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Abstract

Heilbronn conjectured that among arbitrary n points in the 2-dimensional unit
square [0, 1]2, there must be three points which form a triangle of area at mostO(1/n2).
This conjecture was disproved by a nonconstructive argument of Komlós, Pintz and
Szemerédi [14] who showed that for every n there is a configuration of n points in
the unit square [0, 1]2 where all triangles have area at least Ω(log n/n2). Here we will
consider a 3-dimensional analogue of this problem and we will give a deterministic
polynomial time algorithm which finds n points in the unit cube [0, 1]3 such that the
volume of every tetrahedron among these n points is at least Ω(lnn/n3).

1 Introduction

An old conjecture of Heilbronn states that for every distribution of n points in the 2-
dimensional unit square [0, 1]2 (or unit disc) there exist three distinct points which form
a triangle of area at most c/n2 for some fixed constant c > 0. Erdös observed that this
conjecture, if true, would be best possible, as the points (i mod n, i2 mod n)i=0,...,n−1 on
the moment-curve in the n× n grid would show after rescaling, cf. [2]. However, Komlós,
Pintz and Szemerédi [14] disproved Heilbronn’s conjecture by proving that for every n
there exists a configuration of n points in the unit square [0, 1]2 with every three points
forming a triangle of area at least c′ · log n/n2, where c′ > 0 is constant. Using techniques
from derandomization, this existence argument was made constructive in [5], where a
polynomial time algorithm was given, which finds n points in [0, 1]2 achieving the lower
bound Ω(log n/n2) on the minimum triangle area. Upper bounds on Heilbronn’s triangle
problem were given by Roth [17], [18], [19], [20], [21] and Schmidt [23] in a series of papers,
cf. Rothschild and Straus [22] for related results, and the currently best upper bound is
due to Komlós, Pintz and Szemerédi [13] and is of the order n−8/7+ε for every fixed ε > 0.
On the other hand, using arguments from Kolmogorov complexity, recently Jiang, Li and
Vitány [11] proved that if n points are dropped uniformly at random and independently
of each other in the unit square [0, 1]2, then the expected value of the smallest area of a
triangle among these n points is Θ(1/n3).
Also recently, Barequet [3] considered a k-dimensional version of Heilbronn’s problem.
For a subset S = {p0, . . . , pk} ⊂ Rk of (k + 1) points, the set S∗ = {p0 +

∑k
i=1 λi · (pi −

p0) |
∑k

i=1 λi ≤ 1;λ1, . . . , λk ∈ [0, 1]} is called a simplex. If k = 3, then S∗ is called a
tetrahedron. The volume of the simplex S∗ ⊂ Rk is defined by vol(S∗) := 1/k · h · vol(S′),
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where h is the distance of pk to the affine space generated by p0, . . . , pk−1 and S′ is in this
space the simplex generated by p0, . . . , pk−1.
For given dimension k ≥ 3 Barequet showed, that for every n there exist n points in the k-
dimensional unit cube [0, 1]k such that the minimum volume of every simplex spanned by
any (k+ 1) of these n points is at least Ω(1/nk). Barequet gave three different approaches
for proving his lower bound. The first one, for dimension k = 3, uses a Greedy-type
argument (cf. also [23] for the case k = 2) and he obtained a configuration of n points in
the 3-dimensional unit cube [0, 1]3 such that the minimum volume of every tetrahedron
is at least Ω(1/n4). The second approach yields a better lower bound and was worked
out for every fixed dimension k ≥ 3 and uses a random argument: 2n points are dropped
uniformly at random and independently of each other in the k-dimensional unit cube
[0, 1]k. The expected number of (k+1)-point simplices with volume at most B := ck/n

k is
at most n for some constant ck > 0. Deleting one point from every such small simplex with
volume at most B yields the existence of n points in [0, 1]k with every (k+1)-point simplex
having minimum volume at least Ω(1/nk). The third approach however is similar to Erdös’
construction, namely taking the points Pl = (lj mod n/n)j=1,...,k for l = 0, 1, . . . , n− 1 on
the moment-curve. The volume of any (k + 1)-point simplex is given by a Vandermonde
determinant rescaled by the factor Θ(1/nk) and this gives a minimum value for the volume
of any (k + 1) points of these n points on the moment-curve of at least Ω(1/nk).
The corresponding problem for dimension k = 1 is trivial as there are always n points in
the unit interval [0, 1] with minimum distance between two distinct points at least Ω(1/n)
and this bound cannot be improved.
In [15] Barequet’s lower bound was improved by a factor Θ(lnn) for dimensions k ≥ 3,
using a probabilistic existence argument based on a variant of Theorem 1.2. For the proof
the continuous structure of the unit cube [0, 1]k was crucial.

Theorem 1.1. [15] For every fixed integer k ≥ 2 and for every n there exists a configura-
tion of n points in the k-dimensional unit cube [0, 1]k such that the volume of any simplex
spanned by any (k + 1) points is at least Ω(lnn/nk).

Here we will give for dimension k = 3 a deterministic polynomial time algorithm for the
result in Theorem 1.1:

Theorem 1.2. For every positive integer n one can find deterministically in polynomial
time a configuration of n points in the unit cube [0, 1]3 such that the volume of any tetra-
hedron spanned by any four of these points is at least Ω(lnn/n3).

The proof of Theorem 1.2 is based on techniques from combinatorics and algebraic number
theory. Some of our arguments are given for the case of arbitrary dimension k ≥ 3, where
appropriate. However, so far we are only able to provide a deterministic polynomial time
algorithm for the case k = 3.

2 Hypergraphs

In our arguments we will use hypergraphs. It will turn out that the notions independence
number of a hypergraph and 2-cycles are important in our considerations:

Definition 2.1. Let G = (V, E) be a hypergraph where each edge E ∈ E satisfies E ⊆ V .
The hypergraph G is k-uniform if every edge E ∈ E contains exactly k vertices.
A subset I ⊆ V is called independent if I contains no edge E ∈ E. The largest size of an
independent set in G is called the independence number α(G).
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In a k-uniform hypergraph G = (V, E), k ≥ 3, a 2-cycle is a pair {E1, E2} of distinct
edges E1, E2 ∈ E with |E1 ∩ E2| ≥ 2. A 2-cycle {E1, E2} in G is called (2, j)-cycle if
|E1 ∩ E2| = j, where j = 2, . . . , k − 1.

Let Bk(T ) = {x ∈ Rk| ‖x‖ ≤ T} ⊂ Rk be the k-dimensional ball around the origin
with radius T . We will reformulate our combinatorial, geometrical problem as a problem
of finding in a suitably defined hypergraph a large independent set. To do so, we will
discretize the 3-dimensional search space [0, 1]3, namely we will consider only points from
the set B3(T ) ∩ Z3, where T will be of suitable size, i.e. polynomial in n. With this
discretization, we also have to take care of simplices (tetrahedra) of volume 0, these are
degenerated tetrahedra.
For some parameter B > 0 and for the given set of grid points in B3(T ) ∩ Z3 we form a
4-uniform hypergraph G = G(B) = (V, E) with the vertex set V being this set B3(T )∩Z3

of Θ(T 3) grid-points. The edges are determined by all subsets of four points from the
set B3(T ) ∩ Z3, which form a tetrahedron of volume at most B, where later we will set
B := T 3 · lnn/n3. Then an independent set in this hypergraph G(B) corresponds to a
subset of points in the set B3(T ) ∩ Z3, where no tetrahedron has ‘small’ volume, i.e. all
tetrahedra have volume bigger than B, which after rescaling yields the desired result. In
order to show the existence of a large independent set, we will use the following result
due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], compare [9], stated here in an
algorithmic variant proven in [4] see [10]:

Theorem 2.2. [1],[4],[9],[10] Let k ≥ 3 be a fixed integer. Let G = (V, E) be a k-uniform
hypergraph on |V | = n vertices and with average degree tk−1 := k · |E|/|V |. If for some
constant γ > 0 the hypergraph G contains at most

n · t2k−j−1−γ

(2,j)-cycles for j = 2, . . . , k−1, then one can find in G in polynomial time an independent
set of size at least

Ω
(n
t
· (ln t)1/(k−1)

)
. (1)

If the parameter tk−1 is an upper bound on the average degree of the hypergraph G, then
(1) holds too.

In recent years, several applications of Theorem 2.2 have been found, compare [4]. Here
we will give another application of this deep result.
A main part of the proof of Theorem 1.2 consists of counting the degenerated resp. non-
degenerated tetrahedra in Z3 ∩B3(T ). First we will recall and explain some tools, which
we will use in our arguments.

3 Grids in Zk

We will use some results from linear algebra and number theory, which will be stated in
the following.

