ON CONFIGURATIONS OF GENERALIZED ERDŐS-ROTHSCHILD PROBLEMS

CARLOS HOPPEN, HANNO LEFMANN, AND DENILSON NOLIBOS

Abstract

In this paper a generalization of a problem of Erdős and Rothschild is considerd. Given an integer $r \geq 1$ and a graph F, an r-pattern P of F is a partition of its edge set into at most r nonempty classes. Let \mathcal{P} be a pattern family, which is an arbitrary non-empty family whose elements are of the form (F, P), where F is a graph and P is an r-pattern of F. An r-coloring of a graph G is \mathcal{P}-free if G does not contain any copy of F for which the r-pattern P^{\prime} induced by the coloring is isomorphic to some r-pattern P where $(F, P) \in \mathcal{P}$. Let $\mathcal{C}_{r, \mathcal{P}}(G)$ be the set of all \mathcal{P}-free r-colorings of a graph G. Let $c_{r, \mathcal{P}}(n)=\max \left\{\left|\mathcal{C}_{r, \mathcal{P}}(G)\right|:|V(G)|=n\right\}$. An n-vertex graph G is (r, \mathcal{P})-extremal if $\left|\mathcal{C}_{r, \mathcal{P}}(G)\right|=c_{r, \mathcal{P}}(n)$. We wish to characterize the n-vertex graphs that admit the largest number of \mathcal{P}-free r-colorings.

It is shown that, for some choices of r and \mathcal{P}, and for every positive integer n, there exists an (r, \mathcal{P})-extremal n-vertex graph that is a complete multipartite graph. Moreover, it is shown, that in some cases, all (r, \mathcal{P})-extremal n-vertex graphs must be complete multipartite. In the case of pattern families with a single element, this extends recent results of Benevides, Hoppen and Sampaio [4] who proved that there is an (r, \mathcal{P})-extremal n-vertex complete multipartite graph for any $\mathcal{P}=\left\{\left(K_{k}, P\right)\right\}$ where $k \geq 3$ and P is a pattern of the complete graph K_{k}.

1. Introduction

In the last decade there has been growing interest in an extremal problem about graphs (or other combinatorial structures) that admit a large number of edge-colorings* that satisfy some restrictions. This became known as the Erdős-Rothschild problem. In this paper, we consider a generalized version of this extremal problem and discuss properties of the configurations that achieve extremality.

For us, an r-(edge)-coloring of a graph G is just a function $f: E(G) \longrightarrow[r]$ that associates a color in $[r]=\{1, \ldots, r\}$ with each edge of G. Given an integer $r \geq 2$ and a fixed graph F, we say that an r-coloring $E=E_{1} \cup \cdots \cup E_{r}$ of the edge-set of a host graph $G=(V, E)$ is F-free if the graphs $G_{i}=\left(V, E_{i}\right)$ do not contain F as a subgraph, for all $i \in[r]$. The problem originally addressed by Erdős and Rothschild [6] was to characterize the n-vertex graphs that admit the largest number of F-free r colorings, where n is an integer. In other words, they considered edge-colorings that avoid monochromatic copies of a fixed graph F.

Erdős and Rothschild conjectured that, for all $n \geq n_{0}(k)$, the number of K_{k}-free 2-colorings is maximized by the Turán graph $T_{k-1}(n)$, namely the balanced, complete, ($k-1$)-partite graph on n vertices, and that this maximum is unique up to isomorphism.

[^0]As usual, a graph $G=(V, E)$ is complete s-partite if there is a partition $V=V_{1} \cup \cdots \cup V_{s}$ of its vertex set such that $\{v, w\} \in E$ if and only if $v \in V_{i}, w \in V_{j}$ and $i \neq j$. This partition is balanced if $\| V_{i}\left|-\left|V_{j}\right|\right| \leq 1$ for all $i, j \in[s]$.

According to the Erdős-Rothschild Conjecture, finding an n-vertex graph with the largest number of K_{k}-free 2-colorings turns out to be the same as finding an n-vertex graph with the largest number of edges and no copy of K_{k} as a subgraph, the wellknown Turán problem [16]. In general, for any fixed F, we write ex (n, F) to denote the maximum number of edges over all n-vertex graphs that do not contain F as a subgraph, and we say that an n-vertex graph G is F-extremal if it has ex (n, F) edges and does not contain F as a subgraph. Observe that F-extremal graphs on n vertices have the largest number of edges among all graphs that may be colored arbitrarily without producing a monochromatic copy of F, which leads to $r^{\operatorname{ex}(n, F)}$ colorings. The number of colorings might increase if we have more than ex (n, F) edges to color, but extra edges lead to copies of F, creating restrictions on how to color them.

Yuster [17] proved the Erdős-Rothschild Conjecture for $k=3$ and any $n \geq 6$. Later, Alon, Balogh, Keevash and Sudakov [1] proved that, for $r \in\{2,3\}$ and $n \geq n_{0}$, where n_{0} is a constant depending on r and k, the Turán graph $T_{k-1}(n)$ is the unique optimal n vertex graph for the number of K_{k}-free r-colorings. An interesting feature of their proof was to apply the Szemerédi Regularity Lemma [15] to obtain an exact result, which, on the other hand, required n_{0} to be very large. The value of n_{0} has been recently improved by Hàn and Jiménez [7] using the Container Method. When the number of colors satisfies $r \geq 4$, the problem has shown to be much harder and it is known that $T_{k-1}(n)$ cannot maximize the number of K_{k}-free r-colorings. Pikhurko and Yilma [13] determined, for large n, the graphs that admit the largest number of such colorings for $r=4$ and $k \in\{3,4\}$. For $k=3$, Botler et al. [5] characterized these graphs for $r=6$, and have an approximate result for $r=5$. As it turns out, the extremal configurations obtained so far are always some balanced complete multipartite graph $T_{\ell}(n)$, but $\ell \geq k$ for $r \geq 4$. Interestingly, even in this small sample of results, the value of ℓ is not a monotone non-decreasing function of r.

