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Abstract. In this paper a generalization of a problem of Erdős and Rothschild is
considerd. Given an integer r ≥ 1 and a graph F , an r-pattern P of F is a partition
of its edge set into at most r nonempty classes. Let P be a pattern family, which is an
arbitrary non-empty family whose elements are of the form (F, P ), where F is a graph
and P is an r-pattern of F . An r-coloring of a graph G is P-free if G does not contain
any copy of F for which the r-pattern P ′ induced by the coloring is isomorphic to
some r-pattern P where (F, P ) ∈ P. Let Cr,P(G) be the set of all P-free r-colorings
of a graph G. Let cr,P(n) = max { |Cr,P(G)| : |V (G)| = n }. An n-vertex graph G is
(r,P)-extremal if |Cr,P(G)| = cr,P(n). We wish to characterize the n-vertex graphs
that admit the largest number of P-free r-colorings.

It is shown that, for some choices of r and P, and for every positive integer n,
there exists an (r,P)-extremal n-vertex graph that is a complete multipartite graph.
Moreover, it is shown, that in some cases, all (r,P)-extremal n-vertex graphs must
be complete multipartite. In the case of pattern families with a single element, this
extends recent results of Benevides, Hoppen and Sampaio [4] who proved that there is
an (r,P)-extremal n-vertex complete multipartite graph for any P = {(Kk, P )} where
k ≥ 3 and P is a pattern of the complete graph Kk.

1. Introduction

In the last decade there has been growing interest in an extremal problem about
graphs (or other combinatorial structures) that admit a large number of edge-colorings∗

that satisfy some restrictions. This became known as the Erdős-Rothschild problem.
In this paper, we consider a generalized version of this extremal problem and discuss
properties of the configurations that achieve extremality.

For us, an r-(edge)-coloring of a graph G is just a function f : E(G) −→ [r] that
associates a color in [r] = {1, . . . , r} with each edge of G. Given an integer r ≥ 2
and a fixed graph F , we say that an r-coloring E = E1 ∪ · · · ∪ Er of the edge-set of
a host graph G = (V,E) is F -free if the graphs Gi = (V,Ei) do not contain F as a
subgraph, for all i ∈ [r]. The problem originally addressed by Erdős and Rothschild [6]
was to characterize the n-vertex graphs that admit the largest number of F -free r-
colorings, where n is an integer. In other words, they considered edge-colorings that
avoid monochromatic copies of a fixed graph F .

Erdős and Rothschild conjectured that, for all n ≥ n0(k), the number of Kk-free
2-colorings is maximized by the Turán graph Tk−1(n), namely the balanced, complete,
(k−1)-partite graph on n vertices, and that this maximum is unique up to isomorphism.

This work was partially supported by CAPES and DAAD via Probral (CAPES
Proc. 88881.143993/2017-01 and DAAD 57391132 and 57518130). The first author acknowl-
edges the support of CNPq 308054/2018-0), Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico.
∗The edge-colorings in this paper are not necessarily proper.
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As usual, a graph G = (V,E) is complete s-partite if there is a partition V = V1∪· · ·∪Vs
of its vertex set such that {v, w} ∈ E if and only if v ∈ Vi, w ∈ Vj and i 6= j. This
partition is balanced if ||Vi| − |Vj|| ≤ 1 for all i, j ∈ [s].

According to the Erdős-Rothschild Conjecture, finding an n-vertex graph with the
largest number of Kk-free 2-colorings turns out to be the same as finding an n-vertex
graph with the largest number of edges and no copy of Kk as a subgraph, the well-
known Turán problem [16]. In general, for any fixed F , we write ex(n, F ) to denote
the maximum number of edges over all n-vertex graphs that do not contain F as a
subgraph, and we say that an n-vertex graph G is F -extremal if it has ex(n, F ) edges
and does not contain F as a subgraph. Observe that F -extremal graphs on n vertices
have the largest number of edges among all graphs that may be colored arbitrarily
without producing a monochromatic copy of F , which leads to rex(n,F ) colorings. The
number of colorings might increase if we have more than ex(n, F ) edges to color, but
extra edges lead to copies of F , creating restrictions on how to color them.