3.1 Grids

Definition 3.1. A grid L of Zk is a subset of Zk, which is generated by all linear com-
binations of some linearly independent vectors q1, . . . , qm ∈ Zk, where all coefficients are
integers, i.e. L = Zq1 + · · ·+ Zqm.
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The parameter m is called the rank of the grid L and the set Q = {q1, . . . , qm} is called
the basis of L.

Definition 3.2. Let Q = {q1, . . . , qm} ⊂ Zk be a set of linear independent vectors.

i) The k ×m generator matrix of Q (up to the ordering of the vectors) is defined by

G(Q) := (q1, . . . , qm)k×m.

ii) The fundamental parallelopiped FQ of Q is the following set

FQ :=
{ m∑
i=1

αi · qi | 0 ≤ αi ≤ 1, i = 1, . . . ,m
}
⊆ Rk .

The extreme points of the fundamental parallelopiped FQ are all the points
∑m

i=1 αi·qi
with α1, . . . , αm ∈ {0, 1}.

iii) The volume of the fundamental parallelopiped FQ ⊆ Rk of Q is given by

vol(FQ) :=
(

det(G(Q)> ·G(Q))
)1/2

,

where G(q)> is the transpose of the generator matrix G(Q).

The following result can be found in [7].

Lemma 3.3. [7] Let Q and Q′ be two basis of a grid L in Zk. Then the volumes of
the corresponding fundamental parallelopipeds are equal, i.e. vol(FQ) = vol(FQ′). The
parameter d(L) := vol(FQ) is called the determinant of the grid L.

For integers a1, . . . , an ∈ Z, which are not all equal to 0, we denote by gcd(a1, . . . , an)
the greatest common divisor of a1, . . . , an. From elementary number theory we recall the
well-known Lemma of Bezout:

Lemma 3.4. Let a1, . . . , ak ∈ Z be integers, which are not all equal to 0. Then there exist
integers y1, . . . , yk ∈ Z such that

a1 · y1 + · · ·+ ak · yk = gcd(a1, . . . , ak) .

The next result, see [6] or [8], gives a recursive procedure to find a basis of a grid in Zk.

Lemma 3.5. [6],[8] Let a = (a1, . . . , ak)
> ∈ (Z \ {0})k be a sequence of nonzero integers

with gcd(a1, . . . , ak) = 1. Then the set L of all solutions in Zk of the equation

a1 ·X1 + · · ·+ ak ·Xk = 0

is a grid in Zk with rank (L) = k − 1.
The following recursive procedure yields a basis Q of the grid L.
For k = 1 let Q = {0}. For k = 2 let Q = {(a2,−a1)>}.
For k ≥ 3 let d = gcd(ak−1, ak) = ak−1 · y0 + ak · y1 with y0, y1 ∈ Z. If q∗1, . . . , q

∗
k−2 is a

basis of the set of all solutions of the following equation in k − 1 variables

a1 ·X1 + · · ·+ ak−2 ·Xk−2 + d · Y = 0 ,

then the vectors q1, . . . , qk−1 form a basis of L where

qi = (q∗i,1, . . . , q
∗
i,k−2, y0 · q∗i,k−1, y1 · q∗i,k−1)> for i = 1, . . . , k − 2,

qk−1 =
(
0, . . . , 0, ak/d,−ak−1/d

)>
.
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Proof. The proof that q1, . . . , qk−1 is a basis can be found in [6] or [8]. An algorithm for
determining q1, . . . , qk−1 is based on the Euclidean algorithm.

We use the standard scalar product < a, b >:=
∑k

i=1 ai · bi for vectors a = (a1, . . . , ak)
> ∈

Rk and b = (b1, . . . , bk)
> ∈ Rk. The Euclidean distance dist(a, b) of the corresponding

points is defined by dist(a, b) := (
∑k

i=1(ai − bi)2)1/2. The length of a vector a ∈ Rk is
defined by ‖a‖ :=

√
< a, a >. For a point p ∈ Rk and a real linear subspace V ⊆ Rk let

dist(p, V ) := min {dist(p, v) | v ∈ V }. For vectors q1, . . . , qm ∈ Rk let span(q1, . . . , qm) be
the linear space over the reals, generated by q1, . . . , qm.
The following results can be found in [12]:

Lemma 3.6. [12] Let V be a (k−1)-dimensional linear subspace of Rk and let a ∈ Rk\{0}
be a nonzero vector which is orthogonal to V . The distance dist(p, V ) of every point p ∈ Rk
to the subspace V is given by

dist(p, V ) =
| < p>, a > |
‖a‖

.

Lemma 3.7. [12] Let q1, . . . , qm ∈ Rk be linearly independent vectors. Then, with U :=
span(q1, . . . , qm−1), the volume of the fundamental parallelopiped F{q1,...,qm} satisfies

vol(F{q1,...,qm}) = dist(qm, U) · vol(F{q1,...,qm−1}) .

Lemma 3.8. [7] Let U and L be grids in Zk with U ⊆ L and rank (L) = rank (U) = m.
Then the following holds:

i) There exists a positive integer λ ∈ N \ {0} such that λ · L = {λ · x | x ∈ L} ⊆ U .

ii) For every basis b1, . . . , bm of L there is a basis a1, . . . , am of U of the following form

a1 = v1,1 · b1
a2 = v2,1 · b1 + v2,2 · b2

... (2)

am = vm,1 · b1 + · · ·+ vm,m · bm

with vj,i ∈ Z and vi,i 6= 0 for 1 ≤ i, j ≤ m.

iii) For each basis a1, . . . , am of U there is a basis b1, . . . , bm of L, such that (2) is
fulfilled.

Lemma 3.8 can be made constructive in polynomial time, for example by using for (ii) a
variant of the LLL-algorithm, see [8],
In our arguments we will only use part (iii) of Lemma 3.8. However, for the proof of part
(iii) parts (i) and (ii) are used.

Proof. Our arguments are similar to those in [7]. To keep this paper selfcontained we
include the proof of Lemma 3.8.

(i) Let A = {a1, . . . , am} be a basis of U and let B = {b1, . . . , bm} be a basis of L. Then
there exists a matrix C ∈ Zm×m such that the generator-matrices of A and B satisfy
G(A) = G(B) · C. Since the matrices G(A) and G(B) both have rank equal to m, the
matrix C is regular, hence the inverse C−1 of C exists and all entries of C−1 are rational
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numbers. Thus, we can find a positive integer λ ∈ N\{0} such that the matrix V := λ·C−1
has only integers as entries. With

λ ·G(B) = λ ·G(A) · C−1 = G(A) · V,

we have λ · bi =
∑

j vj,i · aj ∈ U .

(ii) The arguments are similar to those in [7], Theorem I, part A, p. 11-13. Let b1, . . . , bm ∈
Zk be a basis of L. To obtain the desired basis a1, . . . , am ∈ U , let

ai := vi,1 · b1 + · · ·+ vi,i · bi

with ai ∈ U and vi,1, . . . , vi,i ∈ Z and vi,i 6= 0, where |vi,i| 6= 0 is as small as possible among
all such choices. Such vectors ai exist, since by part (i) we have λ · bi ∈ U for i = 1, . . . ,m.
We show next that a1, . . . , am is a basis of U . We have

w1 · a1 + · · ·+ wm · am ∈ U (3)

for every choice of w1, . . . , wm ∈ Z. Suppose for contradiction, that there is a vector c ∈ U
which is not of the form (3), then since c ∈ L there are integers t1, . . . , tk ∈ Z with tk 6= 0
such that c = t1 · b1 + · · · + tk · bk, where k is as least as possible among all such choices
of c. Since vk,k 6= 0, we can choose an integer s ∈ Z with

|tk − s · vk,k| < |vk,k| . (4)

However, since ak ∈ U , we have c− s · ak ∈ U with

c− s · ak = (t1 − s · v1,1) · b1 + · · ·+ (tk − s · vk,k) · bk.

But now we have tk − s · vk,k 6= 0 by minimality of k, which contradicts the minimality of
|vk,k|, thus every vector in U is of the form (3) and a1, . . . , am is a basis of U .

(iii) The arguments are similar to those in [7], Theorem I, part B, p. 11-13.
Consider the subgrid L∗ := λ · L ⊆ U of L from part (i). Let a1, . . . , am be a basis of U .
By part (ii) we can find a basis λ · b1, . . . , λ · bm of L∗ where

λ · b1 = w1,1 · a1
λ · b2 = w2,1 · a1 + w2,2 · a2

... (5)

λ · bm = wm,1 · a1 + · · ·+ wm,m · am

with integers wj,i and wi,i 6= 0 for 1 ≤ i, j ≤ m. Solving the system (5) of equations for
a1, . . . , am, we obtain a system like in (2) with rational coefficients vj,i. Since b1, . . . , bm
is a basis of L and a1, . . . , am ∈ L, the numbers vj,i are indeed integers.

