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Abstract. We consider a variant of Heilbronn’s triangle problem by
asking, given any integer n ≥ 4, for the supremum ∆4(n) of the mini-
mum area determined by the convex hull of some four of n points in the
unit-square [0, 1]2 over all distributions of n points in [0, 1]2. Improving

the lower bound ∆4(n) = Ω(1/n3/2) of Schmidt [19], we will show that

∆4(n) = Ω((logn)1/2/n3/2) as asked for in [5], by providing a determin-
istic polynomial time algorithm which finds n points in the unit-square
[0, 1]2 that achieve this lower bound.

1 Introduction

The problem of Heilbronn asks for a distribution of n points in the unit-square
[0, 1]2 (or unit-ball) such that the minimum area of a triangle determined by
three of these n points is as large as possible. Let ∆3(n) denote the supre-
mum of this minimum area of a triangle over all distributions of n points in
[0, 1]2. In considering for primes n the points 1/n · (i mod n, i2 mod n), i =
0, . . . , n− 1, on the moment-curve one easily sees that ∆3(n) = Ω(1/n2). While
for some time this lower bound was believed to be also the upper bound for
∆3(n), Komlós, Pintz and Szemerédi [11] showed by probabilistic arguments
that ∆3(n) = Ω(log n/n2), see Bertram-Kretzberg, Hofmeister and this author
[5] for a deterministic polynomial time algorithm achieving this lower bound
∆3(n) = Ω(log n/n2). Upper bounds on ∆3(n) were given by Roth [14–18] and
Schmidt [19] and, improving these earlier results, the currently best upper bound
∆3(n) = O(2c

√
logn/n8/7), where c > 0 is a constant, is due to Komlós, Pintz

and Szemerédi [10]. Recently, Jiang, Li and Vitany [9] showed by using meth-
ods from Kolmogorov complexity that if n points are distributed uniformly at
random and independently of each other in the unit-square [0, 1]2, then the ex-
pected value of the minimum area of a triangle formed by some three of these
n random points is equal to Θ(1/n3). As indicated in [9], this result might be
of use to measure the affiancy of certain Monte Carlo methods for determining
fair market values of derivatives.
Higher dimensional extensions of Heilbronn’s triangle problem were investigated
by Barequet [2, 3], who considered for fixed integers d ≥ 2 the minimum volumes
of simplices among n points in the d-dimensional unit-cube [0, 1]d, maximized
over all distributions of n points in [0, 1]d, see also [12], [13] and Brass [6].



A variant of Heilbronn’s problem asks, given a fixed integer k ≥ 3, for the
supremum ∆k(n) of the minimum area of the convex hull of any k points in
a distribution of n points in the unit-square [0, 1]2, where the supremum is
over all distributions of n points in [0, 1]2. For k = 4, Schmidt [19] proved
the nonconstructive lower bound ∆4(n) = Ω(1/n3/2). In [5] a deterministic
polynomial time algorithm was given, which finds, given an integer k ≥ 3, for
any integer n ≥ k a configuration of n points in [0, 1]2 achieving the lower bound
∆k(n) = Ω(1/n(k−1)/(k−2)).
Here we provide for k = 4 a deterministic polynomial time algorithm which
achieves the lower bound ∆4(n) = Ω((log n)1/2/n3/2), as asked for in [5], hence
improving also the lower bound ∆4(n) = Ω(1/n3/2) of Schmidt [19] by a factor
of Θ((log n)1/2).

Theorem 1. For integers n ≥ 4 one can find deterministically in time O(n13/2+δ)
for any δ > 0 some n points in the unit-square [0, 1]2 such that the minimum
area of the convex hull determined by some four of these n points is at least
Ω((log n)1/2/n3/2).

Although the mathematics in connection with Heilbronn-type problems seems
to be hard, these problems are of interest from the algorithmic point of view
as one can test the power of certain algorithmic methods with these problems,
i.e. here we will use an approach by approximating the independence number of
linear (or uncrowded) hypergraphs. There is some vague indication that perhaps
our algorithm finds an asymptotically best possible distribution of points, but
at present only ∆4(n) = O(1/n) is known.

2 Basic Facts

For distinct points P,Q ∈ [0, 1]2 let PQ denote the line through P and Q.
Let dist (P,Q) denote the Euclidean distance between the points P and Q. For
points P1, . . . , Pl ∈ [0, 1]2 let area (P1, . . . , Pl) be the area of the convex hull of
the points P1, . . . , Pl. A strip S centered at the line PQ of width w is the set of
all points which have distance at most w/2 from the line PQ.

