of Clusters testbed gives us the choice to experiment with the following cluster in-
terconnection technologies, that are widely used currently for intra-cluster SAN’s: SCI [11] [6],
Myrinet [16] Gigabit and Fast Ethernet. The setup represents a heterogeneous CoC consisting
of two sub-clusters each equipped with several different incompatible SAN’s.

1This limitation is now gone and we sucessfuly have installed MPICH-G2 using MPICH derived local MPIs
like MPICH, MPICH-GM and MPICH-VMI 2.0. Our first impressions of the performance and stability are very
positive.

6



���������	
	��	
���
 ��������
 ��������


�������	�
�	�����
�������
�



����������	��
��������
�
���������

�����
���

����������������������������������

��������������������� �������������!��

	������

"�����������������������������

�������������#�

����������������������������������

��������������������� �������������$��

��������	�������������������

�������������#�

�������
 ��������
��!
"	��		�
#	�	���	�	���
�	������


%��#��������������&�����������&�����

'������$���&�(�������)��������$�����

����������������������������������'��������

������(��$����&��)�������$(�����������

��!��!�����������������#�*!��(�

��������������������'������$���&�(�

����$���(�����������������������#�


���&�(���������'����������������

����������������������������������������

��������������������������&��������������

����$���&�(��+����'��&�����&����'�

���&��)�#�

%���������$��������������!��	������



"������������������,�������'������(�

'��&����!��������������������������

����������������������#��������

����������������-���������(�'��&���������

�������$���&�(��������&����������&������

��'������������������#���������$��������

������������������������(��$�!������

����������������������$���&�(�����������

����'���������(�����$�����������������'�

�������#�

%���������$�������������$���������	#�

�������������������������������������

��������������������������������-������

'��&�����������������������'���������#��

$����!
�����"�
��!
� 
���
���
��������
������
���	�����	����


.�����������������������������������&����

�����-������&����������(��$����&��)������

�&������#�

�

	����������������������������������

��������(������������'���������������������

���)����$������������������!��������'���(�

�����������������������������$(�����#�

	����������������������������������

��������(������������'���������������������

���)����$������������������!��������'���(�

�����������������������������$(�����#�

�#��	��%	%��!
��%%���������
���#��
�
���
#����


.��
%���������,������������'(�����������(��$�

���#�

%���������,������������'(�����������(��$�

���#�/��������&��������������(�

������������������'������#�
�
��'�������������'����(��������'�����������������������# 

Table 1: Comparison of Features and Limitations

3.1 Hardware
First Dual-Athlon MP sub-cluster consists of 8 nodes each equipped with:

• 2 x Athlon MP 1600+ CPU 1.4GHz real core freq., 2x133MHz FSB, 256K L2 Cache

• 1 x Tyan Tiger MPX mainboard (AMD MPX chipset)

• 1 x 512 MB CL2 Unregistered PC2100 DDR SDRAM Module

• 1 x AGP Grafic Card with NVidia GeForce2 MX chipset, 32MB RAM

• 1 x 3COM 3C920 Fast Ethernet on-board NIC

• 1 x Intel Pro/100 S Desktop Fast Ethernet NIC

• 1 x Dolphin’s PSB66 SCI-Adapter D33x

• 1 x Myrinet-2000 PCI64C (LANai9.3) Fiber NIC, with 2MB on-board memory

Second Dual-Xeon sub-cluster consists of 8 nodes each equipped with:

• 2 x Intel Xeon CPU, 2.4GHz core freq., 4x100MHz FSB, 512K L2 Cache

• 1 x Super Micro P4DMS-6GM mainboard (Intel E7500 chipset)

• 4 x 512 MB CL2.5 Registered ECC PC2100 DDR SDRAM Module

• 1 x ATI Rage XL integrated PCI Grafic Controller, 8MB RAM

• 1 x Intel 82544GC Gigabit Ethernet on-board NIC

• 1 x Intel 82557 10/100M Fast Ethernet on-board NIC

• 1 x Dolphin’s PSB66 SCI-Adapter D331

† In addition one of the Xeon nodes contains:
• 1 x Myrinet-2000 PCI64C (LANai9.3) Fiber NIC, with 2MB on-board memory

7



3.2 Network Structure
All cluster nodes are diskless and they are booting same NFS-root image from the common
ClusterNFS server over dedicated for administration purposes Fast Ethernet network. From the
cluster part this network consists of 3COM 3C920 Fast Ethernet NIC’s of the Athlon nodes,
Intel 82557 10/100M Fast Ethernet NIC’s of the Xeon nodes and one 24-port Fast Ethernet
switch (3Com SuperStack II 3900).

