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Abstract. We consider a multicolored version of a question posed by Erdős and Rothschild.
For a fixed positive integer r and a fixed graph F , we look for n-vertex graphs that admit the
maximum number of r-edge-colorings with the property that there is no copy of F for which
all edges are assigned different colors. We show that, when F is a bipartite graph with at
least three edges and r ≥ 3, the number of r-edge colorings of an extremal configuration is
close to the number of such edge-colorings of the complete graph Kn. On the other hand, for
the rainbow pattern of F = Kk+1, the Turán graph Tk(n) is the only extremal configuration
for any r ≥ r0(k) and large n.

1. Introduction

In this paper we consider a multicolored version of a problem introduced by Erdős and
Rothschild [7], which in turn was motivated by the Turán problem [27]. To describe this
classical problem, we say that a graph G is F -free if it does not contain some fixed graph F as
a subgraph. The Turán problem for F asks for the maximum number ex(n, F ) of edges over
all F -free n-vertex graphs and for the graphs that achieve this maximum, which are called
F -extremal. This is a very popular problem in extremal graph theory and there is a vast
literature related with it (more information may be found in Keevash [16], and the references
therein).

The Turán problem was generlized to a multicolored setting by Keevash, Saks, Sudakov
and Verstraëte [18]. They looked for n-vertex multigraphs with the largest number of edges
which admit an r-edge-coloring such that all color classes induce simple graphs and there
is no rainbow copy of the forbidden graph F , that is, no copy of F such that every edge is
colored differently. Another multicolored extension of the Turán problem was introduced by
Keevash, Mubayi, Sudakov and Verstraëte [17], who looked for graphs with the largest number
of edges which admit a proper r-edge-coloring with no rainbow copy of F . More results in this
direction have been obtained by Das, Lee and Sudakov [6]. We also refer to Bollobás, Keevash
and Sudakov [5] for multicolored problems of a similar flavor in more general combinatorial
structures.

In the remainder of this paper we focus on simple graphs. We consider a multicolored
version of a problem introduced by Erdős and Rothschild [7] which has also been inspired
by the Turán problem. Instead of looking for n-vertex graphs with the largest number of
edges that satisfy some property, Erdős and Rothschild were interested in n-vertex graphs
that admit the largest number of r-edge-colorings such that every color class is F -free. In
particular, when F is the complete graph Kk+1 on k + 1 vertices, they conjectured that the
number of F -free 2-colorings is maximized by the k-partite Turán graph Tk(n) on n-vertices,
that is, by the balanced, complete k-partite n-vertex graph. Note that F -extremal graphs are
natural candidates, as any r-coloring is trivially F -free, which leads to rex(n,F ) such colorings.
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DAAD 56267227 and 57141126 and 57245206). The first author thanks FAPERGS (Proc. 2233-2551/14-9)
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Yuster [28] provided an affirmative answer to the conjecture of Erdős-Rothschild for the
triangle K3 and any n ≥ 6, while Alon, Balogh, Keevash and Sudakov [1] showed that, for
r ∈ {2, 3} and n ≥ n0, where n0 is a constant depending on r and k, the respective Turán
graph is also optimal for the number of Kk+1-free r-colorings. However, they also proved that
Turán graphs Tk(n) are not optimal for any r ≥ 4, but did not characterize the extremal
graphs. For results about hypergraph versions of this problem, we refer to [20, 21, 22].

Balogh [3] considered another version of this problem, which involves edge-colorings of a
graph avoiding a copy of F colored according to a prescribed coloring. He proved that, for
r = 2 colors and any 2-coloring C of Kk+1 that uses both colors, the graph Tk(n) once again
yields the largest number of 2-colorings avoiding C for n ≥ n0. However, he also remarked
that, if we consider r = 3 and a rainbow-colored triangle, the complete graph on n vertices

already admits 3 · 2(n2) − 3 colorings, by just choosing two of the three colors and coloring

the edges of Kn arbitrarily with these two colors. This is more than 3n
2/4, which is an upper

bound on the number of 3-colorings of the bipartite Turán graph.
Note that, if the number of colors satisfies r ≥

(
k+1

2

)
+ 1 and C is an arbitrary r-edge

coloring of Kk+1, the complete graph Kn admits the largest number of colorings avoiding
C. Namely, the condition on r implies that some color does not appear in C, so that it can
be used to extend any coloring of an n-vertex graph G which avoids C to a coloring of Kn

avoiding C.
In the following, we modify Balogh’s multicolored version of the Erdős-Rothschild problem

by forbidding not only a prescribed coloring C, but all colorings that may be obtained from
C by permuting the colors. More precisely, given a number r of colors and a graph F , an
r-pattern P of F is a partition of its edge set into at most r classes, and an edge-coloring of a
graph G is said to be (F, P )-free if G does not contain a copy of F in which the partition of the
edge set induced by the coloring is isomorphic to P (for simplicity, this will be referred to as
a copy of (F, P )). Observe that the result of Balogh [3] for r = 2 colors, which was mentioned
above, implies that Tk(n) yields the largest number of 2-colorings avoiding (Kk+1, P ), as any
coloring that avoids a pattern P must avoid any particular coloring that produces P .

Fix a positive integer r and a graph F , and let P be a pattern of F . Let Cr,F,P (G) be the
set of all (F, P )-free r-colorings of a graph G. We write

cr,F,P (n) = max { |Cr,F,P (G)| : |V (G)| = n } ,

and we say that an n-vertex graph G is Cr,F,P -extremal if |Cr,F,P (G)| = cr,F,P (n). A recent
general result about the problem of computing cr,F,P (n) for r ≥ 3 and the corresponding
extremal graphs is that, if P is an arbitrary pattern of the complete graph, there is always
a Cr,F,P -extremal graph that is a complete multipartite graph. This was proved by Bene-
vides, Sampaio and one of the current authors [4]. Pikhurko, Staden and Yilma [23] have
independently obtained a similar result for a different extension of the original problem about
monochromatic patterns, which leads to the same conclusion in the case of monochromatic
patterns.

In this paper, our main objective is to study Cr,F,P -extremal graphs where P is a rainbow
pattern, that is, where every edge is assigned to a different class. (For simplicity, we shall
write FR = (F, P ) to refer to the rainbow pattern P of a graph F .) However, several of our
results hold for more general patterns. For instance, we find a general approximate result
for bipartite graphs, which implies that the complete graph Kn is not far, with respect to
the number edge-colorings, from being Cr,F,P -extremal when F is a bipartite graph and P
contains at least three classes.
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Theorem 1.1. Let F be a bipartite graph, let P be a pattern of F with t ≥ 3 nonempty
classes, and fix a positive integer r ≥ t. Given β > 0, there exists n0 such that, for every

n ≥ n0, we have cr,F,P (n) ≤ (t− 1)(
n
2)+βn2

.

Indeed, as we may trivially obtain (t − 1)(
n
2) distinct (F, P )-free colorings if we color the

complete graph with a fixed set of t−1 colors, Theorem 1.1 implies that the complete graph is
almost optimal for any pattern with at least three classes in a bipartite graph. In particular,
this holds for rainbow patterns of bipartite graphs with at least three edges. We refer the
reader to Section 5 for a discussion about possible extensions of Theorem 1.1.

On the other hand, the structure of Cr,F,P -extremal graphs seems to be rather different
for rainbow patterns when F is not bipartite. In this direction, we show that, in the case
of rainbow patterns of complete graphs, the corresponding Turán graph is extremal if the
number of colors is large.

Theorem 1.2. Let r and k ≥ 2 be positive integers such that r ≥
(
k+1

2

)8k+4
. There is n0 such

that every graph of order n > n0 has at most rex(n,Kk+1) distinct KR
k+1-free r-edge colorings.

Moreover, the Turán graph Tk(n) is the only graph on n vertices for which equality is achieved.

Even though we believe that the conclusion of Theorem 1.2 should hold for smaller values of
r, note that the Turán graph Tk(n) cannot be extremal for arbitrary values of r, in particular,

when the number of colors is r <
(
k+1

2

)
, the complete graph Kn yields more colorings than

Tk(n).
Beyond Theorem 1.2 itself, we believe that the main contribution of this paper is our

modification of the general steps of the proof of Theorem 1.1 in Alon, Balogh, Keevash and
Sudakov [1] (see also [3]) to non-monochromatic patterns of complete graphs. The main
novelty of their method was applying the Regularity Lemma to obtain an exact result. This
has been done in two steps: (i) Prove a stability result, establishing that any counterexample
G to the desired result would be similar to Tk(n), in the sense that its vertex set may be
partitioned into k almost-balanced classes in such a way that there is only a small number
of edges with both ends in the same class. (ii) Starting with a counterexample on n vertices,
show that it is possible to find a counterexample on n − 1 or n − 2 vertices whose ‘gap’
to the desired optimal solution increases. A recursive application of this step leads to a
counterexample whose number of colorings is too high to be feasible.

Here, we modify this strategy to derive results for more general patterns. For instance, we
show that rainbow patterns are the only patterns for which the stability of part (i) holds for
a large number r ≥ r0 of colors (see Lemma 4.6 and Remarks 4.2 and 4.8). To obtain smaller
values for r0, we apply a recent stability result due to Füredi [10]. Moreover, we generalize
step (ii) by showing that this stability implies that the Turán graph Tk(n) is actually Cr,Kk+1,P -
extremal whenever the pattern P of Kk+1 is locally rainbow, that is, whenever there is a vertex
such that all edges incident with it lie in different classes (see Lemma 4.4 and Remark 4.5).

Our paper is structured as follows. In Section 2 we introduce the notation and the main
preliminary results. This is used in Section 3 to prove Theorem 1.1 by applying the Regularity
Lemma of Szemerédi [26]. The proof of Theorem 1.2 is the subject of Section 4, where we
also treat the case of forbidden edge-color critical graphs. Advances in this and other related
problems are discussed in Section 5.

2. Notation and Tools

In this section, we fix the notation and introduce basic concepts and results used to prove
our main results. For simplicity, we shall assume that colors lie in sets [r] := {1, . . . , r}.
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2.1. Regularity Lemma. To prove our results we use an approach similar to the one from
[1], which is based on the Szemerédi Regularity Lemma [26]. Let G = (V,E) be a graph, and
let A and B be two disjoint subsets of V (G). If A and B are non-empty, define the density
of edges between A and B by

d(A,B) =
e(A,B)

|A||B|
,

where e(A,B) is the number of edges with one vertex in A and the other in B. When A = B,
we write e(A,A) = e(A). For ε > 0 the pair (A,B) is called ε-regular if, for every X ⊆ A and
Y ⊆ B satisfying |X| ≥ ε|A| and |Y | ≥ ε|B|, we have

|d(X,Y )− d(A,B)| < ε.

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, . . . , Vm
of almost equal size, i.e., ||Vi| − |Vj || ≤ 1 for all i, j. An equitable partition of the set V of
vertices of G into the classes V1, . . . , Vm is called ε-regular if at most ε

(
m
2

)
of the pairs (Vi, Vj)

are not ε-regular.
We shall use the following standard property of regular pairs, whose simple proof has been

added for completeness.