This problem has been generalized in a few different ways, by considering colorings where the size of the forbidden clique may vary according to the color class [12], or colorings where the forbidden graph is not colored according to some given coloring [2] or according to some given coloring pattern [4, 9]. Here, we consider an extension of this last version.

Given an integer $r \geq 1$ and a graph F, an r-pattern P of F is a partition of its edge set into at most r nonempty classes. Let \mathcal{P} be a pattern family, namely an arbitrary non-empty family whose elements are of the form (F, P), where F is a graph and P is an r-pattern of F. We say that an r-coloring of a graph G is \mathcal{P}-free if G does not contain any copy of F for which the r-pattern P^{\prime} induced by the coloring is isomorphic to some r-pattern P where $(F, P) \in \mathcal{P}$. Let $\mathcal{C}_{r, \mathcal{P}}(G)$ be the set of all \mathcal{P}-free r-colorings of a graph G. We write $c_{r, \mathcal{P}}(n)=\max \left\{\left|\mathcal{C}_{r, \mathcal{P}}(G)\right|:|V(G)|=n\right\}$, and we say that an n-vertex graph G is (r, \mathcal{P})-extremal if $\left|\mathcal{C}_{r, \mathcal{P}}(G)\right|=c_{r, \mathcal{P}}(n)$. In other words, we wish to characterize the n-vertex graphs that admit the largest number of \mathcal{P}-free r-colorings.

In the version of $[4,9]$, the family \mathcal{P} contains a single pair (F, P), while in the original Erdős-Rothschild problem this single pattern P is monochromatic, that is, contains a single class. Moreover, if the family \mathcal{P} contains all possible r-patterns of a
fixed graph F with at least one edge, where $r \geq 2$, then $\mathcal{C}_{r, \mathcal{P}}(G) \neq \emptyset$ if and only if G is F-free, and hence G is (r, \mathcal{P})-extremal if and only if it is F-extremal. This means that the problem considered here generalizes the Turán problem, further illustrating the connection between the Turán and the Erdős-Rothschild problems.

The following result collects other immediate consequences of the definition. To state it, we need to introduce some additional notation. The number of classes in a pattern P is denoted by $\gamma(P)$ and, for a pattern family \mathcal{P}, we have $\gamma_{\min }(\mathcal{P})=\min \{\gamma(P):(F, P) \in$ $\mathcal{P}\}$. Given a pattern family \mathcal{P}, let $\chi_{\min }(\mathcal{P})=\min \{\chi(F):(F, P) \in \mathcal{P}\}$, where $\chi(F)$ denotes the (vertex) chromatic number of F.

Proposition 1.1. Let \mathcal{P}_{1} and \mathcal{P}_{2} be pattern families, and let $r \geq 2$ be an integer.
(a) If $r<\gamma_{\text {min }}\left(\mathcal{P}_{1}\right)$, then $c_{r, \mathcal{P}_{1}}(n)=r^{\binom{n}{2}}$ and K_{n} is the unique $\left(r, \mathcal{P}_{1}\right)$-extremal graph.
(b) If $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$, then $c_{r, \mathcal{P}_{1}}(n) \geq c_{r, \mathcal{P}_{2}}(n)$. Moreover, if $s=\chi_{\min }\left(\mathcal{P}_{2}\right)-1$ and the s partite Turán graph $T_{s}(n)$ is $\left(r, \mathcal{P}_{1}\right)$-extremal, then $T_{s}(n)$ is also $\left(r, \mathcal{P}_{2}\right)$-extremal.

Proof. Part (a) is trivial, as no r-coloring can ever produce a forbidden pattern.
For part (b), fix $r \geq 2$ and consider pattern families $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$. For any graph G, every (r, \mathcal{P}_{2})-free coloring is also $\left(r, \mathcal{P}_{1}\right)$-free, so that $\left|\mathcal{C}_{r, \mathcal{P}_{1}}(G)\right| \geq\left|\mathcal{C}_{r, \mathcal{P}_{2}}(G)\right|$. This immediately implies $c_{r, \mathcal{P}_{1}}(n) \geq c_{r, \mathcal{P}_{2}}(n)$. Assume that the Turán graph $T_{s}(n)$ is $\left(r, \mathcal{P}_{1}\right)$ extremal, where $s=\chi_{\text {min }}\left(\mathcal{P}_{2}\right)-1$. This choice of s implies that no forbidden pattern can be produced by coloring the edges of $T_{s}(n)$. As a consequence, for any n-vertex graph G, we have

$$
\left|\mathcal{C}_{r, \mathcal{P}_{2}}\left(T_{s}(n)\right)\right|=r^{\operatorname{ex}\left(n, K_{s+1}\right)}=\left|\mathcal{C}_{r, \mathcal{P}_{1}}\left(T_{s}(n)\right)\right| \geq\left|\mathcal{C}_{r, \mathcal{P}_{1}}(G)\right| \geq\left|\mathcal{C}_{r, \mathcal{P}_{2}}(G)\right|
$$