Yuster [17] proved the Erdős-Rothschild Conjecture for k = 3 and any n ≥ 6. Later,
Alon, Balogh, Keevash and Sudakov [1] proved that, for r ∈ {2, 3} and n ≥ n0, where
n0 is a constant depending on r and k, the Turán graph Tk−1(n) is the unique optimal n-
vertex graph for the number of Kk-free r-colorings. An interesting feature of their proof
was to apply the Szemerédi Regularity Lemma [15] to obtain an exact result, which,
on the other hand, required n0 to be very large. The value of n0 has been recently
improved by Hàn and Jiménez [7] using the Container Method. When the number of
colors satisfies r ≥ 4, the problem has shown to be much harder and it is known that
Tk−1(n) cannot maximize the number of Kk-free r-colorings. Pikhurko and Yilma [13]
determined, for large n, the graphs that admit the largest number of such colorings for
r = 4 and k ∈ {3, 4}. For k = 3, Botler et al. [5] characterized these graphs for r = 6,
and have an approximate result for r = 5. As it turns out, the extremal configurations
obtained so far are always some balanced complete multipartite graph T`(n), but ` ≥ k
for r ≥ 4. Interestingly, even in this small sample of results, the value of ` is not a
monotone non-decreasing function of r.

This problem has been generalized in a few different ways, by considering colorings
where the size of the forbidden clique may vary according to the color class [12], or
colorings where the forbidden graph is not colored according to some given coloring [2]
or according to some given coloring pattern [4, 9]. Here, we consider an extension of
this last version.

Given an integer r ≥ 1 and a graph F , an r-pattern P of F is a partition of its edge
set into at most r nonempty classes. Let P be a pattern family, namely an arbitrary
non-empty family whose elements are of the form (F, P ), where F is a graph and P
is an r-pattern of F . We say that an r-coloring of a graph G is P-free if G does not
contain any copy of F for which the r-pattern P ′ induced by the coloring is isomorphic
to some r-pattern P where (F, P ) ∈ P . Let Cr,P(G) be the set of all P-free r-colorings
of a graph G. We write cr,P(n) = max { |Cr,P(G)| : |V (G)| = n }, and we say that an
n-vertex graph G is (r,P)-extremal if |Cr,P(G)| = cr,P(n). In other words, we wish to
characterize the n-vertex graphs that admit the largest number of P-free r-colorings.

In the version of [4, 9], the family P contains a single pair (F, P ), while in the
original Erdős-Rothschild problem this single pattern P is monochromatic, that is,
contains a single class. Moreover, if the family P contains all possible r-patterns of a
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fixed graph F with at least one edge, where r ≥ 2, then Cr,P(G) 6= ∅ if and only if G
is F -free, and hence G is (r,P)-extremal if and only if it is F -extremal. This means
that the problem considered here generalizes the Turán problem, further illustrating
the connection between the Turán and the Erdős-Rothschild problems.

The following result collects other immediate consequences of the definition. To state
it, we need to introduce some additional notation. The number of classes in a pattern P
is denoted by γ(P ) and, for a pattern family P , we have γmin(P) = min{γ(P ) : (F, P ) ∈
P}. Given a pattern family P , let χmin(P) = min{χ(F ) : (F, P ) ∈ P}, where χ(F )
denotes the (vertex) chromatic number of F .

Proposition 1.1. Let P1 and P2 be pattern families, and let r ≥ 2 be an integer.

(a) If r < γmin(P1), then cr,P1(n) = r(
n
2) and Kn is the unique (r,P1)-extremal

graph.
(b) If P1 ⊆ P2, then cr,P1(n) ≥ cr,P2(n). Moreover, if s = χmin(P2) − 1 and the s-

partite Turán graph Ts(n) is (r,P1)-extremal, then Ts(n) is also (r,P2)-extremal.

Proof. Part (a) is trivial, as no r-coloring can ever produce a forbidden pattern.
For part (b), fix r ≥ 2 and consider pattern families P1 ⊆ P2. For any graph