Lemma 1. Let P1, . . . , Pl ∈ [0, 1]2 be points. If area (P1, . . . , Pl) ≤ A, then
area (P1, . . . , Pl−1) ≤ A.

Proof. This follows by monotonicity, as by definition area (P1, . . . , Pl) is the area
of the convex hull of the points P1, . . . , Pl. ut

Lemma 2. Let P1, . . . , Pl ∈ [0, 1]2 be distinct points no three on a line such
that area (P1, . . . , Pl) ≤ A. Then for any two distinct points Pi and Pj, each
other point Pk, k 6= i, j, lies in a strip centered at the line PiPj of width 4 ·
A/dist (Pi, Pj).

Proof. Otherwise, by Lemma 1 it is A ≥ area (P1, . . . , Pl) ≥ area (Pi, Pj , Pk) >
1/2 · dist (Pi, Pj) · (2 ·A)/dist (Pi, Pj) = A, a contradiction. ut
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Definition 1. Let G = (V, E) be a k-uniform hypergraph, i.e. |E| = k for each
edge E ∈ E. An unordered pair {E,E′} of distinct edges E,E′ ∈ E is called a
2-cycle if |E∩E′| ≥ 2. A 2-cycle {E,E′} in G is called (2, i)-cycle if |E∩E′| = i,
i = 2, . . . , k − 1. The hypergraph G is called linear if it does not contain any 2-
cycles. The independence number α(G) of G is the largest size of a subset I ⊆ V
which contains no edges from E, i.e. E 6⊂ I for each edge E ∈ E.

3 A Deterministic Algorithm

Here we will prove Theorem 1. By looking at the existing literature, probabilistic
existence arguments using evaluations of certain integrals over [0, 1]2 might be
possible to get an improvement on ∆4(n) = Ω(1/n3/2), however, whether this
approach might be successful or not, due to the continuity of the calculations, this
does not result in a deterministic algorithm. Therefore, to provide a polynomial
time algorithm, which finds n points in the unit-square [0, 1]2 that achieve the
lower bound ∆4(n) = Ω((log n)1/2/n3/2), we will discretize the search space
[0, 1]2 by considering the standard T×T -grid, where T = n1+α for some constant
α > 0, which will be specified later. However, with this discretization we have
to take care of collinear triples or quadruples of grid-points in the T × T -grid,
as the area of a collinear quadruple of grid-points is equal to zero.
We will transform our problem into a problem of finding in a suitably defined
hypergraph a large independent set. For some value A > 0, which will be specified
later, we form a hypergraph G = G(A) = (V, E3 ∪ E4) which contains 3-element
and 4-element edges. The vertex set V consists of the T 2 grid-points from the
T × T -grid. The edge sets E3 and E4 are defined as follows: {P,Q,R} ∈ E3 if
and only if the grid-points P,Q,R ∈ V lie on a single line, i.e. are collinear,
and {P,Q,R, S} ∈ E4 if and only if no three of the grid-points P,Q,R, S ∈ V
are collinear and area (P,Q,R, S) ≤ A. In this hypergraph G = G(A) we want
to find a certain induced subhypergraph G∗∗ = (V ∗∗, E∗∗4 ) of G, which does not
contain any 3-element edges anymore, hence no three distinct grid-points from
the vertex set V ∗∗ are collinear. An independent set I ⊆ V ∗∗ in this induced
hypergraph G∗∗ = (V ∗∗, E∗∗4 ) yields |I| grid-points in the T × T -grid, such that
the area of the convex hull of each four distinct grid-points is bigger than A. We
are looking for a large independent set I ⊆ V ∗∗ in G∗∗.
An essential tool in our arguments is the following algorithmic version from
Bertram-Kretzberg and this author [4] of a deep result of Ajtai, Komlós, Pintz,
Spencer and Szemerédi [1], see also [7] and [8].

Theorem 2. Let G = (V, E) be a k-uniform linear hypergraph with average de-
gree tk−1 = k · |E|/|V |. Then one can find for any δ > 0 in time O(|V | + |E| +
|V |3/t3−δ) an independent set I ⊆ V with |I| = Ω(|V |/t · (log t)1/(k−1)).