Lemma 2.1. If (A,B) is an ε-regular pair with density d > ε and Y ⊂ B has size |Y | ≥ ε|B|,
then all but at most ε|A| of the vertices of A have at least (d− ε)|Y | neighbors in Y .

Proof. If there is a subset X ⊆ A of size |X| ≥ ε|A| vertices, where each vertex in X has less
than (d− ε)|Y | neighbors in Y , then we infer for the density of the pair (X,Y ) that

d(X,Y ) <
|X| · (d− ε)|Y |
|X| · |Y |

= d− ε,

which contradicts the ε-regularity of the pair (A,B). �

We now state a version of the Regularity Lemma and of a colored version thereof [19] that
will be particularly useful for our purposes.

Lemma 2.2. For every ε > 0, there is an integer M = M(ε) > 0 such that for every graph
G of order n > M there is an ε-regular partition of the vertex set of G into m classes, for
some 1/ε ≤ m ≤M .

Lemma 2.3. For every ε > 0 and every integer r, there exists an M = M(ε, r) such that
the following property holds. If the edges of a graph G of order n > M are r-colored E(G) =
E1∪· · ·∪Er, then there is a partition of the vertex set V (G) = V1∪· · ·∪Vm, with 1/ε ≤ m ≤M ,
which is ε-regular simultaneously with respect to all graphs Gi = (V,Ei) for 1 ≤ i ≤ r.

A partition as in Lemma 2.3 will be called a multicolored ε-regular partition. Given such
a partition and given a color c ∈ [r], we define the cluster graph associated with color c as
follows. Given η > 0, the graph Hc = Hc(η) has vertex set [m] and {i, j} ∈ E(Hc) if and only
if (Vi, Vj) is an ε-regular pair with edge density at least η with respect to the subgraph of G
induced by the edges of color c.

We may also define the multicolored cluster graph H associated with this partition: the
vertex set is [m] and e = {i, j} is an edge of H if e ∈ E(Hc) for some c ∈ [r]. Each edge e in
H is assigned the list of colors Le = {c ∈ [r] | e ∈ E(Hc)}. Given a colored graph F , we say
that a multicolored cluster graph H contains F if H contains a copy of F for which the color
of each edge of F is contained in the list of the corresponding edge in H. More generally, if
F is a graph with color pattern P , we say that H contains (F, P ) if it contains some colored
copy of F with pattern P .

Given colored graphs F and H, a function ψ : V (F )→ V (H) is called a colored homomor-
phism of F in H if, for every edge e = {i, j} ∈ E(F ), the pair {ψ(i), ψ(j)} is an edge of H
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with the color of e. If H is a multicolored cluster graph, it suffices that the color of e lies in
the list associated with the edge {ψ(i), ψ(j)}.

In connection with these definitions, we may obtain the following embedding result.

Lemma 2.4. For every η > 0 and all positive integers k and r, there exist ε = ε(r, η, k) > 0
and a positive integer n0(r, η, k) with the following property. Suppose that G is an r-colored
graph on n > n0 vertices with a multicolored ε-regular partition V = V1 ∪ · · · ∪ Vm which
defines the multicolored cluster graph H = H(η). Let F be a k-vertex graph colored with t ≤ r
colors. If there is a colored homomorphism ψ of F into H, then the graph G also contains F .

Proof. The argument is quite standard and follows the proof of Theorem 2.1 in [19]. Let
u1, . . . , uk be the vertices of F . The edges of F are denoted ei,j = {ui, uj} and their colors
are denoted ci,j . Let Nc(v) denote the set of neighbors of v that are connected to v via an
edge of color c.

We shall choose the vertices v1, . . . , vk that span the copy of F in G inductively. Based on
the colored homomorphism ψ, we start with sets Y 0

i = Vψ(ui) for i ∈ {1, . . . , k}. The idea is

to choose v1 ∈ Y 0
1 with the property that, for all i such that e1,i ∈ E(F ), vertex v1 has at

least (η − ε)|Y 0
i | neighbors in Y 0

i that are joined by an edge in color c1,i to vertex v1. By the
definition of H and by Lemma 2.1, this can be done if |Y 0

1 | > (k − 1)ε|Y 0
1 | ≥ dF (u1)ε|Y 0

1 |,
where dF (u1) is the degree of vertex u1 in F . For i ≥ 2 such that e1,i ∈ E(F ), define
Y 1
i = Y 0

i ∩Nc1,i(v1), otherwise set Y 1
i = Y 0

i . Note that |Y 1
i | ≥ (η − ε)|Y 0

i | for all i ≥ 2.

Inductively, assume that v1, . . . , vj−1 have been chosen and that we have defined sets Y j−1
i ⊂

Vψ(ui) for all i ≥ j such that |Y j−1
i | ≥ (η − ε)j−1|Y 0

i | and all vertices of Y j−1
i are adjacent to

v` with an edge of color c`,i provided that ` < j and ei,` ∈ E(F ). As long as

|Y j−1
j | − |{i : i > j and ei,j ∈ E(F )}| · ε|Y 0

j | ≥ j (1)

and |Y j−1
i | > ε|Y 0

i | for all i > j, we may apply Lemma 2.1 to the ε-regular pair (Y 0
j , Y

0
i ) and

the subset Y j−1
i ⊆ Y 0

i to obtain vj ∈ Y j−1
j \ {v1, . . . , vj−1} with the property that

|Y j−1
i ∩Ncj,i(vj)| ≥ (η − ε)|Y j−1

i | ≥ (η − ε)j |Y 0
i |

for all i > j such that ej,i ∈ E(F ). We then set Y j
i = Y j−1

i ∩ Ncj,i(vj) if ej,i ∈ E(F ) and

Y j
i = Y j−1

i otherwise.
This procedure allows us to fully embed F into G if we fix ε = ε(η, k) > 0 small enough to

satisfy

(η − ε)k−1 ≥ kε (2)

and we let n > n0 ≥Mk/ε, where M = M(r, ε) is defined in Lemma 2.3. Indeed, condition (2)

implies that, in the above process, |Y j−1
j | ≥ kε|Y 0

j | for all j ≤ k . Moreover, the choice of n0

guarantees that, for all j, we have ε|Y 0
j | ≥ εn/M ≥ k ≥ j. Then, we may use the condition

|Y j−1
j | ≥ kε|Y 0

j |, for all j ≤ k, to ensure the validity of (1), as

|Y j−1
j | ≥ kε|Y 0

j | = ε|Y 0
j |+ (k − 1)ε|Y 0

j |

≥ j + |{i : i > j and ei,j ∈ E(F )}| · ε|Y 0
j |.

�

2.2. Stability. Another concept that will be particularly useful in our paper are stability
results for graphs. It will be convenient to use the following theorem by Füredi [10], which
builds upon earlier work by Erdős and Simonovits [25].
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Theorem 2.5. Let G = (V,E) be a Kk+1-free graph on m vertices. If |E| = ex(m,Kk+1)− t
for some t ≥ 0, then there exists a partition V = V1 ∪ · · · ∪ Vk with

∑k
i=1 e(Vi) ≤ t.

We recall the following bounds on the number of edges in the Turán graph Tk(n):

(k − 1)n2

2k
− k < ex(n,Kk+1) ≤ (k − 1)n2

2k
. (3)

The chromatic number χ(G) of a graph G is the least positive integer t such that there is
a coloring of the vertex set of G with t colors where the vertices of each edge have different
colors. The following is a counterpart of Theorem 2.5 for arbitrary graphs, which is also due
to Füredi [10].

Theorem 2.6. Let F be a fixed graph with chromatic number χ(F ) = k + 1. Let α > 0 be
fixed. Then, there exists m1 such that for every F -free graph G = (V,E) on m ≥ m1 vertices

with |E| ≥ ex(m,F )−αm2, there exists a partition V = V1∪· · ·∪Vk with
∑k

i=1 e(Vi) ≤ 4αm2.

For later use, we state the following fact about the size of the classes in a k-partite graph
with a large number of edges.

Proposition 2.7. Let G = (V,E) be a k-partite graph on m vertices with k-partition V =
V1 ∪ · · · ∪ Vk. If, for some t ≥ k2, the graph G contains at least ex(m,Kk+1)− t edges, then
for i ∈ {1, . . . , k} we have ∣∣∣|Vi| − m

k

∣∣∣ < √2t.

Proof. If |Vk| = x, then G contains at most

x(m− x) +

(
k − 1

2

)
·
(
m− x
k − 1

)2

edges. For the second summand, we used that, when a sum a1 + · · ·+ ak−1 = M is fixed, the
value of

∑
1≤i<j≤k−1 aiaj is maximum for a1 = · · · = ak−1 = M/(k − 1).

Since, using (3),

x(m− x) +

(
k − 1

2

)
·
(
m− x
k − 1

)2

≥ ex(m,Kk+1)− t ≥ (k − 1)m2

2k
− k − t,

we conclude that

x2 − 2

k
mx+

1

k2
m2 − 2(k − 1)

k
· t− 2(k − 1) ≤ 0,

thus, |x−m/k| ≤
√

2(k−1)
k t+ 2(k − 1) <

√
2t for t ≥ k2, as required. �

2.3. Entropy function. Consider the entropy function H : [0, 1] → [0, 1] given by H(x) =
−x log2 x− (1− x) log2(1− x) with H(0) = H(1) = 0. Note that limx→0+ H(x) = 0.

We will use the well-known inequality(
n

αn

)
≤ 2H(α)n (4)

for all 0 ≤ α ≤ 1.
We will also use the following upper bound on the entropy function for x ≤ 1/8:

H(x) ≤ −2x log2 x. (5)

Namely, (5) is equivalent to g(x) = x lnx− (1− x) ln(1− x) ≤ 0. Taking the derivative gives
g′(x) = lnx+ 2 + ln(1− x) ≤ 0 for x ≤ 1/8. With g(1/8) < 0 inequality (5) follows.
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3. Colorings avoiding bipartite graphs with given patterns

In order to prove Theorem 1.1, we shall use the following embedding result, which is a simple
consequence of Lemma 2.4. Recall that, given an edge e of a multicolored cluster graph H
(defined by the cluster graphs H1, . . . ,Hr), Le is the list of colors i such that e ∈ E(Hi).

Lemma 3.1. For every η > 0 and all positive integers k and r, there exist ε = ε(r, η, k) > 0
and a positive integer n0(r, η, k) with the following property. Suppose that G is an r-colored
graph on n > n0 vertices with a multicolored ε-regular partition V = V1 ∪ · · · ∪ Vm which
defines the multicolored cluster graph H = H(η). Let F be a fixed k-vertex bipartite graph
with a prescribed color pattern P on t classes, where t ≤ r. If |Le| ≥ t for some edge e ∈ E(H),
then G contains (F, P ).