Crucial in our arguments is the following result:

Lemma 3.9. Let k ∈ N be fixed. Let L be a grid in Zk with rank (L) = m and let
a1, . . . , am ∈ L be linearly independent. Then there exists a basis b1, . . . , bm of L with
‖bi‖ = O(maxj ‖aj‖) for i = 1, . . . ,m.
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Proof. The arguments are similar to those in [7], Lemma 8, p. 135-136. For completeness
we include the proof.
By Lemma 3.8 (iii) we can find a basis c1, . . . , cm ∈ Zk of L such that

a1 = v1,1 · c1
a2 = v2,1 · c1 + v2,2 · c2

... (6)

am = vm,1 · c1 + · · ·+ vm,m · cm

with vj,i ∈ Z and vi,i 6= 0 for 1 ≤ i, j ≤ m. With this we will construct the desired basis
b1, . . . , bm ∈ Zk of L with ‖bj‖ = O(maxi ‖ai‖) for j = 1, . . . ,m.
For j = 1, . . . ,m we proceed as follows. If vj,j ∈ {+1,−1}, then we set bj := vj,j ·aj , hence
‖bj‖ = ‖aj‖. Otherwise, for |vj,j | ≥ 2, we solve the system of equations (6) successively
for c1, . . . , cm and we obtain

cj = 1/vj,j · aj + lj,j−1 · aj−1 + · · ·+ lj,1 · a1

for j = 1, . . . ,m with rational numbers lj,j−1, . . . , lj,1 ∈ Q. For i < j choose integers
tj,i ∈ Z such that

|tj,i + lj,i| ≤
1

2
.

Then, we set kj,i := tj,i + lj,i for i < j and kj,j := 1/vj,j and fix bj by

bj := kj,j · aj + kj,j−1 · aj−1 + · · ·+ kj,1 · a1
= cj + tj,j−1 · aj−1 + · · ·+ tj,1 · a1 ,

hence bj ∈ L and b1, . . . , bm is a basis of L. By construction we have |kj,i| ≤ 1/2 for i ≤ j,
hence

‖bj‖ ≤ ‖kj,j · aj‖+ ‖kj,j−1 · aj−1‖+ · · ·+ ‖kj,1 · a1‖ ≤ k/2 · max
i
‖ai‖ .

3.2 Maximal Grids in Zk

In our arguments we will use the notion of maximal grids.

Definition 3.10. A grid L in Zk is called m-maximal, if rank (L) = m and for every
grid L′ in Zk with rank (L′) = m and L ⊆ L′ it is L = L′.

A nonzero integer-valued vector a = (a1, . . . , ak)
> ∈ Zk \ {0k} is called primitive, if

gcd(a1, . . . , ak) = 1 and aj > 0 for j = min{i | ai 6= 0}.
For a subset A = {x1, . . . , xm} ⊆ Rk of vectors let A⊥ = {a ∈ Rk | < a, x1 >= · · · <
a, xm >= 0} be the dual of A.
Mainly we will deal here with (k − 1)-maximal grids in Zk.

Lemma 3.11. Let a = (a1, . . . , ak)
> ∈ Zk \ {0k} be an integer-valued vector, where not

all entries are equal to 0. Then the set La = (R · a)⊥ ∩Zk of all solutions of the equation
a1 ·X1 + · · ·+ ak ·Xk = 0 over Zk is a (k − 1)-maximal grid in Zk.
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Proof. By linearity we can assume that gcd(a1, . . . , ak) = 1, where w.l.o.g. ai 6= 0 for
i = 1, . . . , r and ai = 0 for i > r. By Lemma 3.5 the set of all solutions of the equation
a1 ·X1 + · · ·+ ar ·Xr = 0 over Zr is a grid L∗ in Zr with rank (L∗) = r− 1. Then the set
of all solutions of the equation a1 ·X1 + · · ·+ak ·Xk = 0 over Zk is the grid L = L∗×Zk−r
in Zk with rank (L) = k − 1.
To see the maximality of the grid L, let L′ be a grid in Zk with rank (L′) = k − 1 and
L ⊆ L′. The set V ⊆ Rk of all solutions of the equation a1 ·X1+ · · ·+ak ·Xk = 0 over Rk is
a (k−1)-dimensional linear subspace of Rk. Then we have L′ ⊆ span(L′) = span(L) = V ,
hence each vector in L′ is a solution of the equation a1 ·X1 + · · · + ak ·Xk = 0 and thus
L′ ⊆ L. Therefore, L is a (k − 1)-maximal grid in Zk.

Lemma 3.12. For every grid L in Zk with rank (L) = k−1 there is exactly one primitive
vector aL = (a1, . . . , ak)

> ∈ Zk with aL ⊥ L, i.e. < aL, x >= 0 for each x ∈ L.

Proof. Let Q ⊆ Zk be a basis of L and let G(Q) be its generator matrix. The system of
linear equations

G(Q)> · (X1, . . . , Xk)
> = 0 (7)

has a nontrivial solution (a1, . . . , ak) ∈ Zk \ {0k} and every solution X satisfies X ⊥ L.
Dividing each entry of (a1, . . . , ak) by gcd(a1, . . . , ak) and possibly multiplying the resulting
vector by −1 we obtain a primitive vector aL = (a′1, . . . , a

′
k)
> ∈ Zk \ {0k}, which is a

solution of (7). Since the rank of the matrix G(Q) is equal to k− 1, the space of solutions
of the system (7) in Rk has dimension 1, and therefore this vector aL is unique.

Corollary 3.13. (i) For every grid L′ in Zk with rank (L) = k− 1 there is exactly one
(k − 1)-maximal grid L in Zk with L′ ⊆ L.

(ii) There is a bijective mapping between the set of all (k − 1)-maximal grids L in Zk

and the set of all primitive vectors aL in Zk, i.e. aL ∈ Zk is the unique primitive
normal vector of the grid L.

Definition 3.14. Let L be a (k − 1)-maximal grid in Zk with primitive normal vector
aL ∈ Zk. A residue class of L is a set of the following form L′ = x+ L with x ∈ Zk.

Lemma 3.15. Let L be a (k−1)-maximal grid in Zk with primitive normal vector aL ∈ Zk.
Then there exists a vector v ∈ Zk \ L, such that Zk can be partitioned into the residue
classes s · v + L, s ∈ Z, i.e.,

Zk =
⊎
s∈Z

(s · v + L) .

Moreover, for each point x ∈ L it is

dist(s · v + x, span(L)) =
|s|
‖aL‖

.

Proof. For every vector x ∈ L we have < x, aL >= 0 and for each vector v ∈ Zk \ L it is
< v, aL >∈ Z \ {0}. As aL is primitive, the greatest common divisor of its entries is equal
to 1, and by Lemma 3.4 there exists a vector v ∈ Zk \ L such that < v, aL >= 1.
Using aL ⊥ L and Lemma 3.6 we infer for each integer s ∈ Z and each vector x ∈ L:

dist(s · v + x, span(L)) =
| < s · v + x, aL > |

‖aL‖
=
| < s · v, aL > + < x, aL > |

‖aL‖
=
|s|
‖aL‖

,
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hence distinct residue classes of L have a distance which is a multiple of 1/‖aL‖.
Now let p ∈ Zk be an arbitrary point. We will show that p is contained in some residue
class of L. With s :=< p, aL >∈ Z we have

< p− s · v, aL >=< p, aL > −s· < v, aL >= s− s = 0 ,

thus p− s · v ∈ L, hence p ∈ s · v + L.
To see that (s·v+L)∩(t·v+L) = ∅ for s 6= t, we assume to the contrary that s·v+x = t·v+y
for some x, y ∈ L. Then we have (s − t) · v = y − x, and since v 6∈ L but y − x ∈ L, we
conclude that s = t, which is a contradiction.

Theorem 3.16. Let L be a (k − 1)-maximal grid in Zk with primitive normal vector
aL = (a1, . . . , ak)

> ∈ Zk and with basis Q. Then the determinant d(L) of L, i.e. the
volume of the fundamental parallelopiped determined by Q, satisfies

d(L) = vol(FQ) = ‖aL‖.