and therefore $T_{s}(n)$ is $\left(r, \mathcal{P}_{2}\right)$-extremal.
The aim of this paper is to show that, for some choices of r and \mathcal{P}, and for every positive integer n, there exists an (r, \mathcal{P})-extremal n-vertex graph that is a complete multipartite graph. Moreover, we show that, in some cases, all (r, \mathcal{P})-extremal n-vertex graphs must be complete multipartite. In the case of pattern families with a single element, Benevides, Hoppen and Sampaio [4] proved that there is an (r, \mathcal{P})-extremal n-vertex complete multipartite graph for any $\mathcal{P}=\left\{\left(K_{k}, P\right)\right\}$ where $k \geq 3$ and P is a pattern of K_{k}. If P is monochromatic, this is also implied by Pikhurko, Staden and Yilma [12] (whose result also holds for a different generalization of the original Erdős Rothschild problem).

Theorem 1.2. Fix integers $r \geq 2$ and $n>k \geq 3$, and let P be an r-pattern of the complete graph K_{k}. Then there exists an n-vertex (r, P)-extremal graph that is a complete multipartite graph.

Regarding instances where all (r, \mathcal{P})-extremal n-vertex graphs are necessarily complete multipartite, the following is known for singletons $\mathcal{P}=\left\{\left(K_{k}, P\right)\right\}$.

Theorem 1.3. [4, Theorem 1.2] Let $r \geq 2$ and $k \geq 3$ be integers and let P be an r-pattern of the complete graph K_{k} which is not monochromatic and is different from the pattern T_{0}. Also assume that if $r=2$ then P is different from the pattern P_{2} (see Figure 1). If $\mathcal{P}=\left\{\left(K_{k}, P\right)\right\}$, then every (r, \mathcal{P})-extremal graph is a complete multipartite graph.

T_{0}

P_{2}

Figure 1. Some special 2-patterns: T_{0} a triangle K_{3} colored by exactly two colors and P_{2} a complete K_{4} colored by exactly two colors as shown

One of our main results is that Theorem 1.2 may be generalized to any pattern family of complete graphs.

Theorem 1.4. Let \mathcal{P} be a pattern family of complete graphs and let $r \geq 2$ be an integer. For any positive integer n, there exists an n-vertex complete multipartite graph G^{*} that is (r, \mathcal{P})-extremal. Moreover, for any (r, \mathcal{P})-extremal n-vertex graph G, there is one such n-vertex complete multipartite graph G^{*} such that $\left|E\left(G^{*}\right)\right| \geq|E(G)|$.

Our proof of Theorem 1.4 has the following useful consequence.
Theorem 1.5. Let \mathcal{P} be a pattern family of complete graphs and $n, r \geq 2$ be integers. If there exists an (r, \mathcal{P})-extremal graph that is not complete multipartite, then there exist at least two non-isomorphic (r, \mathcal{P})-extremal complete multipartite graphs on n vertices.

Regarding extensions of Theorem 1.3, we show that it holds for a class of pattern families. Given integers $k \geq 3$ and $1 \leq s \leq\binom{ k}{2}$, let $\mathcal{P}_{k, s}$ be the pattern family containing all patterns P of K_{k} such that $\gamma(P) \geq s$.

Theorem 1.6. Let $n, r \geq 2$ and $k \geq 3$ be integers, and fix $k \leq s \leq\binom{ k}{2}$. If G is an n-vertex $\left(r, \mathcal{P}_{k, s}\right)$-extremal graph, then G is a complete multipartite graph.

2. Extremal configurations for pattern families of complete graphs

The results in this paper may be derived with the approach in [4], which in turn was influenced by the Zykov Symmetrization proof of Turán's Theorem.

Let \mathcal{I} be a non-empty, and possibly infinite, set of indices, and let

$$
\mathcal{P}=\left\{\left(K_{k_{i}}, P_{i}\right): i \in \mathcal{I}\right\}
$$

be a pattern family, where $k_{i} \geq 3$ and P_{i} is a pattern of $K_{k_{i}}$, for each $i \in \mathcal{I}$. We shall prove that, given positive integers n and $r \geq 2$, there is an (r, \mathcal{P})-extremal n-vertex graph that is a complete multipartite graph.

For a vector \vec{x} with coordinates indexed by a set T, we will denote by $x(t)$ the value of x at coordinate t, where $t \in T$. We will use $\|\vec{x}\|_{p}$ to denote the ℓ_{p}-norm of \vec{x}, so for $p \in(0, \infty)$ we have

$$
\|x\|_{p}=\left(\sum_{t \in T}|x(t)|^{p}\right)^{1 / p}
$$

Moreover, for a sequence of vectors $\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{s}}$, each indexed by T, we will denote their pointwise product by $\prod_{k=1}^{s} \vec{x}_{k}$, that is, the vector \vec{y} such that for each $t \in T$ we have $y(t)=\prod_{k=1}^{n} x_{k}(t)$.