The difficulty in our arguments does not lie in the invention of a new algorithm
but rather to prove that the algorithm from Theorem 2 can be applied and
yields a solution with the desired quality. However, our hypergraph G = G(A)
is not linear and contains many 2-cycles. The strategy will be to find a certain
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induced subhypergraph G∗ of our hypergraph G = (V, E3 ∪ E4), which is linear.
Therefore, to apply Theorem 2 we will carefully count in the hypergraph G =
G(A) the numbers |E3| and |E4| of 3- and 4-element edges, respectively. Also, we
will give upper bounds on the numbers of 2-cycles arising from the 4-element
edges E ∈ E4. Then in a certain induced subhypergraph G∗ of G we will destroy
in one step all induced 3-element edges and all 2-cycles. The resulting induced
subhypergraph G∗∗ of G has not too few vertices and does not contain any 2-
cycles anymore and at this point we can apply the algorithm from Theorem 2
to G∗∗.
For positive integers h and s let gcd (h, s) ≥ 0 denote the greatest common
divisor of h and s. For a grid-point P in the T × T -grid let px and py denote
its x- and y-coordinate, respectively. We define a lexicographic order ≤lex on the
grid-points of the T × T -grid: for grid-points P = (px, py) and Q = (qx, qy) let

P ≤lex Q⇐⇒ (px < qx) or (px = qx and py < qy) .

Notice that for grid-points P = (px, py) and Q = (qx, qy) with P ≤lex Q there
are exactly (gcd (qx−px, qy−py)−1) grid-points on the segment [P,Q] excluding
the endpoints P and Q.
We will use the following result from [5].

Lemma 3. For two grid-points P = (px, py) and R = (rx, ry) with P ≤lex R in
the T × T -grid, where s := rx − px ≥ 0, the following hold:

(a) There are at most 4 ·A grid-points Q in the T × T -grid such that
(i) P ≤lex Q ≤lex R, and

(ii) P,Q,R are not collinear, and
(iii) area (P,Q,R) ≤ A.

(b) The number of grid-points Q in the T × T -grid which fulfill only conditions
(ii) and (iii) from (a) is at most 12 ·A · T/s for s > 0 and at most 4 ·A · T
for s = 0.

First we will estimate the numbers |E3| and |E4| of 3- and 4-element edges,
respectively, in the hypergraph G = (V, E3 ∪ E4).

Lemma 4. The number |E3| of 3-element edges in the hypergraph G = (V, E3 ∪
E4) satisfies

|E3| ≤ c3 · T 4 · log T . (1)

We remark that in [5] an upper bound of O(T 4+ε), for any ε > 0, on the number
of collinear triples of grid-points in the T × T -grid was proved.

Proof. Let P,Q,R be grid-points from the T × T -grid, where P ≤lex Q ≤lex R.
Set s =: rx − px ≥ 0 and h := ry − py. We have {P,Q,R} ∈ E3 if and only if
P,Q,R are collinear. For h = 0 or s = 0 the number of collinear triples P,Q,R
of grid-points is at most O(T 4), as we can choose one of the 2 · T horizontal or
vertical lines and on each of these at most O(T 3) triples of grid-points.
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Let h, s 6= 0. A grid-point P can be chosen in at most T 2 ways. Given the grid-
point P , any pair (s, h) of integers with 1 ≤ h ≤ s ≤ T determines a grid-point
R. Those pairs (s, h) of integers with 0 ≤ −h ≤ s ≤ T or 1 ≤ s < |h| ≤ T will be
taken into account by an additional constant factor using rotation symmetry.
On the segment [P,R] there are at most gcd (h, s) grid-points Q exluding P and
R. Thus, for a constant c′ > 0 the number of collinear triples of grid-points in
the T × T -grid is at most

c′ · T 2 ·
T∑
s=1

s∑
h=1

gcd (h, s) .

Each divisor d of s divides at most s/d positive integers x with x ≤ s, namely
the integers i · d, i = 1, . . . , bs/dc, hence we infer for a constant c3 > 0:

c′ · T 2 ·
T∑
s=1

s∑
h=1

gcd (h, s) ≤ c′ · T 2 ·
T∑
s=1

∑
d|s

s

d
· d ≤ c′ · T 2 ·

T∑
s=1

s
∑
d|s

1 ≤

≤ c′ · T 2 ·
T∑
d=1

bT/dc∑
i=1

i · d ≤ c′ · T 2 ·
T∑
d=1

d · T
2

d2
= c′ · T 4 ·

T∑
d=1

1
d
≤

≤ c3 · T 4 · log T . ut

Lemma 5. The number |E4| of unordered quadruples P1, P2, P3, P4 of distinct
grid-points in the T × T -grid with area (P,Q,R, S) ≤ A, where no three of the
grid-points P1, P2, P3, P4 are collinear, fulfills

|E4| ≤ c4 ·A2 · T 4 . (2)