Proof. We assume w.l.o.g. that ai 6= 0 for i = 1, . . . , r und ai = 0 for i = r + 1, . . . , k. Set
a∗ := (a1, . . . , ar) and let di := gcd(ai, . . . , ar) for i = 1, . . . , r. By Lemma 3.11 the set
of all solutions of the equation a1 · X1 + · · · + ar · Xr = 0 over Zr is a (r − 1)-maximal
grid L∗ in Zr. By Lemma 3.5 we obtain a basis Q∗ = {q∗1, . . . , q∗r−1} ⊂ Zr of L∗ with
q∗i = (q∗i,1, . . . , q

∗
i,r) for i = 1, . . . , r − 1. By construction of the basis Q∗ from Lemma 3.5

the r × (r − 1) generator matrix G(Q∗) of Q∗ has the following form

d2
d1

0 0

∗ d3
d2

dr−1

dr−2
0

dr
dr−1

∗ ∗


r×(r−1)

,

since gcd(ai,...,ar)
gcd(ai−1,gcd(ai,...,ar))

= di
di−1

. Let e∗r be the r-th unit vector in Zr which has entry
1 at position r and entries 0 elsewhere. Consider the determinant of the r × r matrix
M = (q∗1, . . . , q

∗
r−1, e

∗
r). With d1 = 1 and dr = ar we infer

|det(q∗1, . . . , q
∗
r−1, e

∗
r)| = 1 ·

r−1∏
i=1

di+1

di
=
dr
d1

= ar. (8)

By Lemma 3.6 the distance of the unit vector e∗r to the span of L∗ satisfies

dist(e∗r , span(L∗)) =
| < e∗r , a

∗ > |
‖a∗‖

=
|ar|
‖a∗‖

=
|ar|
‖aL‖

> 0 (9)

and hence, (8) and (9) and Lemmas 3.7 and 3.3 imply for the volume of the parallelopiped
FQ∗ (determinant of the grid L∗):

d(L∗) = vol(F{q∗1 ,...,q∗r−1}) =
1

dist(e∗r , span(q∗1, . . . , q
∗
r−1))

· vol(F{q∗1 ,...,q∗r−1,e
∗
r}) =

=
‖aL‖
|ar|

·
[

det((q∗1, . . . , q
∗
r−1, e

∗
r)
> · (q∗1, . . . , q∗r−1, e∗r))

]1/2
=
‖aL‖
|ar|

· (a2r)1/2 = ‖aL‖.
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The grid L is the set of all solutions of the equation a1 ·X1 + · · · + ak ·Xk = 0 over Zk.
Therefore, L can be written as L = L∗×Zk−r and with qi := (q∗i,1, . . . , q

∗
i,r, 0, . . . , 0)> ∈ Zk,

i = 1, . . . , r − 1, the vectors q1, . . . , qr−1, er+1, . . . , ek form a basis of L. Applying Lemma
3.7 several times and using Lemma 3.3, we obtain

d(L) = d(L∗) · 1k−r = ‖aL‖,

since the unit vectors er+1, . . . , ek ∈ Zk have length 1, are pairwise orthogonal, and are
orthogonal to the subspace spanned by = L∗ × {0}k−r.

3.3 Simplices and Maximal Grids in Zk

Definition 3.17. For a subset S = {p0, . . . , pk} ⊂ Rk of (k + 1) points, the set

S∗ =

{
p0 +

k∑
i=1

λi · (pi − p0) |
k∑
i=1

λi ≤ 1;λ1, . . . , λk ∈ [0, 1]

}

is called a simplex. For short, we identify S and S∗ and call each of them simplex and
specify by calling the points p0, . . . , pk extreme points of the simplex.

(i) The rank of the simplex S is defined by

rank (S) = dim(span({p1 − p0, . . . , pk − p0})) .

(ii) The simplex S is non-degenerated, if rank (S) = k. If rank (S) < k, we call S a
degenerated simplex. The simplex S = {p0, . . . , pk} ⊂ Rk is called a triangle for
k = 2, and for k = 3 it is called a tetrahedron.

(iii) The volume of the simplex S = {p0, . . . , pk} ⊂ Rk is defined by

vol(S) =
1

k
· h · vol(S′) ,

where h is the distance of pk to the affine space generated by p0, . . . , pk−1 and S′ =
{p0, . . . , pk−1}.

Recall that Bk(T ) = {x ∈ Rk | ‖x‖ ≤ T} ⊂ Rk is the k-dimensional ball around the origin
with radius T ∈ R+

0 .

Lemma 3.18. Let S ⊆ Bk(T ) ∩ Zk be a set of points with rank (S) ≤ k − 1. Then there
exists a (k− 1)-maximal grid L of Zk such that S is contained in some residue class v+L
of L for some v ∈ Zk, and L has a basis q1, . . . , qk−1 ⊂ Zk with max

i=1,...,k−1
‖qi‖ = O(T ).

Proof. Let S = {p0, . . . , pm} ⊆ Bk(T )∩Zk with r = rank S. The vectors p1−p0, . . . , pm−
p0 span a grid L′ in Zk with rank (L′) = r, and have length ‖pi−p0‖ ≤ 2·T for i = 1, . . . ,m.
We take (k− 1− r) unit vectors from Zk \L′, add them to L′, and we obtain a grid L′′ of
Zk with rank (L′′) = k− 1 and L′ ⊆ L′′. By Lemma 3.12 the grid L′′ uniquely determines
a (k − 1)-maximal grid L of Zk with L′ ⊆ L′′ ⊆ L. By Lemma 3.9 we can find a basis
q1, . . . , qk−1 of L with ‖qi‖ = O(T ) for i = 1, . . . , k − 1. Then we have S ⊆ p0 + L.

Recall that in our notation every residue class L′ of a grid L in Zk is of the form L′ = x+L
for some x ∈ Zk.

10



Theorem 3.19. Let k ∈ N be fixed. Let L be a (k− 1)-maximal grid of Zk with primitive
normal vector aL ∈ Zk and let Q = {q1, . . . , qk−1} be a basis of L with maxi ‖qi‖ = O(T ).
Then the following holds:

i) The primitive normal vector aL satisfies ‖aL‖ = O(T k−1).

ii) There are at most O(T · ‖aL‖) different residue classes L′ of L with L′ ∩Bk(T ) 6= ∅.

iii) For every residue class L′ of L it is |L′ ∩Bk(T )| = O
(
T k−1/‖aL‖

)
.

Proof. (i): By Theorem 3.16 we have ‖aL‖ = d(L) = vol(FQ) and by using the assump-
tion maxi ‖qi‖ = O(T ) we know that FQ ⊆ Bk(c · T ) for some constant c > 0. Since
dim(FQ) = k−1, the volume of the parallelopiped FQ is bounded from above by O(T k−1).
We conclude ‖aL‖ = vol(FQ) = O(T k−1).

(ii): By Lemma 3.15 the distances of different residue classes of L are multiples of 1/‖aL‖.
The Euclidean distance between any two points in Bk(T ) is at most 2 · T , hence at most
O(T · ‖aL‖) distinct residue classes of L have a nonempty intersection with Bk(T ).

(iii): The volume of a (k − 1)-dimensional space S intersected with Bk(T ) is bounded
from above by O(T k−1). Since FQ ⊆ Bk(c · T ) and vol(FQ) = ‖aL‖, we can cover the set
S ∩ Bk(T ) by at most O

(
T k−1/‖aL‖

)
distinct translates of the parallelopiped FQ. As L

is maximal, the interior of FQ (only the extreme points are excluded) contains no points
from L, which finishes the proof of the theorem.

3.4 Representations by Sums of Squares

We will use the following results from elementary number theory. For integers k, d ∈ N
let rk(d) be the number of vectors (x1, . . . , xk)

> ∈ Zk with x21 + · · ·+ x2k = d.

Lemma 3.20. For fixed integers k ∈ N and all integers n ∈ N it is:

n∑
d=1

rk(d) = Θ(nk/2) . (10)

Proof. The sum
∑n

d=1 rk(d) counts the number of grid points in Zk in the k-dimensional
ball Bk(

√
n) around the origin with radius

√
n. If we put around each of these grid points

k-dimensional unit cubes [0, 1]k, with centers being the grid points, then all the points
of these unit cubes are contained in a k-dimensional ball around the origin with radius√
n+
√
k/2, since the diagonal of every k-dimensional unit cube [0, 1]k has length equal to√

k. Moreover, the unit cubes cover the k-dimensional ball around the origin with radius
equal to

√
n−
√
k/2. Since the number of unit cubes is equal to

∑n
d=1 rk(d) we infer

πk/2

Γ(k/2 + 1)
·

(
√
n−
√
k

2

)k
≤

n∑
d=1

rk(d) ≤ πk/2

Γ(k/2 + 1)
·

(
√
n+

√
k

2

)k
,

thus
∑n

d=1 rk(d) = Θ(nk/2).