In addition to the common administrative Ethernet network, there are dedicated interprocess
communication Ethernet networks for each of the sub-clusters. Nodes of the Athlon sub-cluster
are connected to together through their Intel Pro/100 S Desktop Fast Ethernet NIC’s and a
24-port Fast Ethernet switch (3Com Super Stack II 3300). Nodes of the Xeon sub-cluster are
connected together by their on-board Gigabit Ethernet NIC’s and a 12-port Gigabit Ethernet
switch (3Com Super Stack III 4900).

We also connected these two networks together to simulate the most common and affordable
in the practice interconnection between two sub-clusters - by common TCP/IP network. This
way all the nodes from both sub-clusters are connected together by TCP over Fast Ethernet,
which is relatively slower and exposes much higher latencies in comparison with the SAN’s
like SCI, Myrinet and Gigabit Ethernet. Only the connection between nodes of the Xeon sub-
cluster is faster due to the Gigabit Ethernet NIC’s.

The SCI adapters of the nodes of each sub-cluster are connected into separate independent
SCI rings. Therefore, although all of the cluster nodes have one SCI adapter they cannot com-
municate directly over SCI network with nodes belonging to a different sub-cluster.

All the (8 from Athlon sub-cluster + 1 from Xeon sub-cluster) Myrinet adapters are con-
nected into a single Myrinet network using 16-port Myrinet switch (M3F-SW16). This way the
nodes participating in Xeon sub-cluster can exchange messages with the nodes participating in
Myrinet network of Athlon sub-cluster only if they are routed through the single Xeon gate-
way node equipped with additional Myrinet adapter or through the common TCP network. We
also tried to provide for our experiments an additional gateway node equipped with two SCI
adapters, connected to both SCI rings. Unfortunately this configuration was incompatible with
MP-MPICH.

For some of the PACX experiments we provide an additional Gigabit Ethernet connection
between the nodes from the Athlon sub-cluster and the nodes of Xeon sub-cluster which acting
like a gateways. Unfortunately due to some hardware restrictions and peculiarities of our hard-
ware (lack of free 64 bit PCI slots, broken PCI BIOS) the throughput of this connection (256
MBit/s) is more closer to Fast Ethernet than to the Gigabit Ethernet. In contrast we measure
895 MBit/s between two integrated Intel/Pro 1000 GBE NICs. That’s why, in the following text
we would refer to this additional connection not like a GBE, but like a 256Mbit/s connection,
just to emphasize to the readers that in typical cases better results should be expected, when a
normally-functioning GBE connection is used.

3.3 System Software
For the purpose of this study Red Hat 7.3 Linux was used with updated Red Hat 2.4.18-27.7.x
kernels. The latest available versions of the following drivers and message-passing middleware
were installed:

• MPICH 1.2.5

• Dolphin SCI Cluster Software Source package (DISsp) release 1.34

• Shared Memory Interface (SMI) release from October 26-th 2002

8



SCI Ring II

SCI Ring I

D
u

a
l 
X

e
o

n
S

u
b

-c
lu

s
te

r

D
u

a
l 
A

th
lo

n
S

u
b

-c
lu

s
te

r

Myrinet 16 port Switch

12 port GBE
Switch

24 port FE
Switch

Figure 1: Structure of the dedicated interprocess communication networks of our CoC testbed

• MP-MPICH release October 31-th 2002

• Myricoms’s GM release 1.6.4

• Myricoms’s MPICH-GM release 1.2.5..9

• PM2 release from March 05-th 2003

• MPICH-Madeleine III release from March 10-th 2003

• PACX-MPI version 4.1.4

4 Benchmark Results
In order to obtain complete and well-balanced view of evaluated MPI implementations we per-
formed series of widely recognized synthetic and application benchmarks. For estimating the
low-level performance characteristic of the MPI implementations we use the the industry stan-
dard Pallas MPI Benchmark (PMB-MPI1). PMB is built with objectives to provide a concise set
of benchmarks targeted at measuring important MPI functions (point-to-point message-passing,
global data movement, etc.), while enforcing strict requirements for run rules, set of required re-
sults, repetition factors and message lengths and at the same time don’t impose an interpretation
on the measured results (execution time, throughput and global operations performance).

In addition to the the synthetic benchmarks we performed two application benchmarks, the
results of which are much more likely to reflect real-world performance thanks to their use of
real application code.

Due to the size limitation of this document, only the most representative results obtained
that validate the conclusions would be shown here. The rest of the results can be found at [1].