G, every (r,P2)-free coloring is also (r,P1)-free, so that |Cr,P1(G)| ≥ |Cr,P2(G)|. This
immediately implies cr,P1(n) ≥ cr,P2(n). Assume that the Turán graph Ts(n) is (r,P1)-
extremal, where s = χmin(P2) − 1. This choice of s implies that no forbidden pattern
can be produced by coloring the edges of Ts(n). As a consequence, for any n-vertex
graph G, we have

|Cr,P2(Ts(n))| = rex(n,Ks+1) = |Cr,P1(Ts(n))| ≥ |Cr,P1(G)| ≥ |Cr,P2(G)|,

and therefore Ts(n) is (r,P2)-extremal. �

The aim of this paper is to show that, for some choices of r and P , and for every
positive integer n, there exists an (r,P)-extremal n-vertex graph that is a complete
multipartite graph. Moreover, we show that, in some cases, all (r,P)-extremal n-vertex
graphs must be complete multipartite. In the case of pattern families with a single
element, Benevides, Hoppen and Sampaio [4] proved that there is an (r,P)-extremal
n-vertex complete multipartite graph for any P = {(Kk, P )} where k ≥ 3 and P is a
pattern of Kk. If P is monochromatic, this is also implied by Pikhurko, Staden and
Yilma [12] (whose result also holds for a different generalization of the original Erdős
Rothschild problem).

Theorem 1.2. Fix integers r ≥ 2 and n > k ≥ 3, and let P be an r-pattern of
the complete graph Kk. Then there exists an n-vertex (r, P )-extremal graph that is a
complete multipartite graph.

Regarding instances where all (r,P)-extremal n-vertex graphs are necessarily com-
plete multipartite, the following is known for singletons P = {(Kk, P )}.

Theorem 1.3. [4, Theorem 1.2] Let r ≥ 2 and k ≥ 3 be integers and let P be an
r-pattern of the complete graph Kk which is not monochromatic and is different from
the pattern T0. Also assume that if r = 2 then P is different from the pattern P2 (see
Figure 1). If P = {(Kk, P )}, then every (r,P)-extremal graph is a complete multipartite
graph.
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T0 P2

Figure 1. Some special 2-patterns: T0 a triangle K3 colored by exactly
two colors and P2 a complete K4 colored by exactly two colors as shown

.

One of our main results is that Theorem 1.2 may be generalized to any pattern family
of complete graphs.

Theorem 1.4. Let P be a pattern family of complete graphs and let r ≥ 2 be an integer.
For any positive integer n, there exists an n-vertex complete multipartite graph G∗ that
is (r,P)-extremal. Moreover, for any (r,P)-extremal n-vertex graph G, there is one
such n-vertex complete multipartite graph G∗ such that |E(G∗)| ≥ |E(G)|.

Our proof of Theorem 1.4 has the following useful consequence.

Theorem 1.5. Let P be a pattern family of complete graphs and n, r ≥ 2 be integers. If
there exists an (r,P)-extremal graph that is not complete multipartite, then there exist
at least two non-isomorphic (r,P)-extremal complete multipartite graphs on n vertices.

Regarding extensions of Theorem 1.3, we show that it holds for a class of pattern
families. Given integers k ≥ 3 and 1 ≤ s ≤

(
k
2

)
, let Pk,s be the pattern family containing

all patterns P of Kk such that γ(P ) ≥ s.

Theorem 1.6. Let n, r ≥ 2 and k ≥ 3 be integers, and fix k ≤ s ≤
(
k
2

)
. If G is an

n-vertex (r,Pk,s)-extremal graph, then G is a complete multipartite graph.

2. Extremal configurations for pattern families of complete graphs

The results in this paper may be derived with the approach in [4], which in turn was
influenced by the Zykov Symmetrization proof of Turán’s Theorem.

Let I be a non-empty, and possibly infinite, set of indices, and let

P = {(Kki , Pi) : i ∈ I}
be a pattern family, where ki ≥ 3 and Pi is a pattern of Kki , for each i ∈ I. We shall
prove that, given positive integers n and r ≥ 2, there is an (r,P)-extremal n-vertex
graph that is a complete multipartite graph.

For a vector ~x with coordinates indexed by a set T , we will denote by x(t) the value
of x at coordinate t, where t ∈ T . We will use ‖~x‖p to denote the `p-norm of ~x, so for

p ∈ (0,∞) we have

‖x‖p =

(∑
t∈T

|x(t)|p
)1/p

.