Proof. To apply Lemma 2.4, fix an arbitrary coloring of the k-vertex bipartite graph F with
pattern P such that the colors used lie in Le. Then consider the colored homomorphism that
maps all edges of F to e. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: Fix a positive integer r ≥ 3. Let F be a k-vertex bipartite graph and
let P be a pattern of F with t classes, 3 ≤ t ≤ r. We shall define our parameters implicitly
in terms of a quantity η > 0. Let ε = ε(r, η, k) > 0 and n0(r, η, k) satisfy the assumption in
Lemma 3.1, w.l.o.g. ε < η/2. Based on this ε > 0, define M as in Lemma 2.3. We will show
that, for all β > 0, the number of (F, P )-free r-colorings of a graph G of order n > max{n0,M}
satisfies |Cr,F,P (G)| ≤ (t− 1)(

n
2)+βn2

if η > 0 is chosen appropriately.
Let G be such a graph and fix a (F, P )-free r-edge coloring of G. By Lemma 2.3 we obtain

a partition V = V1 ∪ · · · ∪ Vm of the vertex set V of G, for which each graph consisting of all
edges in each of the r colors is ε-regular. For 1 ≤ i ≤ r, consider the m-vertex cluster graph
Hi = Hi(η) and let H be the corresponding multicolored cluster graph.

There are at most ε
(
m
2

)
irregular pairs with respect to the partition V = V1 ∪ · · · ∪ Vm and

with respect to some color, hence at most

r · ε ·
(
m

2

)
·
( n
m

)2
≤ rε

2
n2 (6)

edges lie in these irregular pairs. By Lemma 2.2 and by the definition of an ε-regular partition,
there are at most (using m ≥ 1/ε)

m ·
( n
m

)2
=
n2

m
≤ εn2 (7)

edges that are contained in some class Vi. Moreover, if we consider all the edges of the same
color between classes Vi and Vj whose density is less than η, we obtain at most

r · η ·
(
m

2

)
·
( n
m

)2
≤ rη

2
· n2 (8)

edges. Combining (6), (7) and (8) with ε < η/2 gives at most rηn2 such edges, which we can
choose in at most ( n2

2

rηn2

)
ways. The number of colorings of this set of edges is at most rrηn

2
.

Clearly, the remaining edges, which lie in regular pairs and must be assigned colors that

are dense with respect to this pair, may be colored in at most
(∏

e∈E(H) |Le|
)(n/m)2

ways.
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With Lemma 3.1, we conclude that the number of r-edge colorings of G that give rise to the
partition V = V1 ∪ · · · ∪ Vm and the multicolored cluster graph H is bounded above by

( n2

2

rηn2

)
· rrηn2 ·

 ∏
e∈E(H)

|Le|

( nm)
2

≤
( n2

2

rηn2

)
· rrηn2 ·

(
(t− 1)(

m
2 )
)( nm)

2

(4)

≤ 2H(2rη)n
2

2 · rrηn2 · (t− 1)(
n
2),

where H(x) denotes the entropy function. There are at most Mn partitions V = V1∪· · ·∪Vm,

where m ≤ M . For each partition there are at most 2rM
2/2 multicolored cluster graphs H.

Thus, an upper bound on the number of (F, P )-free r-edge-colorings of G is

Mn · 2rM2/2 · 2H(2rη)n
2

2 · rrηn2 · (t− 1)(
n
2). (9)

To conclude the proof, note that for t ≥ 3 the product (9) is at most (t − 1)(
n
2)(1+β) for any

fixed β > 0, as long as η > 0 is chosen sufficiently small. �

4. Colorings avoiding rainbow Kk+1

To prove that the Turán graph Tk(n) is the unique graph maximizing the number of r-
colorings that avoid a rainbow copy of Kk+1, whenever r is sufficiently large in terms of k
and n is large, we need to proceed more carefully than in the previous section. Our strategy
is to modify the general steps of the proof of Theorem 1.1 in Alon, Balogh, Keevash and
Sudakov [1] (see also [3]) to our framework. The main novelty of their method was applying
the Regularity Lemma to obtain an exact result. This involves proving a stability result
showing that any extremal graph is not far from Tk(n). The desired result is then obtained
by contradiction: starting with a counterexample on n vertices, one shows that it is possible
to find a counterexample on n−1 or n−2 vertices whose ‘gap’ to the desired optimal solution
increases. A recursive application of this step would lead to an

√
n-vertex graph whose number

of colorings is too high to be feasible.
Before stating the auxiliary result needed for our purposes, we give a preliminary definition,

which distinguishes patterns that satisfy a stability result as above.

Definition 4.1. Let F be a graph with chromatic number χ(F ) = k + 1 ≥ 3 and let P be a
pattern of F . We say that the pair (F, P ) satisfies the Color Stability Property for a positive
integer r if, for every δ > 0, there exists n0 with the following property. If n > n0 and G is an
n-vertex graph such that |Cr,F,P (G)| ≥ rex(n,F ), then there exists a partition V (G) = V1∪· · ·∪Vk
such that

∑k
i=1 e(Vi) < δn2.

Given a graph F and a pattern P of F , note that, if the pair (F, P ) satisfies the Color
Stability Property for a positive integer r, then for any δ > 0 and n sufficiently large, it

follows immediately that |Cr,F,P (G)| < rex(n,F )+δn2
.

In the remainder of this paper, we shall prove Theorem 1.2 in two steps. First we assume
that, given k ≥ 2, the pair (Kk+1, P ) satisfies the Color Stability Property for a positive
integer r and some particular pattern P of Kk+1. We show that Tk(n) is the unique Cr,Kk+1,P -

extremal graph on n vertices provided that n is sufficiently large. Next we show that KR
k+1

satisfies the Color Stability Property for r ≥
(
k+1

2

)8k+4
.

Remark 4.2. We observe that the rainbow pattern is the only pattern of the complete graph
Kk+1, where k ≥ 2, for which the Color Stability Property holds for arbitrarily large r. Indeed,
let P be a pattern of Kk+1 that is not the rainbow pattern. For simplicity, assume that r

is divisible by
(
k+1

2

)
and split the set [r] of colors into pairwise disjoint sets C1, . . . , C(k+1

2 ) of
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equal size. Associate each set Cj of colors with an edge of Kk+1. Consider the n-vertex graph
H given by a blow-up of the vertex set of Kk+1 into classes V1, . . . , Vk+1 of size n/(k + 1),
where we assume that k + 1 divides n to avoid technicalities. We look at colorings of H such
that the edges between Vi and Vj are colored arbitrarily with colors from the set associated
with the edge {i, j} of Kk+1, so that all copies of Kk+1 in H are rainbow-colored.

The number of such colorings of H is at least(
r(
k+1

2

)) n2

(k+1)2
·(k+1

2 )

=

(
r(
k+1

2

)) k
2(k+1)

n2

> r
k−1
2k
·n2 ≥ rex(n,Kk+1)

for r >
(
k+1

2

)k2
. Therefore, for any pattern of Kk+1 that is not rainbow, the Color Stability

Property does not hold provided that r is sufficiently large.

4.1. Color Stability implies Extremality. In this section, we prove that, under some
condition on the sizes of r and n, if a rainbow pattern of the complete graph Kk+1 satisfies
the Color Stability Property for r colors, then the Turán graph Tk(n) is the unique KR

k+1-
extremal graph. As a matter of fact, we prove this for a more general class of patterns: a
pattern of a graph F is called locally rainbow if there is a vertex v such that all edges incident
with v lie in different classes. We call such a vertex v a locally rainbow vertex of the pattern.

Before we state our main result of this section, we state a simple auxiliary lemma.

Lemma 4.3. Let r and s be positive integers and let F be a colored graph with vertex set
{v1, . . . , vk} such that each edge {vi, vj} ∈ E(F ) has color ci,j ∈ [r] . Consider a graph G
and mutually disjoint sets W1, . . . ,Wk ⊆ V (G) with the following property. For every {i, j} ∈
E(F ) and every pair of subsets Xi ⊆Wi, |Xi| ≥ 10−sk|Wi|, and Xj ⊆Wj, |Xj | ≥ 10−sk|Wj |,
there are at least 10−s|Xi||Xj | edges of color ci,j between Xi and Xj in G. Then G contains
a copy of F with one vertex in each set Wi.

Proof. We use induction on k. For k = 1 and k = 2 the statement is obviously true. Suppose
that the result is true for k − 1 and fix W1, . . . ,Wk ⊆ V (G) satisfying the conditions stated
in the lemma.

For 1 ≤ i ≤ k − 1 such that {vi, vk} ∈ E(F )}, let W i
k ⊆ Wk be the subset of all vertices in

Wk that have less than |Wi|/10s neighbors in Wi via edges that are colored ci,k. If {vi, vk} /∈
E(F )}, set W i

k = ∅. Then we have e(W i
k,Wi) < |W i

k||Wi|/10s, so that, by assumption, we

have |W i
k| < 10−sk|Wk|. It follows that∣∣∣∣∣

k−1⋃
i=1

W i
k

∣∣∣∣∣ < (k − 1)10−sk|Wk| < |Wk|.

and hence there exists a vertex v ∈Wk that is not contained in
⋃k−1
i=1 W

i
k.

If {vi, vk} ∈ E(F )}, let W ′i be the set of all neighbors of v in Wi that are adjacent to v by
edges of color ci,k, otherwise let W ′i = Wi. By the choice of v, the inequality |W ′i | ≥ |Wi|/10s

holds for all 1 ≤ i ≤ k − 1. Let F ′ = F − v. Note that, for all pairs (Xi, Xj), where

{vi, vj} ∈ E(F ′), with Xi ⊆ W ′i and Xj ⊆ W ′j and sizes |Xi| ≥ 10−s(k−1)|W ′i | ≥ 10−sk|Wi|
and |Xj | ≥ 10−s(k−1)|W ′j | ≥ 10−sk|Wj |, the graph G contains at least 10−s|Xi||Xj | edges of
color ci,j between Xi and Xj .

By induction, G contains a copy of F with vertex set {v1, . . . , vk−1} such that vi ∈W ′i , for
i ∈ {1, . . . , k − 1}. Clearly, this may be extended to a copy of F containing v, where each
edge {v, vi} has color ci,k, as required. �

The minimum degree δk(n) of the Turán graph Tk(n) satisfies

ex(n,Kk+1) = ex(n− 1,Kk+1) + δk(n) and δk(n) = n− dn/ke.
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We are now ready to prove the main result of this subsection.

Lemma 4.4. Let k ≥ 2 and let P be a locally rainbow pattern of Kk+1 such that (Kk+1, P )
satisfies the Color Stability Property of Definition 4.1 for a positive integer r > e(k+1). Then

there is n0 such that every graph of order n > n2
0 has at most rex(n,Kk+1) distinct (Kk+1, P )-

free r-edge colorings. Moreover, the only graph on n vertices for which the number of such
colorings is rex(n,Kk+1) is the Turán graph Tk(n).