Definition 2.1. Let H be a graph and let \mathcal{P} be a family of r-patterns. If H is a subgraph of a graph G and \widehat{H} is a \mathcal{P}-free r-coloring of H, we denote by $c_{r, \mathcal{P}}(G \mid \widehat{H})$ the number of ways to r-color the edges in $E(G)-E(H)$ in such a way that the resulting coloring is still \mathcal{P}-free. For a single vertex $v \in V(G)-V(H)$, we use the notation $c_{r, \mathcal{P}}(v, \widehat{H})$ for the number of ways to r-color the edges from v to $V(H)$ (again avoiding \mathcal{P}). We also define $\vec{v}_{H, r, \mathcal{P}}$ as the vector indexed by all \mathcal{P}-free r-colorings of H, whose coordinate corresponding to a coloring \widehat{H} is given by $\vec{v}_{H, r, \mathcal{P}}(\widehat{H})=c_{r, \mathcal{P}}(v, \widehat{H})$.

The following proposition is a simple consequence of the fact that all graphs in the pattern family are complete.
Proposition 2.2. If H is an induced subgraph of G such that $S=V(G)-V(H)$ is an independent set in G, and \widehat{H} is a \mathcal{P}-free r-coloring of H, then

$$
c_{r, \mathcal{P}}(G \mid \widehat{H})=\prod_{v \in S} c_{r, \mathcal{P}}(v, \widehat{H})
$$

We shall also use the following consequence of Hölder's inequality.
Lemma 2.3. Let $\vec{x}_{1}, \ldots, \vec{x}_{s}$ be complex-valued vectors indexed by the same set T. We have

$$
\left\|\prod_{k=1}^{s} \vec{x}_{k}\right\|_{1} \leq \prod_{k=1}^{s}\left\|\vec{x}_{k}\right\|_{s}
$$

Equality happens if and only if, for every $i, j \in[s]$, there exists $\alpha_{i, j}$ with the property that $x_{i}(t)^{s}=\alpha_{i, j} x_{j}(t)^{s}$ for all $t \in T$.
Definition 2.4. Two vertices of a graph are said to be twins if they are non-adjacent and have the same neighborhood. Cloning a vertex v of a graph G means to create a new graph \widetilde{G} whose vertex set is $V(G) \cup\{\widetilde{v}\}$ where \widetilde{v} is a new vertex which is a twin of v.

For the next lemma we consider the following operation: take an independent set S of a graph G, select a particular vertex $v \in S$, delete all vertices in $S-v$ and add $s-1$ new twins of v. For some vertex $v \in S$, we produce a new graph which has at least as many good colorings as G.
Lemma 2.5. Let \mathcal{P} be a family of r-patterns. Let G be a graph on n vertices, $\emptyset \neq$ $S \subset V(G)$ be an independent set with $s=|S|, H=G-S$, and $A=V(G)-S$. There exists a vertex $v \underset{\widetilde{S}}{ } \in S$ with the following property: if we construct the graph \widetilde{G} with $V(\widetilde{G})=V(H) \cup \widetilde{S}$, where \widetilde{S} is an independent set on s vertices, each of which is a twin of v, and $\widetilde{G}[A]=G[A]$, then:
(1) $c_{r, \mathcal{P}}(\widetilde{G}) \geq c_{r, \mathcal{P}}(G)$;
(2) if G is (r, \mathcal{P})-extremal, then for each vertices $u, w \in S$ we must have $\vec{u}_{H, r, \mathcal{P}}=$ $\vec{w}_{H, r, \mathcal{P}}$.
Proof. Let S be any independent set in G, and let $H=G-S$. For each vertex $u \in S$, consider the vector $\vec{u}_{H, r, \mathcal{P}}$ as in Definition 2.1. By Proposition 2.2, the total number of \mathcal{P}-free r-colorings of G is

$$
c_{r, \mathcal{P}}(G)=\sum_{\widehat{H}} c_{r, \mathcal{P}}(G \mid \widehat{H})=\sum_{\widehat{H}} \prod_{u \in S} c_{r, \mathcal{P}}(u, \widehat{H})=\left\|\prod_{u \in S} \vec{u}_{H, r, \mathcal{P}}\right\|_{1}
$$

where the sums are taken over all possible \mathcal{P}-free r-colorings \widehat{H} of H. (For the last equality we also used that every coordinate of $\vec{u}_{H, r, \mathcal{P}}$ is non-negative).

Let v be a vertex in S for which $\left\|\vec{v}_{H, r, \mathcal{P}}\right\|_{s}$ is maximum. This fact, together with Hölder's Inequality (Lemma 2.3), gives us:

$$
\begin{equation*}
\left\|\prod_{u \in S} \vec{u}_{H, r, \mathcal{P}}\right\|_{1} \leq \prod_{u \in S}\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{s} \leq\left\|\vec{v}_{H, r, \mathcal{P}}\right\|_{s}^{s} . \tag{1}
\end{equation*}
$$

On the other hand, for the graph \widetilde{G} defined in the statement of this lemma, we have:

$$
c_{r, \mathcal{P}}(\widetilde{G})=\sum_{\widehat{H}} c_{r, \mathcal{P}}(v, \widehat{H})^{s}=\left\|\vec{v}_{H, r, \mathcal{P}}\right\|_{s}^{s} .
$$

Therefore, $c_{r, \mathcal{P}}(\widetilde{G}) \geq c_{r, \mathcal{P}}(G)$, proving part (1).
To prove part (2), assume G is extremal and \widetilde{G} is as above. Since $c_{r, \mathcal{P}}(\widetilde{G}) \geq c_{r, \mathcal{P}}(G)$, we must have $c_{r, \mathcal{P}}(\widetilde{G})=c_{r, \mathcal{P}}(G)$. Therefore, we must also have equality in both inequalities in (1). From the second one, it follows that for every vertex $u \in S$, we must have $\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{s}=\left\|\vec{v}_{H, r, \mathcal{P}}\right\|_{s}$. From the first one, where we may use the equality conditions of Lemma 2.3, the fact that $\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{s}=\left\|\vec{v}_{H, r, \mathcal{P}}\right\|_{s}$, together with the fact that all our vectors have only non-negative entries, implies that $\vec{u}_{H, r, \mathcal{P}}=\vec{v}_{H, r, \mathcal{P}}$.