Moreover, for a sequence of vectors ~x1, . . . , ~xs, each indexed by T , we will denote their
pointwise product by

∏s
k=1 ~xk, that is, the vector ~y such that for each t ∈ T we have

y(t) =
∏n

k=1 xk(t).
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Definition 2.1. Let H be a graph and let P be a family of r-patterns. If H is a subgraph

of a graph G and Ĥ is a P-free r-coloring of H, we denote by cr,P(G | Ĥ) the number
of ways to r-color the edges in E(G)− E(H) in such a way that the resulting coloring

is still P-free. For a single vertex v ∈ V (G) − V (H), we use the notation cr,P(v, Ĥ)
for the number of ways to r-color the edges from v to V (H) (again avoiding P). We
also define ~vH,r,P as the vector indexed by all P-free r-colorings of H, whose coordinate

corresponding to a coloring Ĥ is given by ~vH,r,P(Ĥ) = cr,P(v, Ĥ).

The following proposition is a simple consequence of the fact that all graphs in the
pattern family are complete.

Proposition 2.2. If H is an induced subgraph of G such that S = V (G)− V (H) is an

independent set in G, and Ĥ is a P-free r-coloring of H, then

cr,P(G | Ĥ) =
∏
v∈S

cr,P(v, Ĥ).

We shall also use the following consequence of Hölder’s inequality.

Lemma 2.3. Let ~x1, . . . , ~xs be complex-valued vectors indexed by the same set T . We
have ∥∥∥∥∥

s∏
k=1

~xk

∥∥∥∥∥
1

≤
s∏

k=1

‖~xk‖s .

Equality happens if and only if, for every i, j ∈ [s], there exists αi,j with the property
that xi(t)

s = αi,jxj(t)
s for all t ∈ T .

Definition 2.4. Two vertices of a graph are said to be twins if they are non-adjacent
and have the same neighborhood. Cloning a vertex v of a graph G means to create a

new graph G̃ whose vertex set is V (G)∪ {ṽ} where ṽ is a new vertex which is a twin of
v.

For the next lemma we consider the following operation: take an independent set S
of a graph G, select a particular vertex v ∈ S, delete all vertices in S− v and add s− 1
new twins of v. For some vertex v ∈ S, we produce a new graph which has at least as
many good colorings as G.

Lemma 2.5. Let P be a family of r-patterns. Let G be a graph on n vertices, ∅ 6=
S ⊂ V (G) be an independent set with s = |S|, H = G− S, and A = V (G)− S. There

exists a vertex v ∈ S with the following property: if we construct the graph G̃ with

V (G̃) = V (H)∪ S̃, where S̃ is an independent set on s vertices, each of which is a twin

of v, and G̃[A] = G[A], then:

(1) cr,P(G̃) ≥ cr,P(G);
(2) if G is (r,P)-extremal, then for each vertices u,w ∈ S we must have ~uH,r,P =

~wH,r,P .

Proof. Let S be any independent set in G, and let H = G− S. For each vertex u ∈ S,
consider the vector ~uH,r,P as in Definition 2.1. By Proposition 2.2, the total number of
P-free r-colorings of G is

cr,P(G) =
∑
Ĥ

cr,P(G | Ĥ) =
∑
Ĥ

∏
u∈S

cr,P(u, Ĥ) =

∥∥∥∥∥∏
u∈S

~uH,r,P

∥∥∥∥∥
1

,
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where the sums are taken over all possible P-free r-colorings Ĥ of H. (For the last
equality we also used that every coordinate of ~uH,r,P is non-negative).

Let v be a vertex in S for which ‖~vH,r,P‖s is maximum. This fact, together with
Hölder’s Inequality (Lemma 2.3), gives us:∥∥∥∥∥∏

u∈S

~uH,r,P

∥∥∥∥∥
1

≤
∏
u∈S

‖~uH,r,P‖s ≤ ‖~vH,r,P‖ss . (1)

On the other hand, for the graph G̃ defined in the statement of this lemma, we have:

cr,P(G̃) =
∑
Ĥ

cr,P(v, Ĥ)s = ‖~vH,r,P‖ss .

Therefore, cr,P(G̃) ≥ cr,P(G), proving part (1).

To prove part (2), assume G is extremal and G̃ is as above. Since cr,P(G̃) ≥ cr,P(G),

we must have cr,P(G̃) = cr,P(G). Therefore, we must also have equality in both inequal-
ities in (1). From the second one, it follows that for every vertex u ∈ S, we must have
‖~uH,r,P‖s = ‖~vH,r,P‖s. From the first one, where we may use the equality conditions
of Lemma 2.3, the fact that ‖~uH,r,P‖s = ‖~vH,r,P‖s, together with the fact that all our
vectors have only non-negative entries, implies that ~uH,r,P = ~vH,r,P . �

Corollary 2.6. If G is an (r,P)-extremal graph, and u, v ∈ V (G) are any non-adjacent
vertices, then deleting v and cloning u produces a graph that is also extremal.