Proof. The proof of this result uses the general strategy for proving Theorem 1.1 in [1]. Before
we start, note that the number of colors r is at least as large as the number of classes of P .
For a contradiction, we choose n0 appropriately and we let G 6= Tk(n) be a graph on n > n2

0

vertices with at least rex(n,Kk+1)+m distinct (Kk+1, P )-free r-edge colorings, for some m ≥ 0.
We will show that G contains a vertex x such that the graph G − x obtained by deleting
x has at least rex(n−1,Kk+1)+m+1 distinct (Kk+1, P )-free r-edge colorings, or it contains two

vertices x and y such that G − x − y has at least rex(n−2,Kk+1)+m+2 distinct (Kk+1, P )-free
r-edge colorings. Repeating this argument iteratively, we obtain a graph on n0 vertices whose

number of (Kk+1, P )-free r-edge colorings is at least rex(n0,Kk+1)+m+n−n0 > rn
2
0 . However, a

graph on n0 vertices has at most n2
0/2 edges and hence the number of such colorings is at

most rn
2
0/2, which is the desired contradiction.

Since (Kk+1, P ) satisfies the Color Stability Property for r colors, given δ = 10−8kr, there
exists n0 such that the assertion of Definition 4.1 holds for n > n0. Let G 6= Tk(n) be a graph

on n > n2
0 vertices with at least rex(n,Kk+1)+m distinct (Kk+1, P )-free r-edge colorings, for

some m ≥ 0.
If G contains a vertex x of degree less than δk(n), then there are at most rδk(n)−1 ways to

color the edges incident with x. This implies that G−x must have at least rex(n−1,Kk+1)+m+1

distinct (Kk+1, P )-free r-edge colorings, which is precisely what we aimed to show. Henceforth
we assume that the minimum degree of G is at least δk(n).

Consider a partition V = V1 ∪ · · · ∪ Vk of the vertex set of G which minimizes
∑k

i=1 e(Vi).
Because (Kk+1, P ) satisfies the Color Stability Property, and by our choice of n0 and δ > 0,
we have

∑
i e(Vi) < 10−8krn2. As G has at least ex(n,Kk+1) edges, the k-partite subgraph

induced by the partition V = V1 ∪ · · · ∪ Vk contains at least ex(n,Kk+1) − 10−8krn2 edges.
Thus, by Proposition 2.7 we know that ||Vi| − n/k| <

√
2 · 10−4krn, for i ∈ {1, . . . , k}.

Let C denote the set of all possible (Kk+1, P )-free r-edge colorings of G. First consider
the case when there is some vertex with many neighbors in its own class of the partition,
say x ∈ V1 with |N(x) ∩ V1| > n/(103rk). This also implies that |N(x) ∩ Vi| > n/(103rk)
for 2 ≤ i ≤ k, as otherwise we could reduce

∑
i e(Vi) by moving x to another class, which

contradicts our assumption that
∑k

i=1 e(Vi) is minimized.
Let C1 be the subset of all the colorings for which there exists a choice of distinct colors

c1, . . . , ck ∈ [r] such that there are subsets Wi ⊆ Vi with |Wi| ≥ n/(103rkr), i = 1, . . . , k, with
the property that x is adjacent to each vertex in Wi via a ci-colored edge. Let C2 = C \ C1.

Consider a coloring of G belonging to C1, and fix colors c1, . . . , ck and sets W1, . . . ,Wk as in
the definition of C1. Fix a coloring C(Kk+1) of Kk+1 with pattern P where the edges incident
with some locally rainbow vertex v are colored c1, . . . , ck. In particular, v could be mapped
to x in an attempt to build a homomorphism of C(Kk+1) into G.

We say that a color c is rare for a pair (i, j) if there are subsets Xi ⊆ Wi and Xj ⊆ Wj

with |Xi| ≥ 10−kr|Wi| ≥ n/(kr10(k+3)r) and |Xj | ≥ 10−kr|Wj | ≥ n/(kr10(k+3)r) such that
there are fewer than 10−r|Xi||Xj | edges of color c between them. Otherwise c is said to be
abundant for the pair (i, j). Lemma 4.3 with s = r ensures that there must be a color that is
rare for some pair (i, j); indeed, if all colors in [r] were abundant for all pairs (i, j), then all
subsets Xi ⊆Wi and Xj ⊆Wj would satisfy the hypotheses of Lemma 4.3 for any assignment
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of colors, and hence it would be possible to extend the partial homomorphism of C(Kk+1)
into G to a copy of Kk+1 with pattern P as the number of colors is at least as large as the
number of classes of P .

Once one rare color is fixed, the number of ways to color all edges between Xi and Xj is
at most (

|Xi||Xj |
|Xi||Xj |/10r

)
(r − 1)|Xi||Xj | < 2

8r
10r
|Xi||Xj |(r − 1)|Xi||Xj |.

Here we used (4) and (5) as follows:

H(1/10r) ≤ 2
10r log2(10r) < 2

10r log2(16r) = 8r
10r( |Xi||Xj |

|Xi||Xj |/10r

)
≤ 2H(1/10r)|Xi||Xj | < 2

8r
10r
|Xi||Xj |.

There are r choices for the rare color and at most 22n ways to choose the sets Xi and Xj .

Since we know that there are at most ex(n,Kk+1) + 10−8krn2 − |Xi||Xj | other edges in this

graph, where |Xi| ≥ 10−kr|Wi| ≥ n/(kr10kr+3r), we infer that

|C1| ≤ r · 22n · rex(n,Kk+1)+10−8krn2−|Xi||Xj | · 2
8r
10r
|Xi||Xj | · (r − 1)|Xi||Xj |

≤ rex(n,Kk+1) · r2·10−8krn2 ·
(

2
8r
10r

(r − 1)

r

)|Xi||Xj |
≤ rex(n,Kk+1) · r2·10−8krn2 ·

(
2

8r
10r

(r − 1)

r

) n2

k2r2102kr+6r

.

Note that

28r

(
r − 1

r

)10r

≤ 28re−
10r

r ≤ 28r− 10r

r ≤ 2−2r <
1

r
for r ≥ 2.

Because k ≥ 2 and k2r2 ≤ 10kr, we have

|C1| ≤ rex(n,Kk+1) · r2·10−8krn2 ·
(

1

r
1

10r

)10−6krn2

� rex(n,Kk+1)−1.

By the above discussion, C2 contains |C| − |C1| ≥ rex(n,Kr+1)+m−1 colorings of G. Now
we consider one of them. By the definition of C2 there is no k-tuple (W1, . . . ,Wk) as in the
definition of C1. Let W c

i be the set of all vertices of Vi that are adjacent to x through an
edge of color c. Consider the bipartite graph with classes [k] and [r] where {i, c} is an edge
whenever |W c

i | ≥ n/(103rrk). Since |N(x) ∩ Vi| > n/(103rk), it is impossible that, for some
i ∈ {1, . . . , k}, we have |W c

i | < n/(103rrk) for all c ∈ [r] simultaneously. By Hall’s Theorem,
to avoid a locally rainbow distribution of colors as in the definition of C1, there exists h,
1 ≤ h ≤ k − 1, and pairwise distinct sets Vi1 , . . . , Vih+1

such that for each j = 1, . . . , h+ 1 we

have |W c
ij
| ≥ n/(103rrk) for at most h colors c ∈ [r].

To construct such colorings, we fix h, and choose sets Vi1 , . . . , Vih+1
in
(
k

h+1

)
ways. Applying

(4) and (5) again, there are at most(
2H(1/(103rkr))n

)r
≤ 2

n
102r

ways to select the at most n/(103rkr) edges for each of the rare colors with respect to x and
each Vij , j = 1, . . . , h + 1. The remaining edges are colored with the at most h abundant
colors. We deduce that the number of ways to color edges between x and each Vij is bounded
above by

2
n

102r · h( 1
k

+
√

2·10−4kr)n.
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For all ` ∈ [k] \ {i1, . . . , ih+1}, the edges between x and V` can be colored in at most

r( 1
k

+
√

2·10−4kr)n

ways. For large n, we conclude that the number Nx of colorings of edges incident with x
satisfies

Nx ≤
k−1∑
h=1

(
k

h+ 1

)
·
(
r

h

)h+1

· 2(h+1)/(102r)n · h(h+1)( 1
k

+
√

2·10−4kr)n · r(k−h−1)( 1
k

+
√

2·10−4kr)n

≤
k−1∑
h=1

2k · 2kr · 2
n

10r ·
(
hh+1 · rk−h−1

)( 1
k

+
√

2·10−4kr)n
. (10)

Let f(h) = hh+1 · rk−h−1. Then, in case k ≥ 3, for h ≤ k − 2 the inequality

f(h+ 1)

f(h)
=

(
1 + 1

h

)h · (h+1)2

h

r
≤ e(h+ 2 + 1/h)

r
< 1

holds for r > e(k + 1). Thus, the summands are decreasing in h, hence we have

Nx ≤ k · 2k · 2kr · 2
n

10r · r(k−2)( 1
k

+
√

2·10−4kr)n < rδk(n)− n
3k . (11)

We already know that

|C2| ≥ rex(n,Kk+1)+m−1,

so that the number of (Kk+1, P )-free r-edge colorings of G− x is at least

rex(n,Kk+1)+m−1−δk(n)+ n
3k � rex(n−1,Kk+1)+m+1.

This completes the induction step in the first case.
Now assume that every vertex has at most n/(103rk) neighbors in its own class Vi, i =

1, . . . , k. Recall that we may assume that G is not k-partite and that |E(G)| > ex(n,Kk+1).
Therefore, let {x, y} be an edge with both ends in some class Vi, say, x, y ∈ V1. In the
following, let c be the color assigned to {x, y}.

Let D1 ⊆ C be the set of all (Kk+1, P )-free r-edge colorings of G for which there is a
selection c2,x, . . . , ck,x, c2,y, . . . , ck,y ∈ [r] of colors satisfying the following properties:

(i) The vertices x and y have at least n/(103rkr) common neighbors in the class Vi that
are adjacent to x via ci,x-colored edges and adjacent to y via ci,y-colored edges, for all
i ∈ {2, . . . , k}. Let Wi ⊆ Vi be such a set of neighbors of x and y in Vi, respectively,
that is, we have |Wi| ≥ n/(103rkr), i = 2, . . . , k.

(ii) There exists a bijection between the set {x, y,W2, . . . ,Wk} and the vertex set of the
graph Kk+1, where x is mapped to a locally rainbow vertex v of P and where, for the
subgraph of G induced by {x, y} ∪W2 ∪ . . . ∪Wk, the color pattern of all the edges
incident to the vertices x and y coincides with the color pattern given by all edges
incident with vertex v and one of its neighbors w 6= v in (Kk+1, P ).