Corollary 2.6. If G is an (r, \mathcal{P})-extremal graph, and $u, v \in V(G)$ are any non-adjacent vertices, then deleting v and cloning u produces a graph that is also extremal.

Proof. Since G is extremal, by Lemma 2.5 part (2) with $S=\{u, v\}$ and $G_{u v}=G-$ $\{u, v\}$, we must have $\vec{u}_{G_{u v}, r, \mathcal{P}}=\vec{v}_{G_{u v}, r, \mathcal{P}}$, therefore replacing v by a twin of u (or u by a twin of v) does not change the number of (r, \mathcal{P})-free colorings of the graph.

By repeatedly applying Corollary 2.6 above, we shall show that Theorem 1.4 holds, namely that there exists a complete multipartite graph on n vertices that is (r, \mathcal{P})extremal.

Proof of Theorem 1.4. Let G be any (r, \mathcal{P})-extremal graph on n vertices. We will build a sequence $G_{0}, G_{1}, \ldots, G_{t}$ of extremal graphs, each on n vertices, where $G_{0}=G$, and $G_{t}=G^{*}$ is the desired complete multipartite graph. We do it in such a way that, for $i \geq 1$, we have $V\left(G_{i}\right)=S_{1} \cup \cdots \cup S_{i} \cup R_{i}$, where for every $j \in\{1, \ldots, i\}$, the set S_{j} is an independent set and every vertex in S_{j} is adjacent to every vertex outside S_{j} (including those in R_{i}), but we have no control of the edges inside R_{i}. It will also hold that $R_{t} \subset R_{t-1} \subset \cdots \subset R_{1} \subset V(G)$, and R_{t} will be independent.

To simplify the notation, we also define $R_{0}=V\left(G_{0}\right)=V(G)$. Assume that we have constructed G_{i}, for some $i \geq 0$. If R_{i} is an independent set, we have found a complete multipartite graph which is extremal, so we can set $t=i$ and stop. Otherwise, let v_{i} be any vertex of R_{i} that has a neighbor in R_{i}. Note that, by the definition of G_{i}, all non-neighbors of v_{i} belong to R_{i}. Let \bar{d}_{i} be the number of non-neighbors of v_{i}. We can obtain G_{i+1} by applying Corollary 2.6 successively \bar{d}_{i} times, deleting each non-neighbor of v_{i} and adding twins of v_{i} (one by one). Let S_{i+1} be the set formed by v_{i} and its new twins and let R_{i+1} to be the set of neighbors of v_{i} in R_{i}. Observe that R_{i+1} is strictly smaller than R_{i} since it does not contain v_{i}. It is also important to notice that, when
we use Corollary 2.6 in each step we apply it to the entire graph G_{i} and not only to $G_{i}\left[R_{i}\right]$.

To construct a graph G^{*} with the property that $\left|E\left(G^{*}\right)\right| \geq|E(G)|$, it suffices to choose always a vertex $v_{i} \in R_{i}$ with maximum degree.

Proposition 2.7. Let G be a graph with at least three vertices, which is not complete multipartite. Then, there exist three vertices vertices u, v, w such that $u v, u w \notin E(G)$ and $v w \in E(G)$.

Proof. Let $V(G)=V_{1} \cup \cdots \cup V_{t}$ be a partition of the vertex set of G, where each class is an independent set and t is minimum among all such partitions. As long as there exists a vertex $v \in V_{j}$ which has no neighbors in class $V_{i}, i<j$, we move v to V_{i}. Then, every vertex $v \in V_{j}$ has at least one neighbor in every class V_{i} for all $i<j$. As G is not complete multipartite, there exist vertices $u \in V_{g}$ and $v \in V_{h}$ for some $g \neq h$, which do not form an edge. As v has at least one neighbor $w \in V_{g}-u$ it is $u w \notin E(G)$, as V_{i} is an independent set.

The following result, in combination with Proposition 2.7 , implies that any (r, \mathcal{P}) extremal graph may also be turned into an extremal multipartite graph by removing edges.

Lemma 2.8 (Edge deletion lemma). Let \mathcal{P} be a pattern family of complete graphs and let $r \geq 2$ be an integer. Let G be an (r, \mathcal{P})-extremal graph. For any vertices u, v, w such that uv, uw $\notin E(G)$ and $v w \in E(G)$, if we delete the edge $v w$, then the resulting graph is still extremal.

Proof. Let G be a graph as in the statement. Fix vertices u, v, w such that $u v, u w \notin$ $E(G)$ and $v w \in E(G)$.

Let $H=G-\{u, v, w\}$, and $H^{x}=G[V(H) \cup x]$ for $x \in\{u, v, w\}$. Let G^{\prime} be the graph obtained from G by deleting the edge $v w$ (but not the vertices u or v), and let G^{*} be the graph obtained from H^{u} by adding another two clones of u, say u_{1} and u_{2}. By Corollary 2.6, the graph G^{*} is also extremal, as we may first apply the replacement operation to the pair u, v (deleting v and adding u_{1}) and apply it again to the pair u, w. Therefore, $c_{r, \mathcal{P}}(G)=c_{r, \mathcal{P}}\left(G^{*}\right)$.