9



4.1 Synthetic Benchmark Results
Using the Pallas MPI Benchmark (PMB-MPI1) we measure the performance of all single pro-
tocol MPI implementations for every available in our sub-clusters interconnect technology,
namely MPICH-GM over Myrinet; MP-MPICH over SCI; MPICH over Fast and Gigabit Ether-
net; MPICH/Madeleine III over Myrinet (GM), SCI and Fast and Gigabit Ethernet. In addition,
to estimate the overhead of running PACX-MPI over the native intra-cluster implementations
we benchmarked the following combinations: PACX-MPI over MPICH-GM, PACX-MPI over
MP-MPICH, and PACX-MPI over MPICH (Fast and Gigabit Ethernet). Due to the already men-
tioned space limitations we are presenting in fig. 2, 3, 4 and 5, only the bandwidth and latency
results of the most important PingPong sub-test between two nodes of the same sub-cluster.

As one can see from the obtained results, inside the sub-clusters PACX-MPI introduces
very small overheads in the latencies of slow interconnects like Fast Ethernet, ranging from
6% for short messages to insignificant for a messages above 512 Bytes. In opposite, for the
fast interconnects like SCI, Myrinet, GBE, the overhead of PACX-MPI over message laten-
cies is significant, starting from 20-90% for short messages and becoming insignificant only
for messages above 4-16KB. In similar way the impact over bandwidth is negligible for slow
interconnects like FE but it can reduce the bandwidth with 35-45% for the short messages on
the fast interconnects. The 95% of underlying MPI bandwidth is achieved only for messages
above 2-16k, depending from the fast interconnection type.

The obtained results also make it possible to compare the multiprotocol MPICH/Madeleine
III against the optimized only for one protocol MPI implementations. MPICH/Madeleine III
have significant advantages over original MPICH on FE and especially on GBE on both band-
width (+20%) and latency (-17%). For SCI MPICH/Madeleine III is significantly behind MP-
MPICH for messages under 128 bytes (-45% in bandwidth and +77% in latency), but for longer
messages it keeps close and even outperforms significantly MP-MPICH for messages above
512k. Only for Myrinet using GM library the performance is lagging behind the competition
in face of MPICH-GM. For messages above 32k MPICH/Madeleine III is in pair with MPICH-
GM but for shorter ones it’s far behind with 85% lower bandwidth and 500% higher latency for
certain message sizes. The explanation for this is that GM is the newest protocol supported by
Madeleine. Before the only available in Madeleine protocol for Myrinet was BIP. We where
reluctant to use BIP in our tests, first because is difficult to be supported in one cluster together
with GM, and second because when MPICH/Madeleine uses BIP it rely on the external BIP’s
loader to spawn the application instances on the nodes equipped with Myrinet. This BIP loader
was not working in our setup where every node have more than one network interface (because
of the diskless operation).

To measure the effectiveness of the evaluated middleware for building aggregate CoC we
ran PMB-MPI1 test on all possible combinations of CoC achievable with the PACX-MPI and
MPICH/Madeleine III and the available interconnects in our testbed:

• MPICH over both sub-clusters (FE in Athlon sub-cluster with GBE in Xeon sub-clusters).
The results of these tests will serve as reference for the usefulness of the evaluated mid-
dleware for building CoC.

• MPICH/Madeleine III, TCP over both sub-clusters. The use of this configuration shouldn’t
bring some special advantages over plain MPICH except that one can easily switch the
underlying network configuration without need of rebuilding it’s applications.

• MPICH/Madeleine III, GM-SCI. In this case Myrinet (GM) in Athlon sub-cluster and
SCI in Xeon sub-cluster is used. The gateway becomes the Xeon host equipped with both
SCI and Myrinet interfaces;

10



• MPICH/Madeleine III, GM-GBE. In this case Myrinet (GM) in Athlon sub-cluster and
GBE in Xeon sub-cluster is used. The gateway becomes the Xeon host equipped with
both GBE and Myrinet interfaces;

• MPICH/Madeleine III, SCI-GM-SCI. In this case SCI is used in both Athlon and Xeon
sub-clusters. The gateways are two - one Athlon and one Xeon hosts equipped with both
SCI and Myrinet (GM) interfaces;

• PACX-MPI over MPICH-GM (Myrinet) in the Athlon sub-cluster with PACX-MPI over
MP-MPICH (SCI) in the Xeon sub-cluster. Two separate experiments are performed
with different speeds of the link between the routing daemons — FE, and sub- GBE
(256Mbit/s).

• PACX-MPI over MPICH-GM (Myrinet) in the Athlon sub-cluster with PACX-MPI over
MPICH (GBE) in the Xeon sub-cluster. Two separate experiments are performed with dif-
ferent speeds of the link between the routing daemons — FE, and sub- GBE (256Mbit/s).

• PACX-MPI over MP-MPICH (SCI) in the Athlon sub-cluster with PACX-MPI over
MP-MPICH (SCI) in the Xeon sub-cluster. Two separate experiments are performed
with different speeds of the link between the routing daemons — FE, and sub- GBE
(256Mbit/s).