Corollary 3.21. For constants k, r ∈ N and for all positive integers n ∈ N it is

n∑
d=1

rk(d)

dr
=


O
(
nk/2−r

)
if k/2− r > 0

O (lnn) if k/2− r = 0
O(1) if k/2− r < 0.
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Proof. We assume w.l.o.g. that n is a power of e, i.e. n = el. Set ni = ei for i = 0, . . . , l.
With (10) we infer for some constant ck > 0:

n∑
d=1

rk(d)

dr
≤

l∑
i=0

ni+1∑
d=ni

rk(d)

dr
≤

l∑
i=0

ni+1∑
d=ni

rk(d)

nri
=

l∑
i=0

e−i·r ·
ni+1∑
d=ni

rk(d) ≤

≤
l∑

i=0

e−i·r ·
ni+1∑
d=1

rk(d) ≤
l∑

i=0

e−i·r · ck · (ni+1)
k/2 = ck · ek/2 ·

l∑
i=0

ei·(k/2−r) .

The sum
∑l

i=0 e
i·(k/2−r) is bounded from above as follows: (i) for k/2 − r > 0 by

O
(
el·(k/2−r)

)
= O

(
nk/2−r

)
, and (ii) for k/2 − r = 0 by O(l) = O(lnn) and (iii) for

k/2− r < 0 by O(1).

For a (k − 1)-maximal grid L in Zk with primitive normal vector aL ∈ Zk and a positive
integer d, we denote by rk(d; aL) the number of grid points P in L such that the square
of the Euclidean distance between P and the origin O is equal to d, i.e. (dist(O,P ))2 = d.
In our arguments we will use the following variants of Lemma 3.20 and Corollary 3.21:

Lemma 3.22. Let k ∈ N be fixed. Let L be a (k − 1)-maximal grid in Zk with primitive
normal vector aL ∈ Zk. Then, for all positive integers n ∈ N it is:

n∑
d=1

rk(d; aL) = O

(
n(k−1)/2

‖aL‖

)
. (11)

Proof. The sum
∑n

d=1 rk(d; aL) is equal to the number of grid points in L in the k-
dimensional ball Bk(

√
n) with radius

√
n around the origin. By Theorem 3.19 (iii) this

sum
∑n

d=1 rk(d; aL) is at most O((
√
n)k−1/‖aL‖), from which inequality (11) follows.

With (11) the proof of the following is now straightforward with the the same arguments
as used in the proof of Corollary 3.21.

Corollary 3.23. Let k, r ∈ N be constants. Let L be a (k − 1)-maximal grid in Zk with
primitive normal vector aL ∈ Zk. For all positive integers n ∈ N it is

n∑
d=1

rk(d; aL)

dr
=


O
(

1
‖aL‖ · n

(k−1)/2−r
)

if (k − 1)/2− r > 0

O
(

1
‖aL‖ · lnn

)
if (k − 1)/2− r = 0

O
(

1
‖aL‖

)
if (k − 1)/2− r < 0.

4 Degenerated Simplices in Bk(T ) ∩ Zk

Theorem 4.1. Let k ∈ N be fixed. The number Dk(T ) of degenerated simplices in Bk(T )∩
Zk satisfies

Dk(T ) = O
(
T k

2 · lnT
)
.

All these degenerated simplices in Bk(T )∩Zk can be constructed in time polynomial in T .

Proof. For fixed k ∈ N, by inspecting every (k + 1)-element subset S = {p0, . . . , pk} ⊂
Bk(T )∩Zk we can determine all degenerated simplices in Bk(T )∩Zk in polynomial time
O(T k+1). To check whether vol(S) = 0, one simply computes in time O(1) the determinant
of the matrix with columns p1 − p0, . . . , pk − p0.
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By Lemma 3.18 each degenerated (k + 1)-element subset of points in Bk(T ) ∩ Zk is con-
tained in a residue class L′ for some (k − 1)-maximal grid L in Zk, where L has a basis
q1, . . . , qk−1 ∈ Zk with ‖qi‖ = O(T ) for i = 1, . . . , k − 1. By Theorem 3.19 (i) it suf-
fices to consider all primitive normal vectors aL ∈ Zk of length ‖aL‖ = O(T k−1) and the
corresponding residue classes.
Having fixed a (k − 1)-maximal grid L in Zk, determined by its primitive normal vector
aL ∈ Zk, by Theorem 3.19 (ii) there are at most O(T · ‖aL‖) residue classes L′ of the grid
L, which intersect the set Bk(T ) ∩ Z3 in a nonempty set.
By Theorem 3.19 (iii) each set L′ ∩ Bk(T ) contains at most O(T k−1/‖aL‖) points. From

each set L′ ∩Bk(T ) we can select (k + 1) points in at most O(
(Tk−1/|aL‖

k+1

)
) ways to obtain

a degenerated simplex. This implies the following upper bound on the number Dk(T ) of
degenerated simplices in Bk(T ) ∩ Zk:

Dk(T ) = O

 ∑
a∈Zk, ‖a‖=O(Tk−1)

T · ‖a‖ ·
(
T k−1/‖a‖
k + 1

) =

= O

T k2 · ∑
a∈Zk, ‖a‖=O(Tk−1)

1

‖a‖k

 = O

T k2 · O(T 2k−2)∑
d=1

rk(d)

dk/2

 = O(T k
2 · lnT ) ,

since by Corollary 3.21 we have
∑n

d=1 rk(d)/dk/2 = O(lnn), which finishes the proof.

5 Non-degenerated Tetrahedra in B3(T ) ∩ Z3

From now on we consider only the case of dimension k = 3. We will determine for positive
reals B the number N3(T ;B) of non-degenerated tetrahedra S = {p0, . . . , p3} in B3(T )∩Z3

with volume vol(S) ≤ B. Recall that the volume of the tetrahedron S is defined by

vol(S) =
1

3
· h ·G ,

where h is the distance between p3 and the affine real space generated by p0, p1, p2 and G
is the area determined by the triangle {p0, p1, p2}.
We will show in this chapter the following result:

Theorem 5.1. The number N3(T ;B) of non-degenerated tetrahedra S ⊆ B3(T )∩Z3 with
vol(S) ≤ B is bounded from above as follows

N3(T ;B) = O
(
B · T 9

)
. (12)

The set of all these non-degenerated tetrahedra in B3(T ) ∩ Z3 can be constructed in time
polynomial in T .

Proof. By inspecting every 4-element subset S = {p0, . . . , p3} ⊂ B3(T ) ∩ Z3 we can de-
termine all tetrahedra in B3(T ) ∩ Z3 with volume at most B in time O(T 12). To check
whether vol(S) ≤ B, one simply computes in time O(1) the absolute value of the deter-
minant of the matrix with columns p0, . . . , p3, augmented by an all 1 row, and multiplies
this value by 1/6.
To prove (12) we first consider the number of non-degenerated triangles S in B3(T ) ∩ L
for a 2-maximal grid L in Z3, where we distinguish whether area(S) ≥ v or area(S) ≤ v
for some real value v > 0.
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Lemma 5.2. Let L be a 2-maximal grid in Z3 with primitive normal vector aL ∈ Z3. Let
v,B > 0 be real numbers. For every residue class L′ of L the number of non-degenerated
tetrahedra S = {p0, p1, p2, p3} in B3(T ) ∩ Z3 with S \ {p3} ⊆ L′ and area(S \ {p3}) ≥ v
and vol(S) ≤ B is at most

O

(
B · T 8

v · ‖aL‖3

)
.

Proof. Let L′ be a residue class of a 2-maximal grid L in Z3 with primitive normal vector
aL ∈ Z3. By Lemma 3.18 we can assume that L has a basis q1, q2 ∈ Z3, with ‖q1‖, ‖q2‖ =
O(T ). By Theorem 3.19 (iii) the set L′ ∩ B3(T ) contains at most O(T 2/‖aL‖) points. In
particular, for every real v > 0, we can choose from the set L′∩B3(T ) three extreme points

of a non-degenerated triangle S′ with area(S′) ≥ v in at most O(
(
T 2/‖aL‖

3

)
) ways. Since

the desired tetrahedra should have volume at most B, the corresponding fourth point has
distance at most O(B/v) from the real affine space of L′. By Lemma 3.15 the distance
between distinct residue classes of L is a multiple of 1/‖aL‖, and since for every residue
class L′′ of L the set L′′ ∩ B3(T ) contains at most O(T 2/‖aL‖) points, the fourth point
can be chosen in at most

O

(
B

v
· ‖aL‖ ·

T 2

‖aL‖

)
= O

(
B · T 2

v

)
ways. Altogether we obtain for the number of desired simplices

O

((
T 2/‖aL‖

3

)
· B · T

2

v

)
= O

(
B · T 8

v · ‖aL‖3

)
.