Applying Proposition 2.2 to G^{*} with $S=\left\{u, u_{1}, u_{2}\right\}$, we have

$$
c_{r, \mathcal{P}}\left(G^{*}\right)=\sum_{\widehat{H}} c_{r, \mathcal{P}}\left(G^{*} \mid \widehat{H}\right)=\sum_{\widehat{H}} c_{r, \mathcal{P}}(u, \widehat{H})^{3}=\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}^{3},
$$

where the sum is taken over all \mathcal{P}-free r-colorings of H.
Observe that, with an analogous computation, if we start from H and add three clones of w instead of u, the resulting graph has $\left\|\vec{w}_{H, r, \mathcal{P}}\right\|_{3}^{3}$ good colorings. However, Proposition 2.2 cannot be applied, and we do not know if this graph is extremal, so we have only

$$
\begin{equation*}
\left\|\vec{w}_{H, r, \mathcal{P}}\right\|_{3}^{3} \leq\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}^{3} . \tag{2}
\end{equation*}
$$

On the other hand, since there are no edges from u to $\{v, w\}$, we can compute $c_{r, \mathcal{P}}(G)$ as follows:

$$
\begin{align*}
c_{r, \mathcal{P}}(G) & =\sum_{\widehat{H}}\left(c_{r, \mathcal{P}}(u, \widehat{H}) \cdot c_{r, \mathcal{P}}(G-u \mid \widehat{H})\right) \\
& =\sum_{\widehat{H}}\left(c_{r, \mathcal{P}}(u, \widehat{H}) \cdot\left(\sum_{\widehat{H^{w}} \mid \widehat{H}} c_{r, \mathcal{P}}\left(v, \widehat{H^{w}}\right)\right)\right) . \tag{3}
\end{align*}
$$

Here, the inner sum is taken over the good colorings of H^{w} that extend a given good coloring of H, that is, over the colorings of the edges from w to H, for which the resulting coloring is good. By Lemma 2.5 (2), since G is extremal and $u v \notin E(G)$, we have $\vec{v}_{H^{w}, r, \mathcal{P}}=\vec{u}_{H^{w}, r, \mathcal{P}}$, that is $c_{r, \mathcal{P}}\left(v, \widehat{H^{w}}\right)=c_{r, \mathcal{P}}\left(u, \widehat{H^{w}}\right)$ for every $\widehat{H^{w}}$. Finally, note that $c_{r, \mathcal{P}}\left(u, \widehat{H^{w}}\right)$ does not depend on the colors of the edges from w to H, so $c_{r, \mathcal{P}}\left(u, \widehat{H^{w}}\right)=c_{r, \mathcal{P}}(u, \widehat{H})$. Therefore,

$$
\begin{align*}
c_{r, \mathcal{P}}(G) & =\sum_{\widehat{H}}\left(c_{r, \mathcal{P}}(u, \widehat{H})\left(\sum_{\widehat{H^{w}} \mid \widehat{H}} c_{r, \mathcal{P}}(u, \widehat{H})\right)\right) \\
& =\sum_{\widehat{H}}\left(c_{r, \mathcal{P}}(u, \widehat{H}) c_{r, \mathcal{P}}(u, \widehat{H}) \sum_{\widehat{H w} \mid \widehat{H}} 1\right) \\
& =\sum_{\widehat{H}} c_{r, \mathcal{P}}(u, \widehat{H})^{2} c_{r, \mathcal{P}}(w, \widehat{H}) \\
& \leq\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}\left\|\vec{w}_{H, r, \mathcal{P}}\right\|_{3} \tag{4}\\
& \leq\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}^{3} \tag{5}
\end{align*}
$$

Notice that to get (4) we used Hölder's Inequality (Lemma 2.3), and (5) follows from (2). Finally, since $c_{r, \mathcal{P}}(G)=\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}^{3}$, we must have equality in both (4) and (5), which in turn leads to $\left\|\vec{u}_{H, r, \mathcal{P}}\right\|_{3}=\left\|\vec{w}_{H, r, \mathcal{P}}\right\|_{3}$. The equality condition in Lemma 2.3 implies that $\vec{u}_{H, r, \mathcal{P}}=\vec{w}_{H, r, \mathcal{P}}$. Analogously, $\vec{u}_{H, r, \mathcal{P}}=\vec{v}_{H, r, \mathcal{P}}$. It follows that

$$
c_{r, \mathcal{P}}\left(G^{*}\right)=\sum_{\widehat{H}} c_{r, \mathcal{P}}(u, \widehat{H}) c_{r, \mathcal{P}}(v, \widehat{H}) c_{r, \mathcal{P}}(w, \widehat{H})=c_{r, \mathcal{P}}\left(G^{\prime}\right) .
$$

Combining Theorem 1.4 and Lemma 2.8, we derive Theorem 1.5.
Proof of Theorem 1.5. Assume that G is an (r, \mathcal{P})-extremal graph that is not complete multipartite. By Theorem 1.4, we may produce an (r, \mathcal{P})-extremal complete multipartite graph G_{1}^{*} such that $\left|E\left(G_{1}^{*}\right)\right| \geq|E(G)|$. By applying Proposition 2.7 and Lemma 2.8, starting with G, we may produce an (r, \mathcal{P})-extremal complete multipartite graph G_{2}^{*} such that $\left|E\left(G_{2}^{*}\right)\right|<|E(G)|$.