Proof. Since G is extremal, by Lemma 2.5 part (2) with S = {u, v} and Guv = G −
{u, v}, we must have ~uGuv ,r,P = ~vGuv ,r,P , therefore replacing v by a twin of u (or u by a
twin of v) does not change the number of (r,P)-free colorings of the graph. �

By repeatedly applying Corollary 2.6 above, we shall show that Theorem 1.4 holds,
namely that there exists a complete multipartite graph on n vertices that is (r,P)-
extremal.

Proof of Theorem 1.4. Let G be any (r,P)-extremal graph on n vertices. We will build
a sequence G0, G1, . . . , Gt of extremal graphs, each on n vertices, where G0 = G, and
Gt = G∗ is the desired complete multipartite graph. We do it in such a way that, for
i ≥ 1, we have V (Gi) = S1 ∪ · · · ∪ Si ∪ Ri, where for every j ∈ {1, . . . , i}, the set
Sj is an independent set and every vertex in Sj is adjacent to every vertex outside Sj

(including those in Ri), but we have no control of the edges inside Ri. It will also hold
that Rt ⊂ Rt−1 ⊂ · · · ⊂ R1 ⊂ V (G), and Rt will be independent.

To simplify the notation, we also define R0 = V (G0) = V (G). Assume that we have
constructed Gi, for some i ≥ 0. If Ri is an independent set, we have found a complete
multipartite graph which is extremal, so we can set t = i and stop. Otherwise, let vi
be any vertex of Ri that has a neighbor in Ri. Note that, by the definition of Gi, all
non-neighbors of vi belong to Ri. Let di be the number of non-neighbors of vi. We can
obtain Gi+1 by applying Corollary 2.6 successively di times, deleting each non-neighbor
of vi and adding twins of vi (one by one). Let Si+1 be the set formed by vi and its new
twins and let Ri+1 to be the set of neighbors of vi in Ri. Observe that Ri+1 is strictly
smaller than Ri since it does not contain vi. It is also important to notice that, when
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we use Corollary 2.6 in each step we apply it to the entire graph Gi and not only to
Gi[Ri].

To construct a graph G∗ with the property that |E(G∗)| ≥ |E(G)|, it suffices to
choose always a vertex vi ∈ Ri with maximum degree. �

Proposition 2.7. Let G be a graph with at least three vertices, which is not complete
multipartite. Then, there exist three vertices vertices u, v, w such that uv, uw /∈ E(G)
and vw ∈ E(G).

Proof. Let V (G) = V1 ∪ · · · ∪ Vt be a partition of the vertex set of G, where each class
is an independent set and t is minimum among all such partitions. As long as there
exists a vertex v ∈ Vj which has no neighbors in class Vi, i < j, we move v to Vi. Then,
every vertex v ∈ Vj has at least one neighbor in every class Vi for all i < j. As G is not
complete multipartite, there exist vertices u ∈ Vg and v ∈ Vh for some g 6= h, which do
not form an edge. As v has at least one neighbor w ∈ Vg − u it is uw 6∈ E(G), as Vi is
an independent set. �

The following result, in combination with Proposition 2.7, implies that any (r,P)-
extremal graph may also be turned into an extremal multipartite graph by removing
edges.

Lemma 2.8 (Edge deletion lemma). Let P be a pattern family of complete graphs and
let r ≥ 2 be an integer. Let G be an (r,P)-extremal graph. For any vertices u, v, w such
that uv, uw /∈ E(G) and vw ∈ E(G), if we delete the edge vw, then the resulting graph
is still extremal.

Proof. Let G be a graph as in the statement. Fix vertices u, v, w such that uv, uw /∈
E(G) and vw ∈ E(G).

Let H = G − {u, v, w}, and Hx = G[V (H) ∪ x] for x ∈ {u, v, w}. Let G′ be the
graph obtained from G by deleting the edge vw (but not the vertices u or v), and let
G∗ be the graph obtained from Hu by adding another two clones of u, say u1 and u2.
By Corollary 2.6, the graph G∗ is also extremal, as we may first apply the replacement
operation to the pair u, v (deleting v and adding u1) and apply it again to the pair u,w.
Therefore, cr,P(G) = cr,P(G∗).