Next we will consider those non-degenerated triangles in B3(T )∩Z3 with area at most v.
For this case we will use the following lemma:

Lemma 5.3. Let L be a 2-maximal grid in Z3 with primitive normal vector aL ∈ Z3. For
every residue class L′ of L, and two fixed distinct points P and Q on L′, the number of non-
degenerated triangles S in L′ ∩B3(T ) with extreme points P and Q and with area(S) ≤ v
is at most

O

(
v · T

dist(P,Q) · ‖aL‖

)
.

Proof. By an affine mapping f : L −→ Z2 with P ′ := f(P ) for P ∈ L, we transform the
2-maximal grid L in Z3 with primitive normal vector aL ∈ Z3 (or any residue class L′ of
L) into the standard 2-dimensional rectangular grid Z2 with basis (0, 1)> and (1, 0)>. For
a basis a = (a1, a2, a3)

> ∈ Z3, b = (b1, b2, b3)
> ∈ Z3 of the grid L, let f(a) := (0, 1)> and

f(b) := (1, 0)>. Points P,Q,R ∈ L′ ∩B3(T ) become the grid points P ′, Q′, R′ ∈ E ∩Z2 in
an ellipsoid E. If area(P,Q,R) = v, then area(P ′, Q′, R′) = v/‖aL‖, as can be seen easily.
We can assume that L′ = L and that P = (0, 0, 0) and Q = λ · a + µ · b for some
λ, µ ∈ Z are the two given points. Via the mapping f : L −→ Z2 we obtain the points
f(P ) = P ′ = (0, 0) and f(Q) = Q′ = (λ, µ) which are contained in the ellipsoid E.
Let g = gcd(λ, µ) and set λ′ := λ/g and µ′ := µ/g. The line L1 (residue class) through
the points P ′ and Q′ in Z2 has w.l.o.g. the primitive normal vector aN := (µ′,−λ′)>.
To estimate the number of points R ∈ L′∩B3(T ) such that area(P,Q,R) ≤ v, we compute
the number of points R′ ∈ E ∩ Z2 such that area(P ′, Q′, R′) ≤ v/‖aL‖. The distance of
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R′ to the line L1 is at most 2 · v/(‖aL‖ · dist(P ′, Q′)). By Lemma 3.15 residue classes L′1
of L1 have distance a multiple of 1/‖aN‖, thus we consider at most

O

(
v · ‖aN‖

‖aL‖ · dist(P ′, Q′)

)
lines L′1. Since the distance between any two points in B3(T ) is at most 2 · T , the line L1

intersects the ellipsoid E in two points with distance D, where

D = O

(
T · dist(P ′, Q′)

dist(P,Q)

)
.

By Theorem 3.16 the distance between points in L′1 ∩ Z2 is a multiple of ‖aN‖. Every
line L′1 parallel to L1 intersects the ellipsoid E in two points whose distance is at most
D, hence |L′1 ∩ E ∩ Z2| = O(D/‖aN‖). Thus, we have the following upper bound on the
number of triangles in L′ ∩ B3(T ) with area at most v and with fixed extreme points P
and Q:

O

(
v · ‖aN‖

‖aL‖ · dist(P ′, Q′)
· D

‖aN‖

)
= O

(
v · T

dist(P,Q) · ‖aL‖

)
.

Corollary 5.4. Let L be a 2-maximal grid in Z3 with primitive normal vector aL ∈ Z3.
For every residue class L′ of L the number of non-degenerated triangles S in the set
L′ ∩B3(T ) with area(S) ≤ v is at most

O

(
v · T 4

‖aL‖3

)
.

Proof. Let w.l.o.g. L = L′. By Lemma 3.18 we can assume that the grid L has a basis
q1, q2 ∈ Z3 with ‖q1‖, ‖q2‖ = O(T ). Fix a point P ∈ L ∩ B3(T ), by Theorem 3.19 (iii)
there are at most O(T 2/‖aL‖) possibilities for this. Then for every integer d ∈ N there
are at most r3(d, aL) points Q in L∩B3(T ) such that (dist(P,Q))2 = d. With d = O(T 2)
and by Lemma 5.3 and Corollary 3.23 the number of non-degenerated triangles S in the
set L ∩B3(T ) with area(S) ≤ v is at most

O

 T 2

‖aL‖
·
O(T 2)∑
d=1

v · T
d1/2 · ‖aL‖

· r3(d, aL)

 = O

 v · T 3

‖aL‖2
·
O(T 2)∑
d=1

r3(d, aL)

d1/2

 = O

(
v · T 4

‖aL‖3

)
.

Lemma 5.5. Let L be a 2-maximal grid L in Z3 with primitive normal vector aL ∈ Z3.
Then for every non-degenerated triangle S in L it is

area(S) ≥ 1

2
· ‖aL‖ .

Proof. The minimum area of a non-degenerated triangle in L is half of the volume of the
fundamental parallelopiped FQ, i.e. vol(FQ) = ‖aL‖.
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Lemma 5.6. Let L be a 2-maximal grid L in Z3 with primitive normal vector aL ∈ Z3. Let
L′ be any residue class of L. Let v > 0 be a real number. The number of non-degenerated
tetrahedra S = {p0, . . . , p3} in B3(T ) ∩Z3 with S \ {p3} ⊆ L′ and with area(S \ {p3}) ≤ v
and with vol(S) ≤ B is at most

O

(
B · v · T 6

‖aL‖4

)
.

Proof. By Lemma 3.18 we assume that the grid L has a basis q1, q2 ∈ Z3, with ‖q1‖, ‖q2‖ =
O(T ). Let S′ = {p0, p1, p2} be a non-degenerated triangle in L′∩B3(T ) with area(S′) ≤ v.
By Corollary 5.4 there at most O(v ·T 4/‖aL‖3) of them. By Lemma 5.5 we have area(S′) ≥
‖aL‖/2. To select the point p3 ∈ B3(T ) ∩ Z3, the requirement vol(S′ ∪ {p3}) ≤ B has to
be satisfied, thus the distance between the point p3 and the real space generated by S′

is at most O(B/‖aL‖). By Lemma 3.15 the distance between distinct residue classes of
L is a multiple of 1/‖aL‖. By Theorem 3.19 (iii) for every residue class L′ of L the set
L′ ∩B3(T ) contains at most O(T 2/‖aL‖) points. Hence, the point p3 can be chosen in at
most

O

(
B

‖aL‖
· T 2

‖aL‖
· ‖aL‖

)
= O

(
B · T 2

‖aL‖

)
ways. Thus, the number of tetrahedra S = {p0, . . . , p3} in B3(T ) ∩ Z3 with vol(S) ≤ B
and S \ {p3} ⊆ L′ and area(S \ {p3}) ≤ v is at most

O

(
v · T 4

‖aL‖3
· B · T

2

‖aL‖

)
= O

(
B · v · T 6

‖aL‖4

)
.

Now we will finish the proof of Theorem 5.1. From Lemmas 5.2 and 5.6 we infer that for
every real v > 0 the number of tetrahedra S = {p0, . . . , p3} in B3(T )∩Z3 with S\{p3} ⊆ L
and with vol(S) ≤ B is at most

O

(
B · v · T 6

‖aL‖4
+

B · T 8

v · ‖aL‖3

)
. (13)

We have
B · v · T 6

‖aL‖4
=

B · T 8

v · ‖aL‖3
if v = T · ‖aL‖1/2 .

For a given vector a ∈ Zk we set v(a) := T · ‖a‖1/2. Then, (13) becomes:

O

(
B · v · T 6

‖aL‖4
+

B · T 8

v · ‖aL‖3

)
= O

(
B · T 7

‖aL‖7/2

)
. (14)

By Lemma 3.18 we can assume that the grid L has a basis q1, q2 ∈ Z3 with ‖q1‖, ‖q2‖ =
O(T ), hence ‖aL‖ = O(T 2) by Theorem 3.19 (i). For a fixed primitive normal vector
aL ∈ Z3 there are by Theorem 3.19 (ii) at most O(T · ‖aL‖) distinct residue classes of the
grid L, which intersect B3(T ) in a nonempty set. Thus, summing over all possible grids
L we have with (14):

N3(T ;B) = O

( ∑
a∈Z3

‖a‖=O(T2)

T · ‖a‖ · B · T
7

‖a‖7/2

)
= O

(
B · T 8 ·

∑
a∈Z3

‖a‖=O(T2)

1

‖a‖5/2

)
=

= O

(
B · T 8 ·

O(T 4)∑
d=1

r3(d)

d5/4

)
= O(B · T 9) ,

16



where the last equation follows with Corollary 3.21, i.e.
∑n

d=1 r3(d)/d5/4 = O(n1/4).