• PACX-MPI over MP-MPICH (SCI) in the Athlon sub-cluster with PACX-MPI over
MPICH (GBE) in the Xeon sub-cluster. Two separate experiments are performed with dif-
ferent speeds of the link between the routing daemons — FE, and sub- GBE (256Mbit/s).

Again, we are presenting in fig. 6, 7 and 8 only the bandwidth and latency results for the
PingPong sub-tests. The results indicate that in comparison to plain MPICH over both sub-
clusters PACX-MPI have significantly higher latencies and reduced bandwidth for messages
exchanged between the nodes from different sub-clusters. When we use FE links between the
forwarding daemon processes for short messages PACX-MPI have 500-800% higher latencies
and 80-90% lower bandwidth. For long messages these values are 10-15% increased latency
and 10-13% reduced bandwidth.

When higher throughput, 256 Mbit/s links are used between the forwarding daemon pro-
cesses in comparison with MPICH for very short messages we achieve 180-480% higher la-
tencies and 70-80% lower bandwidth. Due to the higher then FE bandwidth of the links for
messages above 1-2k we start seeing an upturn over MPICH reaching 90-115% higher band-
width and 30-50% lower latencies depending from the underlying MPI implementation. This
is a significant improvement achieved in relatively economical way, because by increasing only
the throughput of the links between the forwarding processes we improve the throughput be-
tween each of the nodes from the separate sub-clusters.

In point of view of the achievable throughput between the nodes of the separate sub-clusters
the clear winner is MPICH/Madeleine III. The explanation for this is in the ability of Madeleine
to natively forward messages between all maintained protocols. Unfortunately, due to the
already-discussed, low-performance implementation of Madeleine over the Myrinet’s GM pro-
tocol, we were unable to achieve better results for our best-case CoC scenarios consisting of
only high-performance low-latencies, OS-bypassing network interfaces. That’s why even for
the best case single-hop route GM-SCI configuration MPICH/Madeleine is behind the plain
MPICH in the quite important range of message sizes from 16 to 256 Bytes with up to 35%
lower bandwidth and up to 50% higher latencies. Nevertheless, for message sizes above 512-
1024 Bytes we are seeing an significant upturn over MPICH reaching 120-970% higher band-
width and 50-90% lower latencies depending from the underlying interconnects.

11



PingPong in Athlon Sub-Cluster, Bandwidth, All Interconnects

0.00

50.00

100.00

150.00

200.00

1 10 100 1000 10000 100000 1000000 10000000

Message size [Bytes]

B
an

dw
id

th
 [M

by
te

s/
se

c]

MPICH, TCP, Fast Ethernet

MP-MPICH, SCI

MPICH-GM, Myrinet

MPICH/Madeleine, TCP, FE

MPICH/Madeleine, GM, Myrinet

MPICH/Madeleine, SISCI, SCI

PACX over MPICH, TCP, FE

PACX over MP-MPICH, SCI

PACX over MPICH-GM, Myrinet

Figure 2: Athlon Sub-cluster, PingPong, Bandwidth, All Interconnects, All Message Sizes

PingPong in Athlon Sub-Cluster, Latency, Fast Interconnects

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 10 100 1000 10000

Message size [bytes]

La
te

nc
y 

[µ
s]

MP-MPICH, SCI

MPICH-GM, Myrinet

MPICH/Madeleine, GM,
Myrinet

MPICH/Madeleine, SISCI,
SCI

PACX over MP-MPICH,
SCI

PACX over MPICH-GM,
Myrinet

Figure 3: Athlon Sub-cluster, PingPong, Latency, Fast Interconnects, Messages up to 512 bytes

4.2 Stability Issues and Problems
During our experiments with MPICH/Madeleine III and PACX-MPI we discovered several sta-
bility issues and problems. We want to discuss them here, first in order to inform the the readers

12



PingPong in Xeon Sub-Cluster, Bandwidth, All Interconnects

0.00

50.00

100.00

150.00

200.00

1 10 100 1000 10000 100000 1000000 10000000

Message size [bytes]

B
an

dw
id

th
 [M

by
te

s/
se

c]
MPICH, TCP, Fast
Ethernet

MP-MPICH, SCI

MPICH/Madeleine,
TCP, Fast Ethernet

MPICH/Madeleine,
SISCI, SCI

PACX over MPICH,
TCP, GBE

PACX over MP-
MPICH, SCI

Figure 4: Xeon Sub-cluster, PingPong, Bandwidth, All Interconnects, All Message Sizes

PinPong in Xeon Sub-Cluster, Latency, All Interconnects

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 10 100 1000 10000

Message size [bytes]