Proof. We can assume that P1 ≤lex P3 ≤lex P4 ≤lex P2. Let s := p2,x− p1,x ≥ 0
and h := p2,y − p1,y. If s = 0, then the grid-points P1, P2, P3, P4 are collinear,
hence we have s 6= 0. By rotation symmetry, which we take into account by an
additional constant factor, we can assume that 0 ≤ h ≤ s ≤ T .
If area (P1, P2, P3, P4) ≤ A, then by Lemma 2 we have area (P1, P2, P3) ≤ A
and area (P1, P2, P4) ≤ A. There are T 2 choices for the grid-point P1. Given the
grid-point P1, any pair (s, h) 6= (0, 0) of integers with 0 ≤ h ≤ s ≤ T determines
a grid-point P2. Since P1 ≤lex P3 ≤lex P4 ≤lex P2 and since no three of the grid-
points P1, P2, P3, P4 are collinear, by Lemma 3(a) there are at most 4 ·A choices
for the grid-points P3 and P4 each. Thus, we obtain for constants c′, c4 > 0 for
the number |E4| of 4-element edges in the hypergraph G an upper bound of

|E4| ≤ c′ · T 2 ·
T∑
s=1

s∑
h=0

(4 ·A)2 ≤ 16 · c′ ·A2 · T 2 ·
T∑
s=1

s∑
h=0

1 ≤ c4 ·A2 · T 4 . ut

By (2) the average degree t3 of the hypergraph G = (V, E3∪E4) for the 4-element
edges E ∈ E4 satisfies

t3 =
4 · |E4|
|V |

≤ 4 · c4 ·A2 · T 4

T 2
= 4 · c4 ·A2 · T 2 := t30 . (3)
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3.1 (2, 2)- and (2, 3)-Cycles

Let s2,i(G; E4) denote the number of (2, i)-cycles, i = 2, 3, formed by unordered
pairs of 4-element edges E ∈ E4 in the hypergraph G = (V, E3 ∪E4). Here we will
give upper bounds on the numbers of these (2, 2)- and (2, 3)-cycles.

Lemma 6. The number s2,3(G; E4) of (2, 3)-cycles in the hypergraph G = (V, E3∪
E4), which arise from the 4-element edges E ∈ E4, satisfies

s2,3(G; E4) = O(A3 · T 4 · log T ) . (4)

Proof. Assume that the quadruples P1, P2, P3, P4 and P1, P2, P3, P5 of grid-points
determine a (2, 3)-cycle in the hypergraph G, where no three of these five grid-
points are collinear. Then area (P1, P2, P3, P4) ≤ A and area (P1, P2, P3, P5) ≤
A. We can assume that P1 ≤lex P3 ≤lex P2. There are T 2 possibilities for the
grid-point P1. Given the grid-point P1, a pair (s, h) 6= (0, 0) of integers, where
by rotation symmetry w.l.o.g. 0 ≤ h ≤ s ≤ T , determines a grid-point P2.
Clearly, we have s > 0, as for s = 0 the grid-points P1, P2, P3 are collinear. Since
area (P1, P2, P3) ≤ A by Lemma 2, and since P1, P2, P3 are not collinear, by
Lemma 3(a) there are at most 4 ·A choices for the grid-point P3.
With area (P1, P2, P4) ≤ A and area (P1, P2, P5) ≤ A, and since P1, P2, P5 are
not collinear, by Lemma 3(b) there are at most 12 ·A · T/s choices for the grid-
points P4 and P5 each, hence for some constants c′, c′′, c2,3 > 0 we have the
following upper bound on the number s2,3(G; E4) of (2, 3)-cycles in G:

s2,3(G; E4) ≤ c′ · T 2 ·
T∑
s=1

s∑
h=0

(4 ·A) ·
(

12 ·A · T
s

)2

≤

≤ c′′ ·A3 · T 4 ·
T∑
s=1

s∑
h=0

1
s2
≤ c′′ ·A3 · T 4 ·

T∑
s=1

s+ 1
s2
≤

≤ c2,3 ·A3 · T 4 · log T . ut

Next we will estimate the number of (2, 2)-cycles in the hypergraph G.

Lemma 7. The number s2,2(G; E4) of (2, 2)-cycles in the hypergraph G = (V, E3∪
E4), which arise from the 4-element edges E ∈ E4, fulfills

s2,2(G; E4) = O(A4 · T 9/2) . (5)

Proof. Let us denote the grid-points of two 4-element edges E,E′ ∈ E4, which
yield a (2, 2)-cycle in the hypergraph G, by P1, P2, P3, P4 and P1, P2, P5, P6,
where P1 ≤lex P2 and no three of the six points are collinear. Let u := dT γe
where 0 < γ < 1 is a constant, which will be specified later.
There are T 2 choices for the grid-point P1. Given the grid-point P1, any pair
(s, h) 6= (0, 0) of integers fixes a grid-point P2. By rotation symmetry we can
assume that s > 0 and 0 ≤ h ≤ s ≤ T . By Lemma 2 all grid-points P3, P4, P5, P6

must lie in a strip S centered at the line P1P2 of width 4 · A/
√
h2 + s2 and
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by Lemma 3(b) this strip S contains at most 12 · A · T/s grid-points P from
the T × T -grid, such that P1, P2, P are not collinear, hence there are at most
12 ·A · T/s choices for the grid-points P3, P4, P5, P6 each, but we have to count
more carefully.