We summarize the considerations leading to (14) in a separate lemma:

Lemma 5.7. Let L be a 2-maximal grid in Z3 with primitive normal vector aL ∈ Z3. For
every residue class L′ of L the number of non-degenerated tetrahedra S = {p0, p1, p2, p3} ⊆
B3(T ) ∩ Z3 with S \ {p3} ⊆ L′ and vol(S) ≤ B is at most O(B · T 7/‖aL‖7/2).

6 2-Cycles

For some value B > 0, which will be fixed below, and for the given set of points in the set
B3(T )∩Z3 we form a 4-uniform hypergraph G = G(B) = (V, E) with the vertex set V being
this set B3(T ) ∩ Z3 of Θ(T 3) grid-points. The edges are determined by all four-element
subsets of V , which form a tetrahedron of volume at most B including the degenerated
tetrahedra. Then an independent set in this hypergraph G = G(B) corresponds to a set of
points in B3(T ) ∩ Z3, where all tetrahedra have volume bigger than B. In order to apply
Theorem 2.2 we will show that the assumptions there are satisfied, i.e. we will give upper
bounds on the number of 2-cycles. Set

B :=
lnn

n3
· T 3 ,

where T = n1+ε for some fixed ε > 0, thus B = Ω(n3ε · lnn).
First we estimate the average degree t3 of the hypergraph G = G(B) = (V, E). By Theo-
rems 4.1 and 5.1 we can bound the number of edges in G(B) by

|E| = O(T 9 · lnT +B · T 9) = O(B · T 9) ,

hence, with |V | = Θ(T 3), the average degree t3 of G = G(B) satisfies

t3 =
4 · |E|
|V |

= O

(
B · T 9

T 3

)
=
(
B · T 6

)
. (15)

Next we will give upper bounds on the number of 2-cycles in our hypergraph. We will
distinguish two types of 2-cycles, namely (2, 2)-cycles and (2, 3)-cycles. In the following we
will always assume by Lemma 3.18 that L has a basis q1, q2 ∈ Z3, with ‖q1‖, ‖q2‖ = O(T ),
hence by Theorem 3.19 (i) we have ‖aL‖ = O(T 2).

6.1 (2, 2)-cycles

Let us consider first the number s2,2(G) of (2, 2)-cycles in our hypergraph G = G(B), that
is, the number of pairs of tetrahedra in B3(T )∩Z3, which have exactly two extreme points
in common, and both tetrahedra have volume at most B.
We distinguish three cases: (a) both tetrahedra are degenerated, or (b) one tetrahe-
dron is degenerated and the other one is non-degenerated or (c) both tetrahedra are
non-degenerated. The corresponding numbers of (2, 2)-cycles are denoted by s2,2(G; dd),
s2,2(G; dn), s2,2(G;nn), respectively.

Case (a): Both tetrahedra are degenerated. By Theorem 4.1 there are at most O
(
T 9 · lnT

)
degenerated tetrahedra in the set B3(T ) ∩ Z3. Fix one of these tetrahedra. The second
degenerated tetrahedron is contained in a 2-maximal grid in Z3 and has two extreme points
in common with the first one, say P = (p1, p2, p3) and Q = (q1, q2, q3). Fix a primitive
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normal vector bM := (b1, b2, b3) ∈ Z3 with ‖bM‖ = O(T 2), which belongs to a 2-maximal
grid M in Z3, where P,Q ∈ M ′ for some residue class M ′ of the grid M . Indeed, if
P,Q ∈M ′, then with yi := pi − qi for i = 1, 2, 3 it must hold that

b1 · y1 + b2 · y2 + b3 · y3 = 0 ,

where (y1, y2, y3) 6= (0, 0, 0). By Theorem 3.19 (iii) the set M ′ ∩ B3(T ) contains at most
O(T 2/‖bM‖) points, as by Lemma 3.18 we can assume that L has a basis q1, q2 ∈ Z3

with ‖q1‖, ‖q2‖ = O(T ). Having fixed already the extreme points P and Q of the second
degenerated tetrahedron, two further extreme points can be chosen from M ′ in at most

O(
(
T 2/‖bM‖

2

)
) ways. Summing over all possible residue classes M ′ of 2-maximal grids M

in Z3 with P,Q ∈ M ′ we obtain, using Corollary 3.21, the following upper bound on the
number of the two further points of the second tetrahedron, where, neglecting constant
factors, we assume that y3 6= 0: ∑

b=(b1,b2,b3)∈Z3;‖b‖=O(T2)
b1y1+b2y2+b3y3=0

(
T 2/‖b‖

2

)

= O

T 4 ·
∑

(b1,b2)∈Z2

|b1|,|b2|=O(T2)

1

b21 + b22 + (b1 · y1/y3 + b2 · y2/y3)2

 =

= O

T 4 ·
∑

(b1,b2)∈Z2

|b1|,|b2|=O(T2)

1

b21 + b22

 = O

T 4 ·
O(T 4)∑
d=1

r2(d)

d

 = O(T 4 · lnT ) . (16)

Hence we infer for the number s2,2(G; dd) of pairs of degenerated tetrahedra in B3(T )∩Z3

which have two extreme points in common, where y1, y2, y3 refer to the chosen points of
the first tetrahedron:

s2,2(G; dd) = O
(
T 9 · lnT · T 4 · lnT

)
= O

(
T 13 · (lnT )2

)
. (17)

Case (b): One tetrahedron is degenerated and the other one is non-degenerated with
volume at most B. By Theorem 5.1 the number of non-degenerated tetrahedra with
volume at most B in B3(T ) ∩ Z3 is at most O(B · T 9). Fix such a tetrahedron and fix
two of its extreme points, say P = (p1, p2, p3) and Q = (q1, q2, q3) where yi := pi − qi
for i = 1, 2, 3. As in case (a), for a primitive normal vector bM = (b1, b2, b3) ∈ Z3 with
‖bM‖ = O(T 2) using Theorem 3.19 (i), we must have for the case that P,Q ∈M ′ for some
residue class M ′ of M that

b1 · y1 + b2 · y2 + b3 · y3 = 0 .

Two further extreme points of the second degenerated tetrahedron can be chosen from

M ′ in at most O(
(
T 2/‖bM‖

2

)
) ways, hence as in case (a) using (16) altogether at most

O(T 4 · lnT ) possibilities. We infer for the number of pairs s2,2(G; dn) of tetrahedra, where
one is non-degenerated with volume at most B and the other one is degenerated, the
following upper bound:

s2,2(G; dn) = O
(
B · T 9 · T 4 · lnT

)
= O

(
B · T 13 · lnT

)
. (18)
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Case (c): Both simplices have volume at most B, are non-degenerated and have two
extreme points in common.
To count this number s2,2(G;nn) of (2, 2)-cycles, we choose a primitive normal vector
aL ∈ Z3 of a 2-maximal grid in Z3 with ‖aL‖ = O(T 2). Then we fix a point P ∈ Z3∩B3(T ).
There is exactly one residue class L′ of L with P ∈ L′. For fixed integers d > 0 consider
a second point Q ∈ L′ with (dist(P,Q))2 = d, there are at most r3(d; aL) of these points.
The points P and Q are the two common extreme points of the two tetrahedra.
By Lemma 5.3 there are at most O(v · T/(‖aL‖ · d1/2)) points R ∈ L′ ∩ B3(T ) such that
area(P,Q,R) ≤ v. Then the fourth point from B3(T )∩Z3 of a tetrahedron with volume at
most B can be chosen in at most O(B · T 2/‖aL‖) ways. If we assume that the third point
R ∈ L′ ∩B3(T ) satisfies area(P,Q,R) > v, then there are at most O(T 2/‖aL‖) choices for
the point R and the fourth point from B3(T ) ∩ Z3 can be chosen in at most O(B · T 2/v)
ways, thus we have at most

O

(
B · v · T 3

‖aL‖2 · d1/2
+

B · T 4

v · ‖aL‖

)
(19)

possibilities for the third and fourth extreme point of the first tetrahedron. With v(aL) :=
T 1/2 · ‖aL‖1/2 · d1/4 this upper bound (19) becomes

O

(
B · T 7/2

‖aL‖3/2 · d1/4

)
. (20)

Concerning the second tetrahedron in B3(T ) ∩ Z3, which also has the extreme points
P = (p1, p2, p3) and Q = (q1, q2, q3) we proceed similarly as above. Consider all 2-maximal
grids M in Z3 with primitive normal vector bM = (b1, b2, b3) ∈ Z3 with ‖bM‖ = O(T 2)
such that P − Q ∈ M . Let yi := pi − qi for i = 1, 2, 3. For the case P,Q ∈ M ′ for some
residue class M ′ of M we have

b1 · y1 + b2 · y2 + b3 · y3 = 0 . (21)

This would leave at most O(T 4) possibilities for the choice of bM . However, since the third
point R ∈ M of the non-degenerated tetrahedron satisfies R ∈ B3(T ) ∩ Z3, there are at
most O(T 3) choices for the primitive normal vector bM ∈ Z3. Let C ⊆ Z3 be the set of
all possible choices for bM .
Having fixed P and Q, the number of possibilities to extend these two points to the second
tetrahedron in B3(T ) ∩ Z3 is by (20) at most

O

(∑
b∈C

B · T 7/2

‖b‖3/2 · d1/4

)
= O

(
B · T 7/2

d1/4
·
∑
b∈C

1

‖b‖3/2

)
= O

(
B · T 17/4

d1/4

)
.