La
te

nc
y 

[µ
s]

MPICH, TCP, Fast
Ethernet

MP-MPICH, SCI

MPICH/Madeleine,
TCP, Fast Ethernet

MPICH/Madeleine,
SISCI, SCI

PACX over MPICH,
TCP, GBE

PACX over MP-
MPICH, SCI

Figure 5: Xeon Sub-cluster, PingPong, Latency, All Interconnects, All Message Sizes

and second to explain why certain of our results are incomplete or missing.
First MP-MPICH, the free implementation of MPI for SCI is not completely stable in SMP

mode for Alltoall communication and with for big number of processes. This automatically

13



PingPong Between Sub-Clusters, Bandwidth, Slow Interconnects

0.00

2.00

4.00

6.00

8.00

10.00

1 10 100 1000 10000 100000 1000000 10000000

Message size [bytes]

B
an

dw
id

th
 [M

by
te

s/
se

c]

MPICH, TCP over both
sub-clusters

MPICH/Madeleine, TCP
over both sub-clusters

PACX over MPICH-GM
with PACX over MP-
MPICH, FE link

PACX over MPICH-GM
with PACX over MPICH
(GBE), FE link

PACX over MP-MPICH
with PACX over MP-
MPICH, FE link

PACX over MP-MPICH
with PACX over MPICH
(GBE), FE link

Figure 6: Between Sub-clusters, PingPong, Bandwidth, Slow Interconnects, All Message Sizes

PingPong Between Sub-Clusters, Bandwidth, Fast Interconnects

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 10 100 1000 10000 100000 1000000 10000000

Message size [bytes]

B
an

dw
id

th
 [M

by
te

s/
se

c]

MPICH/Madeleine, GM -
SCI

MPICH/Madeleine, GM -
GBE

MPICH/Madeleine, SCI -
Myrinet - SCI

MPICH/Madeleine, SCI -
GBE - SCI, 256 Mbit/s
link

PACX over MPICH-GM
with PACX over MP-
MPICH, 256 Mbit/s link

PACX over MPICH-GM
with PACX over MPICH
(GBE), 256 Mbit/s link

PACX over MP-MPICH
with PACX over MP-
MPICH, 256 Mbit/s link

PACX over MP-MPICH
with PACX over MPICH
(GBE), 256Mbit/s link

Figure 7: Between Sub-clusters, PingPong, Bandwidth, Fast Interconnects, All Message Sizes

means that the PACX-MPI on top of MP-MPICH possess the same problem. In addition, al-
though when PACX-MPI is used with completely stable version of MPI, there are still defects
introduced in some of the collective operations.

14



PingPong Between Sub-Clusters, Latency, All Interconnects

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1 10 100 1000 10000

Message size [bytes]

La
te

nc
y 

[µ
s]

MPICH, TCP over both
sub-clusters

MPICH/Madeleine, GM -
SCI

MPICH/Madeleine, GM -
GBE

MPICH/Madeleine, SCI -
Myrinet - SCI

MPICH/Madeleine, SCI -
GBE - SCI, 256 Mbit/s
link

PACX over MPICH-GM
with PACX over MP-
MPICH, 256 Mbit/s link

PACX over MPICH-GM
with PACX over MPICH
(GBE), 256 Mbit/s link

PACX over MP-MPICH
with PACX over MP-
MPICH, 256 Mbit/s link

PACX over MP-MPICH
with PACX over MPICH
(GBE), 256Mbit/s link

Figure 8: Between Sub-clusters, PingPong, Latency, All Interconnects, All Message Sizes

Second, when MPICH derived MPI is used as the local MPI-environment with PACX-MPI,
Fortran applications don’t work correctly. This is due to the fact, that PACX-MPI doesn’t re-
cover the calling arguments, and doesn’t pass them correctly to the C-version of MPI Init.
The 4.1.4 version of PACX-MPI we used here seems to overcome this problem, but this workaround
works only for the MPICH-based MPIs that use latest MPICH code base. And because MP-
MPICH is forked from MPICH 1.2 we were unable to run Fortran programs like NAS Parallel
Benchmarks with the combination PACX-MPI on top of MP-MPICH.

Third, we discovered also significant problems inside the implementation of the collective
operations and user data types of MPICH/Madeleine III which made impossible to run HPL test
with it. In addition, some other problems (probably data loss in some of the channels) caused
the incorrect NAS Parallel Benchmarks results for all underlying networks different from TCP
to be incorrect and we have to disqualify them. Also, beacuse the current implementation of
MPICH/Madeleine MPI is unstable in SMP mode we where restricted only to the tests with
single process per machine when it was used.