Consider a parallelogram P0 = {(px, py) ∈ S | p1,x − u ≤lex px ≤lex p2,x + u}
with two of its boundaries being the boundaries of the strip S and with center
being the middle of the segment [P1, P2]. By Lemma 3(a) this parallelogram P0

contains at most 4 · A · (s + 2 · u)/s grid-points P , such that P1, P2, P are not
collinear.

In the following we will distinguish whether some of the grid-points P3, P4, P5, P6

lie in the parallelogram P0 or not.

Case A: All grid-points P3, P4, P5, P6 satisfy P3, P4, P5, P6 ∈ P0.

Given the grid-points P1 and P2, there are at most 4 ·A · (s+ 2 ·u)/s choices for
each of the grid-points P3, P4, P5, P6 ∈ P0. Using u = dT γe, for some constants
c, c′, c′′, c′′′, c′′′′ > 0 we obtain for the number of these (2, 2)-cycles arising from
E4 the following upper bound

c · T 2 ·
T∑
s=1

s∑
h=0

(
4 ·A · (s+ 2 · u)

s

)4

≤ c′ ·A4 · T 2 ·
T∑
s=1

s∑
h=0

(
1 +

2 · u
s

)4

≤ c′ ·A4 · T 2 ·
T∑
s=1

s∑
h=0

(
1 +

8 · u
s

+
24 · u2

s2
+

32 · u3

s3
+

16 · u4

s4

)

≤ c′′ ·A4 · T 2 ·
T∑
s=1

(
s+ 8 · T γ +

24 · T 2γ

s
+

32 · T 3γ

s2
+

16 · T 4γ

s3

)
≤ c′′′ ·A4 · T 2 · (T 2 + T 1+γ + T 2γ · log T + T 3γ + T 4γ)
≤ c′′′′ ·A4 · (T 4 + T 2+4γ) as 0 < γ < 1 is a constant. (6)

Case B: The grid-points P3, P4, P5 satisfy P3, P4 ∈ P0 and P5 6∈ P0.

Given the grid-points P1 and P2, there are at most 4 ·A · (s+ 2 ·u)/s choices for
each of the grid-points P3 ∈ P0 and P4 ∈ P0. Considering now the quadru-
ple P1, P2, P5, P6 of grid-points, by Lemma 3(b) there are at most 12 · A ·
T/s choices for the grid-point P5 = (p5,x, p5,y) 6∈ P0, since P1, P2, P5 are not
collinear and area (P1, P2, P5) ≤ A. However, since now |p1,x − p5,x| ≥ u and
area (P1, P2, P6) ≤ A, by Lemma 3(b) the number of choices for the grid-point
P6 in the T ×T -grid, such that P1, P2, P6 are not collinear, is at most 12 ·A ·T/u.
With u = dT γe we obtain for constants c′, c′′, c′′′ > 0 the following upper bound
on the number of these (2, 2)-cycles arising from E4:
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c · T 2 ·
T∑
s=1

s∑
h=0

12 ·A · T
u

· 12 ·A · T
s

·
(

4 ·A · (s+ 2 · u)
s

)2

≤ c′ ·A4 · T 4 ·
T∑
s=1

s∑
h=0

(
1
s · u

+
4
s2

+
4 · u
s3

)

≤ c′′ ·A4 · T 4 ·
T∑
s=1

(
1
T γ

+
4
s

+
4 · T γ

s2

)
≤ c′′′ ·A4 · (T 5−γ + T 4+γ) as 0 < γ < 1 is a constant. (7)

Case C: The grid-points P3, P5 satisfy P3, P5 6∈ P0.
Given the grid-points P1 and P2, we partition the strip S within the T × T -grid
into parallelograms P0,P+

i ,P
−
i , i = 1, . . . , l ≤ T 1−γ , which are all translates of

P0, and arranged according to the order P+
l ,P

+
l−1, . . . ,P

+
1 ,P0,P−1 , . . . ,P

−
l−1,P

−
l .