Let D2 = C \ D1.
Consider a coloring of G in D1 and fix sets W2, . . . ,Wk satisfying (ii). Fix a coloring of

Kk−1 = Kk+1 − v−w which, together with the coloring defined in (i), produces a pattern P .
As in the first case, by Lemma 4.3 with s = r there must be a pair (i, j) and subsets Xi ⊆Wi,

Xj ⊆ Wj with |Xi| ≥ 10−(k−1)r|Wi| and |Xj | ≥ 10−(k−1)r|Wj | such that there is a rare color

between Xi and Xj . With the arguments used before, we may prove that |D1| < rex(n,Kk+1)−1

and thus |D2| > rex(n,Kk+1)+m−1.
Next consider a coloring from D2, and let c be the color of the edge {x, y}. Since the coloring

does not satisfy (i) or (ii), there must be an index i ∈ {2, . . . , k} and colors cx, cy ∈ [r] such
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that the set Wi = W
cx,cy
i of common neighbors of x and y such that all edges between x and

Wi and between y and Wi have color cx and cy, respectively, satisfies |Wi| ≤ n/(103rkr).
To construct a coloring of this type, we may color edge {x, y} in r ways, we may choose

colors cx and cy in at most r2 ways, we fix a set Vi in at most k − 1 ways, and we choose

a set Wi in at most
( |Vi|
n/(103rkr)

)
ways. As we are considering colorings in D2, every vertex

has at most n/(103rk) neighbors in its own class, where each class satisfies |Vi − n/k| ≤√
2 · 10−4krn ≤ n/(103rk). Color the edges from x and y to their neighbors in their own class

V1 in at most r2n/(103rk) ways. Now consider every vertex z outside V1, of which there are at
most n−|V1| ≤ k−1

k n+
√

2·10−4krn. If z is not in Vi, the edges {x, z} and {y, z}may be colored

in at most r2 ways. If z is in Vi \Wi, this number would be at most r2− 1. The condition on
the degrees of x and y and the fact that they have fewer than n/(103rk) neighbors within V1

implies that each has at least (k−1)n/k−n/(103rk)−
∑

j 6=1,i |Vj | = |V1|+|Vi|−n/k−n/(103rk)
neighbors in Vi, thus their common neighborhood within class Vi has size at least

2|V1|+ 2|Vi| − 2n/k − 2n/(103rk)− |Vi| ≥ n/k − 2n/(103rk)− 3
√

2 · 10−4krn.

Under these conditions, the number of ways Nx,y to color the edges of G incident with x and
y is bounded above by

Nx,y ≤ r3(k − 1) ·
(

n
n

103rkr

)
· r

2n
103rk · r

2(k−1)n
k

+2
√

2·10−4krn ·
(
r2 − 1

r2

)n
k
− 2n

103rk
−3
√

2·10−4krn

.

The term r2(k−1)n/k+2
√

2·10−4krn comes from the fact that x and y have each at most n− |V1|
neighbors outside V1. The term

(
(r2 − 1)/r2

)n/k−2n/(103rk)−3
√

2·10−4krn
is an adjustment for

the fact that we are overcounting the number of ways to color the edges incident with vertices
in Vi which are in the common neighborhood of x and y. We conclude that

Nx,y

(4)

≤ 2H(1/(103rkr))n · (r2 − 1)
n
k
− 2n

103rk
−3
√

2·10−4krn · r
2(k−2)n

k
+ 6n

103rk
+8
√

2·10−4krn

≤ r
n

102r · (r2 − 1)
n
k · r

2(k−2)n
k

+ 6n
103rk

+8
√

2·10−4krn

≤ r
2n
k · e−

n
kr2 · r

2(k−2)n
k

+ 2n
102r

= r2 k−1
k
n · r−

n
kr2 ln r

+ 2n
102r � r2 k−1

k
n,

where we used that, for r ≥ 3 and r ≥ k,

6

103rk
+

8
√

2

104r
<

1

102r

H(1/(103rk))
(5)

≤ (2/(103rk)) log2(103rk) ≤ (20rk)/(103rk) ≤ 1/102r

(r2 − 1) ≤ r2e−1/r2 = r2−1/(r2 ln r)

kr2 ln r < 102r/2.

We know that |D2| ≥ rex(n,Kk+1)+m−1. Hence the number of (Kk+1, P )-free r-edge colorings
of G− x− y is at least

rex(n,Kk+1)+m−1

Nx,y
> rex(n−2,Kk+1)+m+2.

This completes two induction steps for the second case and proves the theorem. �

Remark 4.5. We remark that, in the case where the forbidden graph is a triangle, the lower
bound r > e(k + 1) in the statement of Lemma 4.4 may be replaced by r ≥ 3. Indeed, for
k = 2 the sum (10) contains a single term and the condition r > e(k + 1) is not needed. In
the general case, the condition r > e(k + 1) may be replaced by other conditions, such as
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r > (k − 1)k/(k−1)+γ , for some small γ > 0. Recall that the condition r > e(k + 1) has been
used to bound (10); instead, we may define f(h) = hh+1 · rk−h−1, whose derivative satisfies
f ′(h) = f(h) · (ln(eh) + 1/h− ln r). Because ln(h) + 1/h is increasing in h, we derive that, for
n large, the maximum summand in (10) occurs either for h = 1 or h = k− 1. The case h = 1
may be treated easily, while for h = k − 1 we obtain

Nx ≤ k · 2k · 2kr · 2
n

10r · (k − 1)k( 1
k

+
√

2·10−4kr)n � rδk(n)

for r > (k − 1)
k
k−1

+γ . This bound is better than r > e(k + 1) for some values of k.
Another observation is that Theorem 1.2 in [4] implies that, for r ≥ 3 and k ≥ 2 and any

locally rainbow pattern P of Kk+1, all Cr,Kk+1,P extremal graphs are complete multipartite.
This may be used to simplify the proof of Lemma 4.4 in a way that avoids the case where
every vertex has a small number of neighbours in its own class of the partition (see [4] for
more details). We opted to use the current argument because it can easily be extended to
locally rainbow patterns of other graphs F in Lemma 4.11.

We also remark that our proof of Lemma 4.4 fails for all patterns that are not locally
rainbow if r is large (in comparison to k). The problem occurs when we consider colorings in
C2, as we cannot bound the use of abundant colors in terms of k, as we did for locally rainbow
colorings using Hall’s Theorem. Indeed, we may split the set of r colors into k disjoint sets
of size r/k (ignoring divisibility issues) and associate each such set with one of the classes
V1, . . . , Vk. We then use the colors in each set to color the edges joining x with its neighbors
in the corresponding class. In all colorings of this type, the vertex x would be locally rainbow,
and thus could not be a part of the forbidden pattern, while the bound (r/k)|N(x)| prevents
us from deriving a bound such as (11) if the number |N(x)| of neighbors of x is not far from
n− 1 and r is large.

4.2. Color Stability of KR
k+1. To conclude our proof of Theorem 1.2, we prove the following

stability result for graphs with a large number of colorings avoiding KR
k+1.

Lemma 4.6. Let k ≥ 2 and r ≥
(
k+1

2

)8k+4
be positive integers. Then for each δ > 0 there is

a positive integer n0 such that the following statement is true. If G is a graph of order n > n0

which has at least rex(n,Kk+1) distinct KR
k+1-free r-edge colorings, then there is a partition

V (G) = W1 ∪ · · · ∪Wk such that
∑k

i=1 e(Wi) < δn2.

Proof. Fix positive integers k ≥ 2 and r ≥
(
k+1

2

)8k+4
and fix δ > 0. Fix η > 0 satisfying

η < δ/(2r) and (4k + 3) · (4H(2rη) + 4rη) < min {δ/2, (4k + 3)/(8k2)}, where H(x) is
the entropy function. This is possible as H(x) → 0 with x → 0. Let n0 = n0(r, η, k) and
ε = ε(r, η, k) > 0 satisfy the assumption in Lemma 2.4 and ε < η/2. Consider M = M(ε, r)
given by Lemma 2.3.

Let G be an n-vertex graph with n > max{n0,M} for which the number of KR
k+1-free r-

edge colorings is at least rex(n,Kk+1). We will show that the vertex set of G may be partitioned
as in the statement of the lemma. Fix a KR

k+1-free r-edge coloring of G. By Lemma 2.3 we
obtain a partition V = V1 ∪ · · · ∪ Vm of the vertex set V of G for which each graph consisting
of all edges in each of the r colors is ε-regular. For i ∈ {1, . . . , r}, let Hi = Hi(η) be the
m-vertex cluster graph for color i and let H be the corresponding multicolored cluster graph.

Just as in the proof of Theorem 1.1, we may argue that there are at most rεn2/2 edges in
irregular pairs, at most εn2 edges with both endpoints in the same class and at most rηn2/2
edges with endpoints in distinct classes whose color has density less than η between these two

classes. Hence, there are at most rηn2 such edges, which we can choose in at most
(n2/2
rηn2

)
ways. The number of colorings of this set of edges is at most rrηn

2
.
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Let Ej(H) = {e ∈ E(H) : |Le| = j} be the sets of all edges with color lists of size j in
the multicolored cluster graph H, and let ej = |Ej(H)| be their corresponding cardinalities,
j ∈ {1, . . . , r}. The number of r-edge colorings of G that give rise to the partition V =
V1 ∪ · · · ∪ Vm and the multicolored cluster graph H is bounded above by

( n2

2

rηn2

)
· rrηn2 ·

 r∏
j=1

jej(H)

( nm)
2

(4)

≤ 2H(2rη)n
2

2 · rrηn2 ·

 r∏
j=1

jej(H)

( nm)
2

. (12)

There are at most Mn partitions V = V1 ∪ · · · ∪ Vm, where m ≤ M . Summing (12) over
all possible partitions and all possible multicolored cluster graphs, the number of KR

k+1-free
r-edge-colorings of G is bounded above by

Mn · 2H(2rη)n
2

2 · rrηn2 ·
∑
H

 r∏
j=1

jej(H)

( nm)
2

≤ rH(2rη)n2+rηn2 ·
∑
H

 r∏
j=1

jej(H)

( nm)
2

. (13)

By Lemma 2.4, a multicolored cluster graph obtained from a KR
k+1-free r-edge-coloring

cannot contain a copy of Kk+1 for which all edges have lists of size at least
(
k+1

2

)
, as this

would lead to a copy of KR
k+1 in G, hence by Turán’s Theorem we have

r∑
i=(k+1

2 )

ei(H) ≤ ex(m,Kk+1) ≤ k − 1

2k
·m2. (14)

In the following our aim is to show that the sum
∑r

i=(k+1
2 ) ei(H) is very close to ex(m,Kk+1),

as otherwise there will be too few colorings of G.
First assume that, for some β ≥ 1/(8k2), e(k+1

2 )(H) + · · · + er(H) ≤ ex(m,Kk+1) − βm2

for all multicolored cluster graphs H arising from KR
k+1-free r-edge colorings of G. Because

e1(H) + · · ·+ er(H) ≤
(
m
2

)
, we deduce that (13) is at most

rH(2rη)n2+rηn2 ·
∑
H

(k+1
2 )−1∏
j=1

jej(H) ·
r∏

j=(k+1
2 )

jej(H)