3. EXtremal configurations for the pattern family $\mathcal{P}_{k, s}$

Recall that $\mathcal{P}_{k, s}$ is the pattern family containing all patterns P of K_{k} such that $\gamma(P) \geq s$. In this section, we will prove Theorem 1.6, which states that every n-vertex $\left(r, \mathcal{P}_{k, s}\right)$-extremal graph is complete multipartite.

Proof of Theorem 1.6. Let $n, r \geq 2$ and $k \geq 3$ be integers, and fix an integer s such that $k \leq s \leq\binom{ k}{2}$. Let G be an n-vertex $\left(r, \mathcal{P}_{k, s}\right)$-extremal graph and assume for a contradiction that G is not a complete multipartite graph. By Proposition 2.7, there exist vertices u, v, w such that $u v, u w \notin E(G)$ and $v w \in E(G)$.

Let $H=G-\{u, v, w\}$, and $H^{x}=G[V(H) \cup x]$ for $x \in\{u, v, w\}$. At the end of the proof of Lemma 2.8, we concluded that $\vec{u}_{H, r, \mathcal{P}_{k, s}}=\vec{w}_{H, r, \mathcal{P}_{k, s}}=\vec{v}_{H, r, \mathcal{P}_{k, s}}$, so for every coloring \widehat{H} of H we have $c_{r, \mathcal{P}_{k, s}}(u, \widehat{H})=c_{r, \mathcal{P}_{k, s}}(w, \widehat{H})=c_{r, \mathcal{P}_{k, s}}(v, \widehat{H})$. We also observed that, for every extension of \widehat{H} to a coloring $\widehat{H^{w}}$, we must have $c_{r, \mathcal{P}_{k, s}}\left(u, \widehat{H^{w}}\right)=$ $c_{r, \mathcal{P}_{k, s}}(u, \widehat{H})$. Finally, since u and v are not adjacent, by Lemma 2.5, we have $\vec{u}_{H^{w}, r, \mathcal{P}}=$ $\vec{v}_{H^{w}, r, \mathcal{P}}$, that is, $c_{r, \mathcal{P}_{k, s}}\left(u, \widehat{H^{w}}\right)=c_{r, \mathcal{P}_{k, s}}\left(v, \widehat{H^{w}}\right)$ for every good coloring $\widehat{H^{w}}$ of H^{w}. It follows that, for every $\mathcal{P}_{k, s}$-free extension $\widehat{H^{w}}$ of \widehat{H}, we must have

$$
\begin{equation*}
c_{r, \mathcal{P}_{k, s}}\left(v, \widehat{H^{w}}\right)=c_{r, \mathcal{P}_{k, s}}(v, \widehat{H}) \tag{6}
\end{equation*}
$$

We will get a contradiction from this fact (which implies that such G cannot exist). We only need to find an r-coloring of \widehat{H} and an extension of it to H^{w}, which is $\mathcal{P}_{k, s}$-free and such that equation (6) does not hold. Since $s \geq k \geq 3$, the monochromatic coloring \widehat{H} of H such that all edges are blue is a good coloring, which can be extended to a fully blue coloring $\widehat{H^{w}}$ of H^{w}. Let $\mathcal{H}(v)$ and $\mathcal{H}^{w}(v)$ be the classes of all good colorings that extend \widehat{H} to H^{v} and $\widehat{H^{w}}$ to $G-u$, respectively. We show that there is an injective mapping $\phi: \mathcal{H}(v) \rightarrow \mathcal{H}^{w}(v)$ that is not surjective.

Given a coloring $\widehat{H^{v}} \in \mathcal{H}(v)$, let $\phi\left(\widehat{H^{v}}\right)$ be the coloring of $G-u$ that extends $\widehat{H^{w}}$ by assigning to any edge e between v and $V(H)$ the color of e in $\widehat{H^{v}}$ and by assigning the color blue to $\{v, w\}$. The function ϕ is clearly injective. We claim that $\phi(\mathcal{H}(v)) \subseteq$ $\mathcal{H}^{w}(v)$. To see why this is true, suppose that $\phi(\mathcal{H}(v))$ contains a copy \widehat{K}_{k} of K_{k} whose pattern lies in $\mathcal{P}_{k, s}$. Clearly, this copy involves v and w, otherwise it would also occur in $\widehat{H^{v}}$, a contradiction. Moreover, the only edges in this copy that are not necessarily blue are edges $\{v, x\}$, where $x \in V(H)$. The number of such edges is $k-2$, so that at most $k-1$ colors appear in $\widehat{K_{k}}$, contradicting the hypothesis that $s \geq k$ and establishing our claim.

On the other hand, the coloring of $G-u$ where $\{v, w\}$ is red and all other edges are blue is clearly in $\mathcal{H}^{w}(v)$, as $s \geq 3$. However, it does not lie in $\phi(\mathcal{H}(v))$, as ϕ always assigns color blue to $\{v, w\}$. So ϕ is not surjective and we have reached the desired contradiction.

Another class of families is the following: given a pattern P of K_{k}, we say that a vertex v in K_{k} is bicolored if all edges incident with v lie in at most two classes of P. Let \mathcal{P}_{2} be the pattern family containing all patterns of the form $\left(K_{k}, P\right)$ such that $k=3$ and P is the rainbow pattern, or such that $k \geq 4$ and P contains at least two vertices that are not bicolored.