Each grid-point P = (px, py) ∈ P+
i ∪ P

−
i , i ≥ 1, satisfies |px − p1,x| ≥ s + u +

(i− 1) · (s+ 2 ·u) ≥ i · (s+u) or |px− p2,x| ≥ i · (s+u). Using Lemma 3(a), each
parallelogram P+

i or P−i contains at most 4 ·A · (s+ 2 · u)/s grid-points P , such
that P1, P2, P are not collinear. Each grid-point P3, P5 lies in some paralelogram
P+
i or P−i for some i ≥ 1. If P3 ∈ P+

i ∪ P
−
i , i ≥ 1, then by Lemma 3(b) there

are at most 12 · A · T/(i · (s + u)) choices for the grid-point P4. Similarly, if
P5 ∈ P+

j ∪ P
−
j , j ≥ 1, there are at most 12 · A · T/(j · (s + u)) choices for the

grid-point P6, and we obtain for constants c, c′, c′′, c′′′ > 0 for the number of
these (2, 2)-cycles among E4 the upper bound

c · T 2 ·
T∑
s=1

s∑
h=0

l∑
i=1

l∑
j=1

(
4 ·A · (s+ 2 · u)

s

)2

·
(

(12 ·A · T )2

i · j · (s+ u)2

)

≤ c′ ·A4 · T 4 ·
T∑
s=1

s∑
h=0

(
s+ 2 · u

s

)2

·
(

1
s+ u

)2

·
l∑
i=1

1
i

l∑
j=1

1
j

≤ c′′ ·A4 · T 4 · (log T )2 ·
T∑
s=1

s∑
h=0

(
1

s+ u
+

2 · u
s · (s+ u)

)2

≤ c′′ ·A4 · T 4 · (log T )2 ·
T∑
s=1

s∑
h=0

4
s2

≤ c′′′ ·A4 · T 4 · (log T )3 , (8)

where we used 1/(s+ u) + 2 · u/(s · (s+ u)) ≤ 2/s for s, u ≥ 0.
For γ := 1/2 the estimates (6),(7), (8) yield s2,2(G; E4) = O(A4 · T 9/2). ut

3.2 Selecting a Subhypergraph

For a suitable constant c > 0 we set

A :=
c · T 2 · (log n)1/2

n3/2
> 1 . (9)
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For a moment we will use a probabilistic argument to simplify the presentation.
However, this argument will be made constructive shortly. With probability p :=
T ε/t0 ≤ 1 for a small constant ε > 0 we pick uniformly at random and indepen-
dently of each other vertices from the set V . Let V ∗ ⊆ V be the resulting random
subset of V of the picked vertices and let G∗ = (V ∗, E∗3 ∪E∗4 ) with E∗3 := E3∩[V ∗]3

and E∗4 := E4 ∩ [V ∗]4 be the resulting random induced subhypergraph of G.
Let E[|V ∗|], E[|E∗3 |], E[|E∗4 |], E[s2,2(G∗; E∗4 )], E[s2,3(G∗; E∗4 )] denote the expected
number of vertices, 3-element edges, 4-element edges, (2, 2)- and (2, 3)-cycles
arising from E∗4 , respectively, in the random subhypergraph G∗ = (V ∗, E∗3 ∪ E∗4 )
of G. By (1), (2), (5) and (4) we infer for constants c′1, c

′
3, c
′
4, c
′
2,2, c

′
2,3 > 0:

E[|V ∗|] = p · T 2 = c′1 · T 4/3+ε/A2/3 (10)
E[|E∗3 |] = p3 · |E3| ≤ c′3 · (T 4 · log T ) · T 3ε/(A · T )2 ≤

≤ c′3 · T 2+3ε · log T/A2 (11)
E[|E∗4 |] = p4 · |E4| ≤ c′4 · (A2 · T 4) · T 4ε/(A · T )8/3 ≤

≤ c′4 · T 4/3+4ε/A2/3 (12)
E[s2,2(G∗; E∗4 )] ≤ p6 · s2,2(G; E4) ≤ c′2,2 · (A4 · T 9/2) · T 6ε/(A · T )4 ≤

≤ c′2,2 · T 1/2+6ε (13)

E[s2,3(G∗; E∗4 )] ≤ p5 · s2,3(G; E4) ≤ c′2,3 · (A3 · T 4 · log T ) · T 5ε/(A · T )10/3 ≤

≤ c′2,3 · T 2/3+5ε · log T/A1/3 . (14)