( nm)

2

≤ rH(2rη)n2+rηn2 ·
∑
H

(((
k + 1

2

)
− 1

)(m2 )−(e
(k+1

2 )
(H)+···+er(H))

· r
e
(k+1

2 )
(H)+···+er(H)

)( nm)
2

≤ 2rM
2/2 · rH(2rη)n2+rηn2 ·

([(
k + 1

2

)
− 1

](m2 )−(ex(m,Kk+1)−βm2)

· rex(m,Kk+1)−βm2

)( nm)
2

≤ 2rM
2/2 · rH(2rη)n2+rηn2 ·

[(
k + 1

2

)
− 1

]n2
2k

+βn2

· rex(n,Kk+1)−βn2

≤ 2rM
2/2 · rH(2rη)n2+rηn2 · rex(n,Kk+1)−β

2
n2 � rex(n,Kk+1)

for r ≥
(
k+1

2

)8k+4
with 0 < 4H(2rη) + 4rη ≤ 1/(8k2) ≤ β. In the above equation, we ignored

rounding effects of order rO(n) related with the values of ex(n,Kk+1) and ex(m,Kk+1), but
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they are negligible owing to the upper bounds with exponentials of power Ω(n2) used in other
terms of the equation. The second to last inequality follows from[(

k+1
2

)
− 1
] 1

2k
+β

r
β
2

≤

[(
k+1

2

)
− 1
] 1

2k
+β

[(
k+1

2

)8k+4
]β

2

=

[(
k+1

2

)
− 1
] 1

2k(
k+1

2

)4kβ ·

[(
k+1

2

)
− 1
]β

(
k+1

2

)2β < 1.

Since this number of colorings is small, there exists a multicolored cluster graph H with
e(k+1

2 )(H) + · · ·+ er(H) ≥ ex(m,Kk+1)− βm2 for some β ≤ 1/(8k2). Let us first assume that

there are only cluster graphs H such that β ≥ 4H(2rη)+ 4rη. For such a multicolored cluster
graph H let H ′ be the graph with vertex set [m] obtained from H by deleting all edges in
E1(H) ∪ · · · ∪ E(k+1

2 )−1
(H). As H ′ is Kk+1-free and

e(H ′) =

r∑
i=(k+1

2 )

ei(H) = ex(m,Kk+1)−

ex(m,Kk+1)−
r∑

i=(k+1
2 )

ei(H)

 ,

by Theorem 2.5 there is a partition U1 ∪ · · · ∪ Uk = [m] with

k∑
i=1

eH′(Ui) ≤ ex(m,Kk+1)−
r∑

i=(k+1
2 )

ei(H). (15)

Let H ′′ be the k-partite subgraph of H ′ with partition U1 ∪ · · · ∪ Uk, whose number of edges
is at least

ex(m,Kk+1)− 2 ·

ex(m,Kk+1)−
r∑

i=(k+1
2 )

ei(H)

 = 2 ·
r∑

i=(k+1
2 )

ei(H)− ex(m,Kk+1).

We use the following lemma from [2].

Lemma 4.7. Let 0 < γ ≤ 1/(4k2) be fixed and let H ′′ be a k-partite graph on m vertices with
partition V (H ′′) = U1 ∪ · · · ∪ Uk with at least ex(m,Kk+1) − γm2 edges. If we add at least
(2k+ 1)γm2 new edges to H ′′, then in the resulting graph there is a copy of Kk+1 with exactly
one new edge connecting two vertices of Kk+1 in the same vertex class Ui of H ′′.

We include its simple proof for completeness.

Proof. Let V = U1 ∪ · · · ∪ Uk be a k-partition for H ′′. If we add a set N with at least
(2k + 1)γm2 new edges to H ′′, one class, say U1, contains at least 2γm2 of the new edges.
By MAXCUT we can obtain a bipartite subgraph H ′′N induced by the new edges within U1

with more than γm2 edges. The sum of the number of new edges with the number of edges
in H ′′ is larger than ex(m,Kk+1), hence there exists a Kk+1 containing exactly one new edge,
as H ′′N is bipartite. �

As β ≤ 1/(8k2), when we set γ = 2β in Lemma 4.7, all assumptions of Lemma 4.7 are
satisfied, and with it and Lemma 2.4, we immediately infer that

(k+1
2 )−1∑
i=1

ei(H) ≤ e(H)− e(H ′′) ≤ (4k + 2) ·

ex(m,Kk+1)−
r∑

i=(k+1
2 )

ei(H)

 . (16)
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Assume first that we have
r∑

i=(k+1
2 )

ei(H) := ex(m,Kk+1)− βm2 ≤ ex(m,Kk+1)− 4H(2rη)m2 − 4rηm2

for all multicolored cluster graphs H. Then, for n sufficiently large, (13) is at most

rH(2rη)n2+rηn2 ·
∑
H

 r∏
j=1

jej(H)

( nm)
2

≤ rH(2rη)n2+rηn2 ·
∑
H

[(k + 1

2

)
− 1

]∑(k+1
2 )−1

i=1 ei(H)

· r
∑r

i=(k+1
2 )

ei(H)


( nm)

2

(16)

≤ rH(2rη)n2+rηn2 ×

×
∑
H

[(k + 1

2

)
− 1

](4k+2)·ex(m,Kk+1)

·

 r[(
k+1

2

)
− 1
]4k+2


∑r

i=(k+1
2 )

ei(H)


( nm)
2

≤ rH(2rη)n2+rηn2 ×

×
∑
H

[(k + 1

2

)
− 1

](4k+2)·ex(m,Kk+1)

·

 r[(
k+1

2

)
− 1
]4k+2


ex(m,Kk+1)−(4H(2rη)+4rη)m2


( nm)

2

≤ 2
rM2

2 · rH(2rη)n2+rηn2 · rex(n,Kk+1)−(2H(2rη)+2rη)n2
for r ≥

(
k+1

2

)8k+4

≤ 2
rM2

2
·r−H(2rη)n2−rηn2 · rex(n,Kk+1)

� rex(n,Kk+1).

This contradicts our choice of G in that there are too few colorings. Therefore, there must
be a multicolored cluster graph H for which β ≤ 4H(2rη) + 4rη. As above, by Theorem 2.5,
we obtain a partition V (H) = U1 ∪ · · · ∪ Uk of the vertex set of the cluster graph H with∑k

i=1 eH′(Ui) ≤ βm2. For Wi =
⋃
j∈Ui Vj , where i ∈ {1, . . . , k}, we obtain

k∑
i=1

eG(Wi) ≤ rηn2 +
( n
m

)2
·

 k∑
i=1

eH′(Ui) +

(k+1
2 )−1∑
i=1

ei(H)


(15)

≤ rηn2 + βn2 +
( n
m

)2
·
(k+1

2 )−1∑
i=1

ei(H).

(16)

≤ rηn2 + (4k + 3)βn2

<
δ

2
n2 + (4k + 3)(4H(2rη) + 4rη)n2

<
δ

2
n2 +

δ

2
n2 = δn2,

by our choice of η > 0. �
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Remark 4.8. In the proof of Lemma 4.6, it is possible to reduce slightly the lower bound

r ≥
(
k+1

2

)8k+4
using more careful arguments. We used the current bound for clarity of

presentation, as we believe that the conclusion of Lemma 4.6 would still hold for much smaller
values of r. One way of obtaining a better lower bound is using MAX-s-CUT-type arguments.
To clarify this suggestion, consider first the case of a rainbow K4. Let E′5(H) ⊆ E5(H) be a
maximum subset of edges that is 3-partite. Then, it must be the case that |E′5(H)∪E6(H)∪
. . . ∪ Er(H)| ≤ ex(m,K4), as otherwise we have a rainbow K4 in G. By MAX-3-CUT we
know that |E′5(H)| ≥ 2

3 |E5(H)|, from which we derive the inequality

2

3
e5(H) +

r∑
i=6

ei(H) ≤ ex(m,K4).

Moreover, consider a maximum subset E′(H) ⊆ E4(H) ∪ E5(H) of edges that is bipartite.
Then, it must be the case that |E′(H) ∪ E6(H) ∪ . . . ∪ Er(H)| ≤ ex(m,K4), as otherwise we
have a rainbow K4 in G. By MAX-2-CUT we know that |E′(H)| ≥ 1

2(|E4(H)| + |E5(H)|),
from which we derive the inequality

e4(H) + e5(H)

2
+

r∑
i=6

ei(H) ≤ ex(m,K4),

as otherwise we have a rainbow K4. If we add on both inequalities to (14) for k = 3, we are
able to replace the above lower bound r ≥ 628 by r ≥ 333.

In general, for s = 2, . . . , k take a maximum subset E′(H) ⊆ Eex(k+1,Ks+1)(H) ∪ · · · ∪
E(k+1

2 )−1
(H) of edges of the multicolored cluster graph H that is s-partite, so that

|E′(H)| ≥ s− 1

s
· |Eex(k+1,Ks+1)(H) ∪ · · · ∪ E(k+1

2 )−1
(H)|.

The set E′(H)∪ (E(k+1
2 )(H)∪ · · · ∪Er(H)) does not contain a copy of Kk+1, as otherwise we

have a rainbow Kk+1 in G, hence

s− 1

s
·
(
eex(k+1,Ks+1)(H) + · · ·+ e(k+1

2 )−1
(H)

)
+ e(k+1

2 )(H) + · · ·+ er(H) ≤ ex(m,Kk+1).

If we add on these inequalities to (14), we are able to replace the base
(
k+1

2

)
in the above

lower bound by a slightly better value. However, it seems hard to get an explicit expression
for all values of k, and we therefore refrain from further calculations in this paper.

On the other hand, Remark 4.2 implies that the stability of Lemma 4.6 cannot hold for

patterns of Kk+1 that are not rainbow if r >
(
k+1

2

)k2
. As it turns out, this lower bound

can be modified to r > k2k2/(k+1) if P is not locally rainbow. Indeed, to prove this with the
strategy in Remark 4.2, it suffices to partition the r colors into k sets of size r/k and associate
each such set with some edge incident with a vertex of Kk+1, which we denote v1 (we ignore
divisibility constraints). The other edges of Kk+1 are assigned all of the r colors. As before,
we consider a blow-up H of the vertex set of Kk+1 with classes V1, . . . , Vk+1 and we create
edge-colorings of H in such a way that the edges between Vi and Vj use colors assigned to the
edge {vi, vj} of Kk+1. All copies of Kk+1 in such colorings are locally rainbow (because of

their vertex in V1), so that they cannot produce P . For r > k2k2/(k+1), the conclusion follows
from

( r
k

) k·n2
(k+1)2 r

n2

(k+1)2
(k2) =

(
r

k
2(k+1)

k
k

(k+1)2

)n2

> r
k−1
2k
·n2 ≥ rex(n,Kk+1).