Despite all these problems, we think that we have collected enough experimental material
that would alow us to make interesting conclusions about the relative merits and demerits as-
sociated with the different approaches used for implementing the eavaluated communication
middleware and about the feasibility of the CoC computing.

4.3 Application Benchmark Results

As we have seen in section 4.1, we have received quite contradictive results from the synthetic
benchmarks. The heterogeneous CoC systems tend to expose very asymmetric communication
properties — inside the sub-clusters the communication performance is more than order of
magnitude higher then between the sub-clusters.

15



It is becoming increasingly more confusing and difficult for one to judge only from the
results of the synthetic benchmarks which CoC configuration is better suitable for the given
class of applications. Is it better to have a system that has a lower communication performance
inside the sub-clusters, but higher between the sub-clusters? Is the system with the highest
communication performance rates able to overlap effectively communications and computation
and to deliver also the highest real-world performance?

Trying to answer questions like these we decided to perform additional application tests with
HPL Version 1.0 and and MPI enabled version of POVRAY image rendering software on every
of the possible combinations of CoC achievable with the PACX-MPI and MPICH/Madeleine
III and the available interconnects in our testbed.

HPL is a portable implementation of the High-Performance LINPACK Benchmark for distributed-
memory computers. It attempts to measure the best performance of a machine in solving a dense
system of linear equations. The problem size and software can be chosen to produce the best
performance. The best performance on the Linpack benchmark is used as performance measure
for ranking the computer systems in the widely recognized Top 500 computers list available at
URL http://www.top500.org.

Because the goal of our tests is not to find the maximal achievable peak performance of
our system but rather to estimate the qualities of the evaluated communication middleware for
CoC we didn’t search the optimal problem size N. Instead we choose a big enough fixed prob-
lem size N, and for all examined CoC configurations we tried to tune the the rest configurable
parameters (like process grids, broadcast methods, block sizes) of the HPL benchmark to the
specific characteristics of the underlying communication middleware in order to achieve max-
imal performance for this configuration. The results from the benchmarks are presented in fig.
9 and 10.

MPI-Povray is the parallel version of the famous ray-tracing program Povray. It employs the
master-slaves parallel programming paradigm to distribute the work amongst a number of pro-
cessing elements. Communication between the elements is achieved with MPI message passing.
We choose a certain complex scene and render it using using all examined CoC configurations.
The results are presented in fig. 11.

As one can see from the obtained results, the use of PACX-MPI makes possible to extract
more performance than it would be achievable if a plain MPICH is used over the same CoC
setup. Even for small 8 node configurations like ours, where the ‘waste’ of two CPUs per sub-
cluster for the forwarding daemons reduces by significant amount the available resources for
computation we have significant performance gain over the alternative to run MPICH across
both sub-clusters. In addition by affordable improvement of the bandwidth of the link only
between the forwarding daemons we where able to double the performance gain. In case of
bigger configurations the performance gained over MPICH is even higher because the relative
cost of the ‘wasting’ CPUs for forwarding processes decreases.

One can argue that the performance increase in the case of using faster links between the for-
warding processes can also help to increase the performance of MPICH. It is true but some ad-
ditional tests demonstrated that when only two of the nodes of the Athlon sub-cluster equipped
with FE are upgraded with GBE, the performance MPICH over both sub-clusters increases only
slightly, although in our case these two nodes are 25% of the nodes with FE. In the case of the
tests with 16 processes the improvement of the MPICH performance was about 17% and in the
case of 32 processes (SMP mode) it was only about 3%.

When the application doesn’t stress the communication subsystem which is exactly the case
with the MPI Povray (because master exchange data only with one of the slaves at a given time)
there is not any advantages of using PACX-MPI or MPICH/Madeleine III. More important in
this case is to have optimally fast connection between the node of the master and the rest of the

16



nodes. We see that in this case MPICH/Madeleine III over TCP is slightly faster, due to the
advantages in both bandwidth and latency over MPICH over TCP. But when a virtual channel is
used for communication consisting of several different networks MPICH/Madeleine lags behind
the MPICH, especially in the case SCI-GM-SCI where we have two routing processes working
on two of the nodes which steal the CPU from the slaves. (We mentioned before that one of
the drawbacks of the current design of MPICH/Madeleine is that the gateway nodes cannot be
explicitly dedicated only for communication and it’s not currently SMP enabled.) We don’t see
lower performance in the case of PACX-MPI because in this case we use separate CPU’s for
the daemon processes.