Applying Proposition 2.2 to G∗ with S = {u, u1, u2}, we have

cr,P(G∗) =
∑
Ĥ

cr,P(G∗ | Ĥ) =
∑
Ĥ

cr,P(u, Ĥ)3 = ‖~uH,r,P‖33 ,

where the sum is taken over all P-free r-colorings of H.
Observe that, with an analogous computation, if we start from H and add three

clones of w instead of u, the resulting graph has ‖~wH,r,P‖33 good colorings. However,
Proposition 2.2 cannot be applied, and we do not know if this graph is extremal, so we
have only

‖~wH,r,P‖33 ≤ ‖~uH,r,P‖33 . (2)
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On the other hand, since there are no edges from u to {v, w}, we can compute cr,P(G)
as follows:

cr,P(G) =
∑
Ĥ

(
cr,P(u, Ĥ) · cr,P(G− u | Ĥ)

)

=
∑
Ĥ

cr,P(u, Ĥ) ·

∑
Ĥw|Ĥ

cr,P(v, Ĥw)

 .

(3)

Here, the inner sum is taken over the good colorings of Hw that extend a given
good coloring of H, that is, over the colorings of the edges from w to H, for which
the resulting coloring is good. By Lemma 2.5 (2), since G is extremal and uv /∈ E(G),

we have ~vHw,r,P = ~uHw,r,P , that is cr,P(v, Ĥw) = cr,P(u, Ĥw) for every Ĥw. Finally,

note that cr,P(u, Ĥw) does not depend on the colors of the edges from w to H, so

cr,P(u, Ĥw) = cr,P(u, Ĥ). Therefore,

cr,P(G) =
∑
Ĥ

cr,P(u, Ĥ)

∑
Ĥw|Ĥ

cr,P(u, Ĥ)


=
∑
Ĥ

cr,P(u, Ĥ)cr,P(u, Ĥ)
∑
Ĥw|Ĥ

1


=
∑
Ĥ

cr,P(u, Ĥ)2cr,P(w, Ĥ)

≤ ‖~uH,r,P‖3 ‖~uH,r,P‖3 ‖~wH,r,P‖3 (4)

≤ ‖~uH,r,P‖33 . (5)

Notice that to get (4) we used Hölder’s Inequality (Lemma 2.3), and (5) follows from
(2). Finally, since cr,P(G) = ‖~uH,r,P‖33, we must have equality in both (4) and (5), which
in turn leads to ‖~uH,r,P‖3 = ‖~wH,r,P‖3. The equality condition in Lemma 2.3 implies
that ~uH,r,P = ~wH,r,P . Analogously, ~uH,r,P = ~vH,r,P . It follows that

cr,P(G∗) =
∑
Ĥ

cr,P(u, Ĥ)cr,P(v, Ĥ)cr,P(w, Ĥ) = cr,P(G′).

�

Combining Theorem 1.4 and Lemma 2.8, we derive Theorem 1.5.

Proof of Theorem 1.5. Assume that G is an (r,P)-extremal graph that is not complete
multipartite. By Theorem 1.4, we may produce an (r,P)-extremal complete multipar-
tite graph G∗1 such that |E(G∗1)| ≥ |E(G)|. By applying Proposition 2.7 and Lemma 2.8,
starting with G, we may produce an (r,P)-extremal complete multipartite graph G∗2
such that |E(G∗2)| < |E(G)|. �
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3. Extremal configurations for the pattern family Pk,s

Recall that Pk,s is the pattern family containing all patterns P of Kk such that
γ(P ) ≥ s. In this section, we will prove Theorem 1.6, which states that every n-vertex
(r,Pk,s)-extremal graph is complete multipartite.

Proof of Theorem 1.6. Let n, r ≥ 2 and k ≥ 3 be integers, and fix an integer s such
that k ≤ s ≤

(
k
2

)
. Let G be an n-vertex (r,Pk,s)-extremal graph and assume for a

contradiction that G is not a complete multipartite graph. By Proposition 2.7, there
exist vertices u, v, w such that uv, uw /∈ E(G) and vw ∈ E(G).