Theorem 3.1. Let $n, r \geq 2$ and let $\mathcal{P} \subseteq \mathcal{P}_{2}$. If G is an n-vertex (r, \mathcal{P})-extremal graph, then G is complete multipartite.
Proof. The proof follows the ideas above and uses the same blue colorings \widehat{H} and $\widehat{H^{w}}$, with the corresponding classes $\mathcal{H}(v)$ and $\mathcal{H}^{w}(v)$. When defining $\phi\left(\widehat{H^{v}}\right)$, we proceed as before. We argue that this cannot create a forbidden pattern. If it did, the forbidden pattern $\left(K_{k}, P\right)$ would involve v, w and $k-2$ vertices v_{1}, \ldots, v_{k-2} of $V(H)$. If $k=3$, this pattern cannot be $\left(K_{3}, P_{R}\right)$, where P_{R} is the rainbow pattern, as both $\{v, w\}$ and $\left\{v_{1}, w\right\}$ are blue. If $k \geq 4$, all vertices in the copy are bicolored, with the possible exception of v, contradicting the fact that P must contain at least two vertices that are not bicolored. On the other hand, the coloring of $G-u$ where $\{v, w\}$ is red and all other edges are blue is clearly in $\mathcal{H}^{w}(v)$, so that the function is not surjective.

Remark 3.2. As in this last example, in the statement of Theorem 1.6 we could have defined the family \mathcal{P}^{*} of all patterns of the form $\left(K_{k}, P\right)$, where $k \geq 3$ and $\gamma(P) \geq k$. The proof would hold for any $\mathcal{P} \subseteq \mathcal{P}^{* \dagger}$.

References

1. N. Alon, J. Balogh, P. Keevash and B. Sudakov, The number of edge colorings with no monochromatic cliques, J. London Math. Soc. 70(2) (2004), 273-288.
2. J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27 (2006), 565-573.
3. J. Balogh and L. Li, The typical structure of Gallai colorings and their extremal graphs, SIAM Journal on Discrete Mathematics 33(4) (2019), 2416-2443.
4. F.S. Benevides, C. Hoppen and R.M. Sampaio, Edge-colorings of graphs avoiding a prescribed coloring pattern, Discrete Mathematics 240(9) (2017), 2143-2160.
5. F. Botler, J. Corsten, A. Dankovics, N. Frankl, H. Hàn, A. Jiménez and J. Skokan, Maximum number of triangle-free edge colourings with five and six colours, Acta Mathematica Universitatis Comenianae 88(3) (2019), 495-499.
6. P. Erdős, Some new applications of probability methods to combinatorial analysis and graph theory, Proc. of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (1974), 39-51.
7. H. Hàn and A. Jiménez, Improved bound on the maximum number of clique-free colorings with two and three colors, SIAM Journal on Discrete Mathematics 32(2) (2018), 1364-1368.
8. C. Hoppen, Y. Kohayakawa and H. Lefmann, Edge-colorings of graphs avoiding fixed monochromatic subgraphs with linear Turán number, European Journal of Combinatorics 35(1) (2014), 354-373.
9. C. Hoppen and H. Lefmann, Edge-colorings avoiding a fixed matching with a prescribed color pattern, European Journal of Combinatorics 47 (2015), 75-94.
10. C. Hoppen, H. Lefmann and K. Odermann, On graphs with a large number of edge-colorings avoiding a rainbow triangle, European Journal of Combinatorics 66 (2017), 168-190.
11. C. Hoppen, H. Lefmann and K. Odermann, A rainbow Erdős-Rothschild problem, SIAM Journal on Discrete Mathematics 31 (2017), 2647-2674.
12. O. Pikhurko, K. Staden and Z.B. Yilma, The Erdős-Rothschild problem on edge-colourings with forbidden monochromatic cliques, Mathematical Proceedings of the Cambridge Philosophical Society 163(2) (2017), 341-356.
13. O. Pikhurko and Z.B. Yilma, The maximum number of K_{3}-free and K_{4}-free edge 4-colorings, J. London Math. Soc. 85(2) (2012), 593-615.
14. M. Simonovits, A Method for Solving Extremal Problems in Graph Theory, Stability Problems, Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York (1968), 279-319.
${ }^{\dagger}$ Actually, for any $\mathcal{P} \subseteq \mathcal{P}^{*} \cup \mathcal{P}_{2}$.
15. E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris (1978), 399-401.
16. P. Turán, On an extremal problem in graph theory (in Hungarian), Matematikai és Fizikai Lapok 48 (1941), 436-452.
17. R. Yuster, The number of edge colorings with no monochromatic triangle, J. Graph Theory $\mathbf{2 1}$ (1996), 441-452.

Instituto de Matemática e Estatística, UFRGS - Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil

Email address: choppen@ufrgs.br
Fakultät für Informatik, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany

Email address: lefmann@informatik.tu-chemnitz.de
Instituto de Matemática e Estatística, UFRGS - Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil

Email address: denilsonnolibos@gmail.com

[^0]: This work was partially supported by CAPES and DAAD via Probral (CAPES Proc. 88881.143993/2017-01 and DAAD 57391132 and 57518130). The first author acknowledges the support of CNPq 308054/2018-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico.
 *The edge-colorings in this paper are not necessarily proper.