With (10), (11), (12), (13), (14) and Chernoff’s and Markov’s inequality there
exists a subhypergraph G∗ = (V ∗, E∗3 ∪ E∗4 ) of G such that

|V ∗| ≥ c′1/2 · T 4/3+ε/A2/3 (15)
|E∗3 | ≤ 5 · c′3 · T 2+3ε · log T/A2 (16)
|E∗4 | ≤ 5 · c′4 · T 4/3+4ε/A2/3 (17)

s2,2(G∗; E∗4 ) ≤ 5 · c′2,2 · T 1/2+6ε (18)

s2,3(G∗; E∗4 ) ≤ 5 · c′2,3 · T 2/3+5ε · log T/A1/3 . (19)

This probabilistic argument can be derandomized by using the method of con-
ditional probabilities as follows. For j = 2, 3, let Cj be the (multi-)set of all
(8 − j)-element subsets E ∪ E′ of V such that the pair {E,E′} of distinct 4-
element edges E,E′ ∈ E4 yields a (2, j)-cycle in G. We enumerate the vertices
of the T × T -grid by P1, . . . , PT 2 . For each vertex Pi we associate a parameter
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pi ∈ [0, 1], and we define a potential function F by

F (p1, . . . , pT 2) := 2p·T
2/2 ·

T 2∏
i=1

(
1− pi

2

)
+

∑
{i,j,k}∈E3 pi · pj · pk

5 · c′3 · T 2+3ε · log T/A2
+

+

∑
{i,j,k,l}∈E4 pi · pj · pk · pl
5 · c′4 · T 4/3+4ε/A2/3

+

∑
{i,j,k,l,m,o}∈C2 pi · pj · pk · pl · pm · po

5 · c′2,2 · T 1/2+6ε/A2/3
+

+

∑
{i,j,k,l,m}∈C3 pi · pj · pk · pl · pm
5 · c′2,3 · T 2/3+5ε · log T/A1/3

.

With the initialisation p1 := · · · := pT 2 := p := T ε/t0, we infer F (p, . . . , p) <
(2/e)pT

2/2 + 4/5 < 1 for p · T 2 ≥ 11. Then, using the linearity of F (p1, . . . , pT 2)
in each pi, we minimize F (p1, . . . , pT 2) by choosing one after the other pi := 0
or pi := 1 for i = 1, . . . , T 2, and finally we obtain F (p1, . . . , pT 2) < 1. Then
the vertex set V ∗ = {i ∈ V | pi = 1} yields an induced subhypergraph G∗ =
(V ∗, E∗3 ∪ E∗4 ) of G with E∗3 = E3 ∪ [V ∗]3 and E∗4 = E4 ∪ [V ∗]4, which satisfies
(15), (16), (17), (18), (19), compare [4]. With (1), (2), (4), (5), (9) and using
that A > 1, the running time of this derandomization is given by

O(|V |+ |E3|+ |E4|+ |C2|+ |C3|) = O(A4 · T 9
2 ) = O(T

25
2 · (log n)2/n6).(20)

We will show next that the numbers |E∗3 |, s2,2(G∗; E∗4 ) and s2,3(G∗; E∗4 ) of 3-
element edges, (2, 2)- and (2, 3)-cycles arising from E∗4 in G∗, respectively, are
very small compared to the number |V ∗| of vertices in G∗.

Lemma 8. For 0 < ε < α/(1 + α) it is

|E∗3 | = o(|V ∗|) . (21)

Proof. By (9), (15), (16) and using T = n1+α with α > 0 a constant we have

|E∗3 | = o(|V ∗|)⇐⇒ T 2+3ε · log T/A2 = o(T 4/3+ε/A2/3)⇐⇒

⇐⇒ T 2/3+2ε · log T/A4/3 = o(1)⇐⇒ n2 · log T
T 2−2ε · (log n)2/3

= o(1)⇐⇒

⇐⇒ n2−(1+α)(2−2ε) · (log n)1/3 = o(1)⇐= (1 + α) · (2− 2ε) > 2⇐⇒
⇐⇒ ε < α/(1 + α) . ut

Lemma 9. For 0 < ε < 1/(5 · (1 + α))− 1/10 it is

s2,2(G∗; E∗4 ) = o(|V ∗|) . (22)

Proof. By (9), (15), (18) and using T = n1+α with α > 0 a constant we infer

s2,2(G∗; E∗4 ) = o(|V ∗|)⇐⇒ T 1/2+6ε = o(T 4/3+ε/A2/3)⇐⇒
⇐⇒ A2/3/T 5/6−5ε = o(1)⇐⇒ n(1+α)(1/2+5ε)−1 · (log n)1/3 = o(1)⇐=
⇐= (1 + α) · (1/2 + 5 · ε) < 1⇐⇒ ε < 1/(5 · (1 + α))− 1/10 . ut
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Lemma 10. For 0 < ε < 1/(8 · (1 + α)) it is

s2,3(G∗; E∗4 ) = o(|V ∗|) . (23)