A RAINBOW ERDŐS-ROTHSCHILD PROBLEM 19

4.3. Color Stability of Edge-Color Critical Graphs. A graph F is called edge-color
critical if there is an edge e in F such that the chromatic number of F −e satisfies χ(F −e) <
χ(F ). Graphs with this property are sometimes called weakly edge-color-critical.

The authors of [1] showed that the strategy to prove that the Turán graph Tk(n) is Cr,Kk+1,P -
extremal for r ∈ {2, 3} and k ≥ 2, where P is the monochromatic pattern, can be adapted to
colorings that forbid a monochromatic copy of an edge-color critical graph F with chromatic
number χ(F ) = k + 1. A similar result may be obtained in the rainbow setting.

Theorem 4.9. Let k ≥ 2 be an integer and let F be an edge-color critical graph with v(F )
vertices, e(F ) edges and chromatic number χ(F ) = k + 1. Fix a positive integer r ≥ r0 =

e(F )6k2v(F )e(F ). There is n0 such that every graph of order n > n0 has at most rex(n,Kk+1)

distinct FR-free r-edge colorings. Moreover, the Turán graph Tk(n) is the only graph on n
vertices for which equality is achieved.

We prove the following stability result for graphs with a large number of colorings avoiding
a rainbow F for a fixed edge-color critical graph F .

Lemma 4.10. Let k ≥ 2 be an integer, let F be an edge-color critical graph with v(F ) vertices,

e(F ) edges and chromatic number χ(F ) = k + 1 and let r ≥ r0 = e(F )6k2v(F )e(F ) be a positive
integer. Then, for each δ > 0 there is a positive integer n0 such that the following statement
is true. If G is a graph of order n > n0 which has at least rex(n,F ) distinct FR-free r-edge

colorings, then there is a partition V (G) = W1 ∪ · · · ∪Wk such that
∑k

i=1 e(Wi) < δn2.

Proof. The beginning of the proof is almost identical to the proof of Lemma 4.6; however, we
cannot apply Lemma 4.7, and therefore we argue differently in the final part of the proof. Fix
positive integers k ≥ 2 and r ≥ r0 and let δ > 0. We let η > 0 be small enough to ensure
that max{12k2v(F )e(F )(H(2rη) + rη), rη + 16H(2rη) + 16rη} < δ/2 and 4H(2rη) + 4rη �
1/(90k2). Fix m1 according to Theorem 2.6 for α = 4H(2rη) + 4rη with the additional
property that m1 ≥ max{k/

√
5α, 2kv(F )}. Let n0 = n0(r, η, k) and ε = ε(r, η, k) > 0

satisfy the assumptions of Lemma 2.4, where we assume that ε < min{η/2, 1/m1}. Define
M = M(ε, r) as in Lemma 2.3.

Let G = (V,E) be an n-vertex graph with n > max{n0,M} for which the number of FR-

free r-edge colorings is at least rex(n,Kk+1). We will show that G may be partitioned as in
the statement of the lemma. Fix an FR-free r-edge coloring of G. By Lemma 2.3 we obtain
a partition V = V1 ∪ · · · ∪ Vm that is ε-regular with respect to every subgraph of G induced
by the edges in each of the r colors. For i ∈ {1, . . . , r}, let Hi = Hi(η) be the m-vertex
cluster graph for color i and let H be the corresponding multicolored cluster graph. Note
that m ≥ 1/ε > m1.

Just as in the proof of Lemma 4.6, summing over all possible partitions and all possible
multicolored cluster graphs H, the number of FR-free r-edge-colorings of G is at most

Mn · 2H(2rη)n
2

2 · rrηn2 ·
∑
H

 r∏
j=1

jej(H)

( nm)
2

. (17)

By Lemma 2.4, a multicolored cluster graph obtained from an FR-free r-edge-coloring
cannot contain a copy of F for which all edges have lists of size at least e(F ) = |E(F )|, as
this would lead to a copy of FR in G. By Simonovits [25, Theorem 1], we have

e|E(F )|(H) + · · ·+ er(H) ≤ ex(m,F ) = ex(m,Kk+1) ≤ k − 1

2k
·m2. (18)

First assume that, for some β ≥ 1/(90k2), the inequality e|E(F )|(H) + · · · + er(H) ≤
ex(m,F ) − βm2 holds for all multicolored cluster graphs H arising from FR-free r-edge
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colorings of G. As e1(H) + · · ·+ er(H) ≤
(
m
2

)
, we deduce that (17) is at most

rH(2rη)n2+rηn2 ·
∑
H

e(F )−1∏
j=1

jej(H) ·
r∏

j=e(F )

jej(H)

( nm)
2

≤ rH(2rη)n2+rηn2 ·
∑
H

(
(e(F )− 1)(

m
2 )−(e|E(F )|(H)+···+er(H)) · re|E(F )|(H)+···+er(H)

)( nm)
2

≤ 2rM
2/2 · rH(2rη)n2+rηn2 ·

(
(e(F )− 1)

m2

2
−(ex(m,F )−βm2) · rex(m,F )−βm2

)( nm)
2

≤ 2rM
2/2 · rH(2rη)n2+rηn2 · (e(F )− 1)

n2

2k
+βn2

· rex(n,F )−βn2

≤ 2rM
2/2 · rH(2rη)n2+rηn2 · rex(n,F )−β

2
n2

(19)

� rex(n,F )

for r ≥ r0 ≥ e(F )90k+2 and small enough 0 < 4H(2rη) + 4rη � 1/(90k2) ≤ β. Inequality (19)
follows from

(e(F )− 1)
1
2k

+β

r
β
2

≤ (e(F )− 1)
1
2k

+β

(e(F )45k+1)
β
≤ (e(F )− 1)

1
2k

e(F )45kβ
· (e(F )− 1)β

e(F )β
< 1.

Since this number of colorings is small, there exists a multicolored cluster graph H with
e|E(F )|(H) + · · · + er(H) ≥ ex(m,F ) − βm2 for some β < 1/(90k2). Next assume that

e|E(F )|(H) + · · ·+ er(H) ≤ ex(m,F )− (4H(2rη) + 4rη)m2 for all multicolored cluster graphs
H. Given such H, let V = V1 ∪ · · · ∪ Vm and H1, . . . ,Hr be the partition and the cluster
graphs that define H.

Let H ′ be the graph with vertex set [m] obtained from the multicolored cluster graph H by
deleting all edges in E1(H)∪ · · · ∪Ee(F )−1(H). As H ′ is F -free and m > m1, by Theorem 2.6
there is a partition U1 ∪ · · · ∪ Uk = [m] such that

k∑
i=1

eH′(Ui) ≤ 4βm2.

Let H ′′ be the subgraph of H ′ containing all edges from H ′ with endvertices in different sets
Ui, and write ui = |Ui|, where i ∈ {1, . . . , k}. Since the number of edges in H ′′ is at least
ex(m,F ) − 5βm2, by Proposition 2.7 we know that, since 5βm2 ≥ 5βm2

1 ≥ k2 by our choice
of m1, ∣∣∣ui − m

k

∣∣∣ <
√

10β ·m, i = 1, . . . , k. (20)

Next we provide an upper bound on
∑|E(F )|−1

i=1 ei(H). For i ∈ {1, . . . , k}, let Ai be a set of
edges e ∈ E(H) with both endpoints in Ui whose color lists Le have size at most |E(F )| − 1.
For A = A1∪· · ·∪Ak, let HA be the graph obtained by adding A to H ′′. Since F is edge-color
critical, there is a partition of the vertex set of F into classes X1 ∪ · · · ∪Xk such that there
is a single edge e = {a, b} with both endpoints in the same class, which we assume to be Xk.
Assume that Xi contains fi ≥ 1 vertices of F . We say that an assignment φ of vertices of F
to vertices of V (H) is a potential embedding of F with respect to the partition U1 ∪ · · · ∪ Uk
if φ maps vertices in Xi into Ui for i ∈ {1, . . . , k}. Note that no such potential embedding
generates an actual embedding of F into G, as this would lead to a copy of FR in G.

Given {a, b} ∈ A, we let Φa,b be the family of potential embeddings such that the single
edge of F with both ends in the same class is mapped onto {a, b}. To prove that the number
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of edges in A is small, we shall use double counting: we consider the sum∑
{a,b}∈Ak

∑
φ∈Φa,b

|E(F )| − |E(HA[a, b, φ(X1), . . . , φ(Xk−1), φ(Xk) \ {a, b}])| , (21)

which, for each edge {a, b} in Ak, counts the number of edges missing from any potential
embedding with respect to the partition U1 ∪ · · · ∪ Uk such that the edge with both ends in
the same class is mapped to {a, b}.

On the one hand, because there must be an edge missing from HA for any potential em-
bedding φ ∈ Φa,b to avoid a copy of FR (and this edge is not {a, b}, as we are summing over
edges in Ak, hence it must be an edge of H ′′), the sum in (21) is bounded below by

2|Ak| · (uk − fk + 1)fk−2 ·
k−1∏
i=1

(ui − fi + 1)fi ≥ 2|Ak|
u2
k · 2v(F )−2

·
k∏
i=1

ufii

≥ |Ak|
max{ui}2 · 2v(F )−3

·
k∏
i=1

ufii .

This is because there are two ways to fix the endpoints of {a, b} in φ, and (fk − 2)! ·
(
uk−2
fk−2

)
ways to map the remaining vertices of Xk into Uk and fi! ·

(
ui
fi

)
ways to map vertices of Xi

into Ui. Moreover,
(
u
f

)
≥ (u− f + 1)f/f ! and our choice of m implies that ui − fi + 1 ≥ ui/2

for every i.
On the other hand, all missing edges counted above have endpoints in different sets Ui.

One such missing edge e, say, between Ui and Uj , 1 ≤ i < j ≤ k, is counted at most

(e(F )− 1) · ufkk · u
fi−1
i · ujfj−1 ·

k−1∏
`=1;` 6=i,j

uf`` ≤
(e(F )− 1)

min{ui}2
·
k∏
i=1

ufii

times in (21). To reach this number, note that e could play the role of any edge between Xi

and Xj in F , and hence it may be chosen in at most (e(F )− 1) different ways (it cannot be
the edge {a, b}), while the remaining terms in the product account for the number of ways of
choosing vertices other than the endpoints of e in the embedding.

Because e(H ′′) ≥ ex(m,Kk+1)− 5βm2, we infer with (20) that

|Ak| ≤ 5βm2 · e(F ) · 2v(F )−3 · maxi{ui}2

mini{ui}2

≤
(

1 + k
√

10β

1− k
√

10β

)2

· 5βm2 · e(F ) · 2v(F )−3.

Since β < 1/(90k2), we have (
1 + k

√
10β

1− k
√

10β

)2

≤ 4,

and hence

|Ak| ≤
5

2
· e(F ) · 2v(F ) · βm2.