Let H = G − {u, v, w}, and Hx = G[V (H) ∪ x] for x ∈ {u, v, w}. At the end
of the proof of Lemma 2.8, we concluded that ~uH,r,Pk,s

= ~wH,r,Pk,s
= ~vH,r,Pk,s

, so for

every coloring Ĥ of H we have cr,Pk,s
(u, Ĥ) = cr,Pk,s

(w, Ĥ) = cr,Pk,s
(v, Ĥ). We also

observed that, for every extension of Ĥ to a coloring Ĥw, we must have cr,Pk,s
(u, Ĥw) =

cr,Pk,s
(u, Ĥ). Finally, since u and v are not adjacent, by Lemma 2.5, we have ~uHw,r,P =

~vHw,r,P , that is, cr,Pk,s
(u, Ĥw) = cr,Pk,s

(v, Ĥw) for every good coloring Ĥw of Hw. It

follows that, for every Pk,s-free extension Ĥw of Ĥ, we must have

cr,Pk,s
(v, Ĥw) = cr,Pk,s

(v, Ĥ). (6)

We will get a contradiction from this fact (which implies that such G cannot exist).

We only need to find an r-coloring of Ĥ and an extension of it to Hw, which is Pk,s-free
and such that equation (6) does not hold. Since s ≥ k ≥ 3, the monochromatic coloring

Ĥ of H such that all edges are blue is a good coloring, which can be extended to a

fully blue coloring Ĥw of Hw. Let H(v) and Hw(v) be the classes of all good colorings

that extend Ĥ to Hv and Ĥw to G−u, respectively. We show that there is an injective
mapping φ : H(v)→ Hw(v) that is not surjective.

Given a coloring Ĥv ∈ H(v), let φ(Ĥv) be the coloring of G − u that extends Ĥw

by assigning to any edge e between v and V (H) the color of e in Ĥv and by assigning
the color blue to {v, w}. The function φ is clearly injective. We claim that φ(H(v)) ⊆
Hw(v). To see why this is true, suppose that φ(H(v)) contains a copy K̂k of Kk whose
pattern lies in Pk,s. Clearly, this copy involves v and w, otherwise it would also occur in

Ĥv, a contradiction. Moreover, the only edges in this copy that are not necessarily blue
are edges {v, x}, where x ∈ V (H). The number of such edges is k − 2, so that at most

k− 1 colors appear in K̂k, contradicting the hypothesis that s ≥ k and establishing our
claim.

On the other hand, the coloring of G− u where {v, w} is red and all other edges are
blue is clearly in Hw(v), as s ≥ 3. However, it does not lie in φ(H(v)), as φ always
assigns color blue to {v, w}. So φ is not surjective and we have reached the desired
contradiction. �

Another class of families is the following: given a pattern P of Kk, we say that a
vertex v in Kk is bicolored if all edges incident with v lie in at most two classes of P .
Let P2 be the pattern family containing all patterns of the form (Kk, P ) such that k = 3
and P is the rainbow pattern, or such that k ≥ 4 and P contains at least two vertices
that are not bicolored.
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Theorem 3.1. Let n, r ≥ 2 and let P ⊆ P2. If G is an n-vertex (r,P)-extremal graph,
then G is complete multipartite.

Proof. The proof follows the ideas above and uses the same blue colorings Ĥ and Ĥw,

with the corresponding classes H(v) and Hw(v). When defining φ(Ĥv), we proceed as
before. We argue that this cannot create a forbidden pattern. If it did, the forbidden
pattern (Kk, P ) would involve v, w and k − 2 vertices v1, . . . , vk−2 of V (H). If k = 3,
this pattern cannot be (K3, PR), where PR is the rainbow pattern, as both {v, w} and
{v1, w} are blue. If k ≥ 4, all vertices in the copy are bicolored, with the possible
exception of v, contradicting the fact that P must contain at least two vertices that
are not bicolored. On the other hand, the coloring of G− u where {v, w} is red and all
other edges are blue is clearly in Hw(v), so that the function is not surjective. �

Remark 3.2. As in this last example, in the statement of Theorem 1.6 we could have
defined the family P∗ of all patterns of the form (Kk, P ), where k ≥ 3 and γ(P ) ≥ k.
The proof would hold for any P ⊆ P∗†.
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6. P. Erdős, Some new applications of probability methods to combinatorial analysis and graph theory,
Proc. of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (1974),
39–51.
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