����������	
����
����
���������������������������������������������
�����

��	�
������
�������
���� ������ �����������������
�����

������

�������

�������

�������

�������

�������

	������


������

�������

�

�
�����������������������
��
���������������� �!�"#

�
�����������������������
��
�����������������	��$��%&�!�"#

�
�����������������������
��
�����������'�( )��� �!�"#

�
�����������������������
��
�����������'�( )����	��$��%&�!�"#

�
�����������������������
��
���������������� �!�"#

�
�����������������������
��
�����������������	��$��%&�!�"#

�
�����������������'*��)�����
�
��������������'�( )��� �!�"#

�
�����������������'*��)�����
�
��������������'�( )�
��	�$��%&�!�"#

Figure 9: HPL 1.0 Application Benchmark on the agregate CoC, 8+8 processes

����������	
����
����
�����������������������������������������������
�����

��	�
������
����� �
�����!�������!�����������������
�����

�����

������

������

������

������

�������

�������

�������

�������

�������

�

	
��
����
�	������
����
	
��
����
�	��	����
��
��� 

	
��
����
�	������
����
	
��
����
�	��	����
�!�
�"��#$
��� 

	
��
����
�	������
����
	
��
����
�	���
%�&�'�
��
��� 

	
��
����
�	������
����
	
��
����
�	���
%�&�'�
�!�
�"��#$
��� 

	
��
����
�	��	���
����
	
��
����
�	��	����
��
��� 

	
��
����
�	��	���
����
	
��
����
�	��	����
�!�
�"��#$
��� 

	
��
����
�	��	���
%(��'
����
	
��
����
�	���
%�&�'�
��
��� 

	
��
����
�	��	���
%(��'
����
	
��
����
�	���
%�&�'�
�!��"��#$
��� 

Figure 10: HPL 1.0 Application Benchmark on the agregate CoC, 16+16 processes

17



���������	�
���
�
������
��������
���������
�
��������������
�����������������  !"�

����

�����

�����

�����

�����

������

�

�	
��
�����
������
����
����
��������

�	
�������������
 �	�
������
����
������������

�	
�������������

!�
�
 �	
"!#$%

�	
�������������
!�
�
&�


�	
�������������
&�

�
!�
�
&�


	'�(
�)��
�	��	
��
*���
	'�(
�)��
�	
���!��
+$
���,

	'�(
�)��
�	
��
"!#$%
*���
	'�(
�)��
�	
���!��
+$
���,

	'�(
�)��
�	��	
��
"!#$%
*���
	'�(
�)��
�	��	
���
+$
���,

Figure 11: MPI-POVRAY Application Benchmark on the agregate CoC, 8+8 processes

5 Conclusions

Many technological, economical and even political reasons force us to deal with clusters with
incompatible SANs even within a single organization. There is a growing interest to connect in
effective way all these computational resources into a single-image, aggregate Cluster of Clus-
ters, which would permit to face a more demanding, challenging, scientifical and engineering
tasks. Unfortunately, due to the complexity of the problems that have to be addressed for build-
ing efficient, flexible, robust CoC, there is a scarce availability of such middleware systems.

We evaluated the two most-usable, at the time of this study, middleware systems, suitable
for building CoC — PACX-MPI and MPICH/Madeleine III. We also demonstrated that are able
to deliver significantly higher performance in such heterogeneous environments compared to
the traditional implementations for homogeneous systems.

The design approaches of both PACX-MPI and MPICH/Madeleine III have their strong and
week sides. PACX-MPI’s design approach is able to deliver a significant part of the commu-
nication performance of the local MPIs inside each sub-cluster in a portable way. These local
MPIs are typically very stable and highly-tuned MPI implementations providing, like a rule, the
best achievable performance for a given intra-cluster SAN type.

Unfortunately, the faster the underlying local MPIs, the higher is the the overhead introduced
of the PACX-MPI inside the each sub-cluster. Besides, the use of heavy wide-area protocols for
inter-cluster communication, although appropriate for a Grid configurations, proves to be not
very effective in CoC environments. The resulting CoC systems exhibit very high asymmetry of
the communication performance between the nodes of one sub-cluster and between the nodes
of different sub-clusters.

In the future implementations of PACX-MPI we would like to see a possibility to use a
low-overhead SAN protocols for the communication between the forwarding daemons. Other
interesting alternatives are shared memory or at least local-host TCP, like in MPICH-G2. The
use of shared memory communication between the routing daemons would allow PACX-MPI to
support also the most desirable single-hop route CoC configurations where the gateway nodes
are equipped with interfaces to SANs of more than one sub-cluster.

The design approach of MPICH/Madeleine III makes it possible to achieve better commu-

18



nication performance with less asymmetry between the nodes of one sub-cluster and between
the nodes of different sub-clusters. Unfortunately, it also requires significantly more work to be
done to reach the stability and performance of the specialized MPIs on each type of interconnect
technology.