The same argument applies to edges contained in other sets Ai, leading to

k∑
i=1

|Ai| ≤
5

2
· k · e(F ) · 2v(F ) · βm2.
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Moreover, we know that the number of missing edges between distinct sets Ui is at most
5βm2 ≤ k · e(F ) · 2|V (F )|−1 · βm2, and hence

e(F )−1∑
i=1

ei(H) ≤ 3k · e(F ) · 2v(F ) · βm2. (22)

Recall our assumption that
∑r

i=|E(F )| ei(H) := ex(m,F ) − βm2 ≤ ex(m,F ) − 4H(2rη)m2 −
4rηm2 for all multicolored cluster graphs H. Then (17) is at most

rH(2rη)n2+rηn2 ·
∑
H

 r∏
j=1

jej(H)

( nm)
2

≤ rH(2rη)n2+rηn2 ·
∑
H

(
(e(F )− 1)

∑e(F )−1
i=1 ei(H) · r

∑r
i=e(F ) ei(H)

)( nm)
2

(22)

≤ 2
rM2

2 · rH(2rη)n2+rηn2 ·
(

(e(F )− 1)3k2v(F )e(F )(4H(2rη)+4rη)m2

· rex(m,F )−(4H(2rη)+4rη)m2
)( nm)

2

≤ 2
rM2

2 · rH(2rη)n2+rηn2 ·
(
rex(m,F )−(2H(2rη)+2rη)m2

)( nm)
2

(as r ≥ r0 = e(F )6k2v(F )e(F ))

≤ 2
rM2

2 · r−H(2rη)n2−rηn2 ·
(
rex(m,F )

)( nm)
2

� rex(n,F ).

This contradicts our choice of G, as there are too few FR-free colorings of G.
Therefore, there must be a multicolored cluster graph H for which β ≤ 4H(2rη) + 4rη. As

above, by Theorem 2.6, we obtain a partition U1 ∪ · · · ∪ Uk of the vertex set of the cluster

graph H ′ with
∑k

i=1 eH′(Ui) ≤ 16H(2rη)m2 +16rηm2 and we let Wi =
⋃
j∈Ui Vj , i = 1, . . . , k.

Then,

k∑
i=1

eG(Wi) ≤ rηn2 +
( n
m

)2

 k∑
i=1

eH′(Ui) +

e(F )−1∑
i=1

ei(H)


≤ rηn2 + 16H(2rη)n2 + 16rηn2 +

( n
m

)2
e(F )−1∑
i=1

ei(H).

(22)
<

δ

2
· n2 + 3k · 2v(F ) · e(F ) · (4H(2rη) + 4rη) · n2

<
δ

2
· n2 +

δ

2
· n2 = δn2,

by our choice of η > 0. �

To obtain our result for edge-color critical graphs, we combine the previous lemma with the
following, which may be proved with arguments as in Lemma 4.4. Even though we just need
it for rainbow patterns, our proof holds for any locally rainbow pattern with the additional
property that an edge e for which χ(G− e) < χ(G) is incident with a vertex which is locally
rainbow.

Lemma 4.11. Let k ≥ 2, let F be an edge-color critical graph with χ(F ) = k + 1, and
let P be a locally rainbow pattern of F , where the maximum degree of a vertex in F whose
incident edges are rainbow-colored is d. Let k ≥ 2, let F be an edge-color critical graph with
χ(F ) = k + 1, and let P be a pattern of F such that an edge e for which χ(F − e) < χ(F )
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is incident with a locally rainbow vertex of degree d. Assume that (F, P ) satisfies the Color
Stability Property of Definition 4.1 for a positive integer r > e(d+ 1). Then there is n0 such

that every graph of order n > n0 has at most rex(n,F ) distinct (F, P )-free r-edge colorings.

Moreover, the only n-vertex graph for which the number of such colorings is rex(n,F ) is the
Turán graph Tk(n).

The proof of Lemma 4.11 is an easy adaptation of the proof of Lemma 4.4. Indeed, the
case in which there is a vertex x with degree less than δk(n) is identical. The case where there
is a vertex x with large degree in its own class (in the partition given by the Color Stability
Property) may be treated as follows: recall that in the proof of Lemma 4.4, we try to find a
partial embedding of F where x is one of the vertices. If we succeed, we argue that there must
be large sets Xi and Xj in two different classes such that some color does not appear often on
edges between them. If we fail, we argue that G − x must have a large number of colorings.
The same may be done here, but we need to consider a good embedding of F such that x is
locally rainbow and an edge e with the property that χ(F − e) = k is incident with x. The
latter ensures that the sets Xi and Xj lie in different classes in the partition. Also note that
the condition r ≥ e(d + 1) naturally replaces the condition r ≥ e(k + 1) of Lemma 4.4. The
case in which there is no vertex with large degree in its own class may also be treated as in
Lemma 4.4, but we must look for an embedding of F such that {x, y} plays the role of an
edge e as above. Details are left to the reader.

Note that Theorem 4.9 follows from Lemma 4.11 and Lemma 4.10, where we use that

e(F )6k2v(F )e(F ) ≥ e(d + 1) holds for any edge color critical graph F with χ(F ) ≥ 3. Further
note that Lemma 4.11 might be of interest only for values of d that are not too large compared
to k, see Remarks 4.2 and 4.8.

5. Final remarks and open problems

In this paper, we studied n-vertex graphs with the maximum number of r-edge-colorings
avoiding the occurrence of a subgraph F colored according to a pattern P . We showed that,
whenever F is a bipartite graph and P has at least three classes, the complete graph Kn is
almost extremal, in the sense that no other n-vertex graph may beat the number of (F, P )-free

r-edge colorings of Kn by more than a multiplicative factor of Co(n
2), where C is a constant.

We also proved that this behavior is not shared with arbitrary patterns of non-bipartite
graphs. In fact, if the number r of colors is large with respect to k ≥ 2 and P is the rainbow
pattern of the complete graph Kk+1, we showed that the Turán graph Tk(n) is the unique
graph maximizing the number of rainbow Kk+1-free r-edge colorings.

Our results raise several natural questions. For instance, if F is bipartite and P is a pattern
of F with at least three classes, we may ask if, for large n, the complete graph Kn is indeed
extremal for (F, P )-free r-edge colorings. Two of the authors [12] gave a positive answer to
this question for patterns of matchings with at least three classes, while Sanches and the
current authors [15] proved that the same holds for patterns of stars S` = K1,` with at least
three classes. However, this has not been proved for other classes of bipartite graphs, and the
arguments used to prove equality in [12] and [15] have a heavy dependency on the structure
of the forbidden bipartite graph.

Another natural improvement on our result about bipartite graphs would be to drop the
condition on the number of classes in the forbidden pattern. However, this cannot be done in
general: it is shown in [12] that there is an infinite family of matching patterns with two classes
for which Kn is not extremal (and is not even almost extremal in the sense of Theorem 1.1).
On the other hand, the arguments in the current work imply that, for any fixed β > 0, r ≥ 2

and any pattern P with t = 2 classes in a bipartite graph F , we have cr,F,P (n) ≤ 2βn
2

if n
is sufficiently large. In the case of monochromatic colorings, Ramsey’s Theorem implies that,
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for n large, the complete graph Kn does not admit any (F, P )-free r-edge coloring when P has
a single color class (and hence when we forbid monochromatic copies of F ). More information
about results in the monochromatic case may be found in [11].

For rainbow patterns in complete graphs, the most natural question would be to weaken

considerably the condition r ≥
(
k+1

2

)8k+4
in Theorem 1.2. As we remarked in and at the end

of its proof, it is possible to reduce the basis of the exponent as well as the exponent in this
lower bound using more careful arguments, but we believe that the same conclusion would still
hold for much smaller values of r. For triangles [14], the lower bound in Theorem 1.2 has been
improved to r ≥ 5 (provided that n is sufficiently large) and to r ≥ 10 (also for small values
of n) using more careful arguments. On the other hand, we know that Theorem 1.2 cannot

hold for arbitrary r as the complete graph would be trivially extremal if we had r <
(
k+1

2

)
. In

fact, if we use only
(
k+1

2

)
− 1 colors, the complete graph Kn may be colored in (

(
k+1

2

)
− 1)(

n
2)

ways without creating a rainbow Kk+1, so that it has more colorings than the Turán graph

Tk(n) whenever (
(
k+1

2

)
−1)(

n
2) > rex(n,Kk+1), which happens if r < (

(
k+1

2

)
−1)k/(k−1). It would

be interesting to determine whether the complete graph is extremal in this case. We should
mention that there is some recent work on problems of this type applying modern techniques
in Extremal Combinatorics, such as graph limits and the container method [9].

Furthermore, Remarks 4.2 and 4.8 imply that the stability of Lemma 4.6 cannot hold for

patterns P of Kk+1 that are not rainbow if r >
(
k+1

2

)k2
, and even for smaller values of r if P

is not locally rainbow. For monochromatic patterns, the results in [1] imply that the Color
Stability Property does not hold for all r ≥ 4, but holds for r ∈ {2, 3}. The results in [3, 4] also
imply that a large class of patterns of complete graphs with t = 2 classes satisfy the stability
property for r ∈ {2, 3}. We wonder whether the stability of Lemma 4.6 holds for other locally

rainbow patterns P of complete graphs Kk+1 for some values of r satisfying t ≤ r ≤
(
k+1

2

)k2
,

where t is the number of classes of P . By Lemma 4.4, this would automatically imply that
Tk(n) is (Kk+1, P )-extremal for n sufficiently large.

One may also ask whether, for some values of r, Lemma 4.4 holds for locally rainbow
patterns of graphs F with χ(F ) ≥ 3 that are not complete. Advances in this direction would
be naturally intertwined with the investigation of patterns of such general graphs F that
satisfy the stability of Lemma 4.6 for certain values of r.

In general, the problem of determining cr,F,P (n) and the n-vertex graphs that achieve this
extremal value has only been solved in very special cases. Even for the original problem, in
which F = Kk+1 and P is monochromatic, it is known [1, 28] that Tk(n) is the only extremal
graph for all values of k ≥ 2 if r ∈ {2, 3}, but that it is never extremal for r ≥ 4. The only
other extremal configurations that are known are for the cases r = 4 and F ∈ {K3,K4}, which
were obtained by Pikhurko and Yilma [24], but good approximations to cr,Kk+1,P (n) for all
values of r and k have been provided in [23] in terms of solutions to optimization problems.
One interesting feature of the monochromatic case is the emergence of extremal graphs that
are neither complete nor isomorphic to the Turán graph. For more general patterns, other
extremal structures appear for patterns with two classes in matchings [12], but there are no
known examples of alternative extremal configurations for rainbow patterns.

Another natural pattern of complete graphs comes from the lexical colorings of the classical
Canonical Ramsey Theorem of Erdős and Rado [8]: to construct such an edge-coloring of
Kk+1, assume that the vertex set is given by [k+ 1] and assign distinct colors c1, . . . , ck to the
first k vertices, respectively. Any edge {i, j} of Kk+1, where i < j, is assigned color ci. Note
that this pattern is locally rainbow, and hence Lemma 4.4 applies.
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