Proof. By (9), (15), (19) and using T = n1+α with α > 0 a constant we have

s2,3(G∗; E∗4 ) = o(|V ∗|)⇐⇒ T 2/3+5ε · log T/A1/3 = o(T 4/3+ε/A2/3)⇐⇒
⇐⇒ A1/3 · log T/T 2/3−4ε = o(1)⇐⇒ n(1+α)4ε−1/2 · (log n)7/6 = o(1)⇐=
⇐= (1 + α) · 4 · ε < 1/2⇐⇒ ε < 1/(8 · (1 + α)) . ut

To satisfy p = T ε/t0 ≤ 1, we need T ε/((4 · c4)1/3 ·A2/3 · T 2/3) ≤ 1, which holds
by (9) for 0 < ε ≤ 2− 1/(1 + α). For ε := 1/(12 · (1 + α)) and 1/12 < α < 1/6
all assumptions in Lemmas 8, 9, 10 are fulfilled. We delete in G∗ = (V ∗, E∗3 ∪E∗4 )
one vertex from each 3-element edge E ∈ E∗3 , and from each (2, 2)- and (2, 3)-
cycle in G∗ arising from E∗4 , and we obtain a subset V ∗∗ ⊆ V ∗ with |V ∗∗| =
(1 − o(1)) · |V ∗|. The on the vertex set V ∗∗ induced subhypergraph G∗∗ of G∗
contains no 3-element edges or (2, 2)- or (2, 3)-cycles, i.e. G∗∗ = (V ∗∗, E∗∗4 ) with
E∗∗4 = E∗4 ∩ [V ∗∗]4 is a linear and 4-uniform hypergraph. By (15) and (17) we
have

|V ∗∗| ≥ (c′1/2− o(1)) · T 4/3+ε/A2/3

|E∗∗4 | ≤ 5 · c′4 · T 4/3+4ε/A2/3 ,

hence the average degree t3 of the subhypergraph G∗∗ = (V ∗∗, E∗∗4 ) satisfies

t3 =
|E∗∗4 |
|V ∗∗|

≤ 20 · c′4 · T 4/3+4ε/A2/3

(c′1/2− o(1)) · T 4/3+ε/A2/3
=

40 · c′4
c′1 − o(1)

· T 3ε := t31 .

Since G∗∗ is linear we can now apply Theorem 2 and, using (9), we find in time

O

(
|E∗∗4 |+

|V ∗∗|3

t3−δ1

)
= O

(
T 4/3+4ε

A2/3
+
T 4+εδ

A2

)
= O

(
n3+δ/12

log n

)
(24)

for any δ > 0, an independent set I of size

|I| = Ω

(
|V ∗∗|
t
· (log t)

1
3

)
= Ω

(
|V ∗∗|
t1
· (log t1)

1
3

)
=

= Ω

(
T 4/3+ε/A2/3

T ε
· (log T ε)

1
3

)
= Ω

(
T 4/3

A2/3
· (log T )

1
3

)
=

= Ω

(
n

(log n)
1
3
· (log T )

1
3

)
= Ω(n) since T = n1+α and α > 0 is constant.

By choosing a sufficiently small constant c > 0 in (9), we obtain in G∗∗ and hence
in G an independent set of size n, which yields a desired set of n grid-points in the
T ×T -grid such that the area of the convex hull of every four distinct of these n
points is at least A = Θ(T 2 · (log n)1/2/n3/2). After rescaling we have n points in
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[0, 1]2 such that the area of the convex hull of every four distinct of these n points
is at least Ω((log n)1/2/n3/2). In comparing the running times (20) and (24) we
get the overall time bound O(T 25/2 · (log n)2/n6) for 0 < δ < 1. For α = 1/11,
say, we have the time bound O(n84/11 · (log n)2) = O(n8). Indeed, we achieve
the time bound O(n13/2+δ) for any δ > 0 by choosing ε := 1/(C · (1 + α)) and
α := 1/(C − 1), where C ≥ 12 is a large enough constant, i.e. C > 1 + 25/(2 · δ).

4 Final Remarks

It seems that our approach does also work for improving algorithmically the
lower bound on ∆k(n) from [5] for k = 5 by a poly-logarithmic factor, but not
for arbitrary values k ≥ 6. However, this is work in progress. To decide, whether
our algorithm yields optimal solutions, one needs an upper bound. However, at
present only ∆k(n) = O(1/n) for fixed integers k ≥ 4 is known, see Schmidt
[19].
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