One common drawback for both designs is that they are not very scalable. The gateway
nodes are regular cluster nodes (albeit equipped with more than one SAN interfaces) and, hence,
with standard I/O capabilities. Therefore, they quickly become the bottleneck when have they to
forward the traffic between big sub-clusters. The problem is not so acute in the case of PACX-
MPI, once because of the use of two (incoming and outgoing) forwarding daemons which can be
placed on different nodes, and second, because these nodes can be unloaded from computation.
To overcome issue, an introduction of multiple gateways is required. However, this would raise
many additional complex problems like a routing load balancing, routing policies, etc.

The approach of routing the whole traffic of big sub-clusters through one or two gateway
nodes can show significant disadvantage in setups where all sub-clusters are connected to a
common Ethernet switch with enough backplane capacity, because the throughput of the gate-
way nodes cannot be compared with this of the backplane of a powerful switch. In such cases,
the lower but guaranteed throughput of the switch would be preferable over the faster, but shared
between all nodes throughput of the gateways. Therefore, in such configurations, the designs
like MPICH-G2 where every process can use both intra- and inter-cluster protocols can achieve
better results. We would like to mention here that MPICH/Madeleine III can also be configured
to work in this way. The additional advantage is that the inter-cluster protocol can be not only
TCP, but any of the supported protocols.

Finally, we would like to say that although PACX-MPI and MPICH/Madeleine III are cur-
rently unable to address all issues arising in heterogeneous CoC, they at least implement the
minimal basic set of functionality required for such an application. The only major obstacle
that still prevents their wide adoption is the insufficient degree of stability and ease of use, but
PACX-MPI is apparently getting closer.

References

[1] PACX-MPI and MPICH-Madeleine III Benchmark Results. Available at:
http://www.tu-chemnitz.de/ ˜danib/cluster-benchmarks/.

[2] PACX-MPI Documentation. Available online at URL:
http://www.hlrs.de/organization/pds/
projects/pacx-mpi/doc/.

[3] O. Aumage. Heterogeneous multi-cluster networking with the madeleine III communica-
tion library. In 16th International Parallel and Distributed Processing Symposium (IPDPS
’02 (IPPS & SPDP)), page 85, Washington - Brussels - Tokyo, Apr 2002. IEEE.

[4] O. Aumage, L. Bougé, A. Denis, J.-F. Méhaut, G. Mercier, R. Namyst, and L. Prylli. A
portable and efficient communication library for high-performance cluster computing. In
IEEE Intl Conf. on Cluster Computing (Cluster 2000), pages 78–87, Technische Universitt
Chemnitz, Saxony, Germany, Nov. 2000.

[5] T. Beisel, E. Gabriel, and M. Resch. An extension to MPI for distributed computing on
MPPs. Lecture Notes in Computer Science, 1332:75–82, 1997.

19



[6] Dolphin Interconnect Solutions Inc. PSB-64/66, Features and Benefits. Available at:
http://www.dolphinics.no.

[7] I. Foster and N. T. Karonis. A grid-enabled MPI: Message passing in heterogeneous
distributed computing systems. In Proceedings of SC’98. ACM Press, 1998.

[8] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed computing in a heterogeneous
computing environment. Lecture Notes in Computer Science, 1497:180–??, 1998.

[9] W. Gropp and E. Lusk. Mpich working note: The second-generation adi for mpich imple-
mentation of mpi, 1996.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, portable implementa-
tion of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828,
Sept. 1996.

[11] IEEE. IEEE Standard for the Scalable Coherent Interface (SCI). IEEE Std 1596-1992.
IEEE Computer Society, 1993.

[12] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of
the message passing interface. June 25 2002.

[13] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, 1994.
http://www.mpi-forum.org/docs/.

[14] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,
1997.
http://www.mpi-forum.org/docs/mpi-20.ps.

[15] M. Müller, E. Gabriel, and M. Resch. A software development environment for grid-
computing. Concurrency and Computation: Practice and Experience, 14:1543, 2002.

[16] Myricom Inc. Myrinet documentation. Available online at: http://www.myri.com.

[17] R. Namyst, O. Aumage, and L. Eyraud. Efficient Inter-Device Data-Forwarding in the
madeleine communication library. In Proceedings of the 15th International Parallel &
Distributed Processing Symposium (IPDPS-01), pages 86–86, Los Alamitos, CA, Apr
2001. IEEE Computer Society.

[18] R. Namyst and J.-F. Méhaut. PM 2: Parallel multithreaded machine. A computing en-
vironment for distributed architectures. In Parallel Computing Conference (ParCo’95):
Proceedings of the Conference, volume 11 of Advances in Parallel Computing, pages
279–285. Elsevier, Feb. 1996.

[19] Von Welch. Globus firewall requirements. Available online at:
http://www.globus.org/security/v2.0/firewalls.html.

20