The last equality can be seen as follows. Since we already fixed the two points P and Q,
there are at most O(T 3) possibilities to choose a residue class M ′ (of a 2-maximal grid M
in Z3) such that P,Q ∈ M ′ and where |M ′ ∩ B3(T )| ≥ 3. Assume that y3 6= 0. Then by
(21) we have: (b1, b2, b3), (b1, b2, b

′
3) ∈ C implies that b3 = b′3. Using also that the function

f(x) = 1/x is monoton decreasing, we have by Corollary 3.21

∑
b=(b1,b2,b3)∈C

1

‖b‖3/2
≤

∑
b=(b1,b2,b3)∈C

1

(b21 + b22)
3/4

= O

O(T 3)∑
d=1

r2(d)

d3/4

 = O(T 3/4) .
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Thus, we infer:

s2,2(G;nn) = O

 ∑
a∈Z3

‖a‖=O(T2)

T 3 ·
O(T 2)∑
d=1

r3(d; a) · B · T 7/2

‖a‖3/2 · d1/4
· B · T

17/4

d1/4

 =

= O

B2 · T 43/4 ·
∑
a∈Z3

‖a‖=O(T2)

1

‖a‖3/2
·
O(T 2)∑
d=1

r3(d; a)

d1/2

 =

= O

B2 · T 47/4 ·
∑
a∈Z3

‖a‖=O(T2)

1

‖a‖5/2

 = O

B2 · T 47/4 ·
O(T 4)∑
d=1

r3(d)

d5/4

 =

= O(B2 · T 51/4) . (22)

To satisfy the assumptions of Theorem 2.2, we must have for some suitable constant γ > 0
that

s2,2(G) = s2,2(G; dd) + s2,2(G; dn) + s2,2(G;nn) =

= O
(
T 3 · t5−γ

)
= O

(
T 13−2γ ·B5/3−γ/3

)
, (23)

where t = O(B1/3 · T 2) with B = T 3 · lnn/n3 and T = n1+ε for some constant ε > 0.
Considering (17), (18) and (22) we have T 13 · (lnT )2 = O(B · T 13 · lnT ) and B2 · T 51/4 =
O(B · T 13 · lnT ) for 0 < ε < 1/11. Thus it suffices to consider only case (b). In this case
(b) we infer with (18) for 0 < γ < 2ε/(2 + 3ε):

B · T 13 · lnT
T 13−2γ ·B5/3−γ/3 =

T 2γ · lnT
B2/3−γ/3 = O

(
(lnn)1/3+γ/3

n2ε−3εγ−2γ

)
= o(1) . (24)

Thus by (24) the upper bound (23) holds for 0 < ε < 1/11 and 0 < γ < 2ε/(2 + 3ε).

6.2 (2, 3)-cycles

Let us now consider the number s2,3(G) of (2, 3)-cycles in our hypergraph G = G(B), that
is, the number of pairs of tetrahedra in B3(T ) ∩Z3, both with volume at most B, having
exactly three extreme points in common. As in the case of (2, 2)-cycles we distinguish three
cases: (a) both tetrahedra are degenerated, or (b) one tetrahedron is degenerated and the
other one is non-degenerated or (c) both tetrahedra are non-degenerated. The correspond-
ing numbers of (2, 3)-cycles are denoted by s2,3(G; dd), s2,3(G;nd), s2,3(G;nn), respectively.

Case (a): Both tetrahedra are degenerated and have three extreme points in common.
Thus the two tetrahedra are contained in a 2-maximal grid L in Z3 or a residue class L′

of it with L′ ∩ B3(T ) 6= ∅, determined by some primitive normal vector aL ∈ Z3 with
‖aL‖ = O(T 2) by Theorem 3.19 (i). By Theorem 3.19 (iii) the set L′ ∩B3(T ) contains at
most O(T 2/‖aL‖) points. We can choose the five extreme points of the two tetrahedra in

at most O(
(
T 2/‖aL‖

5

)
) ways. Again by Theorem 3.19 (ii), there are at most O(T · ‖aL‖)
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residue classes of L intersecting B3(T ) in a nonempty set, hence

s2,3(G; dd) = O

 ∑
a∈Z3

‖a‖=O(T2)

T · ‖a‖ ·
(
T 2/‖a‖

5

) =

= O

T 11 ·
∑
a∈Z3

‖a‖=O(T2)

1

‖a‖4

 = O

T 11 ·
O(T 4)∑
d=1

r3(d)

d2

 = O(T 11) . (25)

since by Corollary 3.21 we have
∑n

d=1 r3(d)/d2 = O(1).

Case (b): One tetrahedron is non-degenerated with volume at most B and the other one is
degenerated, and they have three extreme points in common. Fix one of the by Theorem
5.1 at most O(B · T 9) non-degenerated tetrahedra in B3(T )∩Z3 with volume at most B.
Choose three extreme points of it, say p0, p1, p2, which are common to both tetrahedra.
Since the points p0, p1, p2 uniquely determine a residue class L′ of a maximal grid L in
Z3, and since the second tetrahedron is degenerated the fourth point p′3 of the second
degenerated tetrahedron is contained in L′. Since |L′ ∩B3(T )| = O(T 2) there are at most
O(T 2) choices for the point p′3, and we obtain

s2,3(G, dn) = O(B · T 9 · T 2) = O(B · T 11) . (26)

Case (c): Both tetrahedra are non-degenerated, each with volume at most B and they have
three extreme points in common. Fix a 2-maximal grid L in Z3, respectively a residue
class L′ of it, with primitive normal vector aL ∈ Z3, where ‖aL‖ = O(T 2). We count
the pairs of non-degenerated tetrahedra S = {p0, p1, p2, p3} and S′ = {p0, p1, p2, p′3} in
B3(T ) ∩ Z3 with p0, p1, p2 ∈ L′ and vol(S) ≤ B and vol(S′) ≤ B.
The number of triangles in L′ ∩ B3(T ) with area at most v is by Lemma 5.4 at most
O(v · T 4/‖aL‖3). A fourth point from B3(T ) ∩ Z3 of a tetrahedron with volume at most
B can be chosen in at most O(B · T 2/‖aL‖) ways.
On the other hand, the number of triangles in L′ ∩ B3(T ) with area at least v is at most

O(
(
T 2/‖aL‖

3

)
), and a fourth point from B3(T ) ∩ Z3 of a tetrahedron can be chosen in at

most O(B · T 2/v) ways.
Altogether, using v := v(‖aL‖) := T 2/3 · ‖aL‖2/3 the number of such pairs of tetrahedra is
at most

O

(
v · T 4

‖aL‖3
·
(
B · T 2

‖aL‖

)2

+
T 6

‖aL‖3
·
(
B · T 2

v

)2
)

=

= O

(
v ·B2 · T 8

‖aL‖5
+

B2 · T 10

v2 · ‖aL‖3

)
= O

(
B2 · T 26/3

‖aL‖13/3

)
. (27)

Summing over all grids L in Z3 with ‖aL‖ = O(T 2) and over all at most O(T · ‖aL‖)
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residue classes L′ of L with L′ ∩B3(T ) 6= ∅, we obtain

s2,3(G, nn) = O

 ∑
a∈Z3

‖a‖=O(T2)

T · ‖a‖ · B
2 · T 26/3

‖a‖13/3

 =

= O

B2 · T 29/3 ·
∑
a∈Z3

‖a‖=O(T2)

1

‖a‖10/3

 = O

B2 · T 29/3 ·
O(T 4)∑
d=1

r3(d)

d5/3

 =

= O(B2 · T 29/3) , (28)

since by Corollary 3.21 we have
∑n

d=1 r3(d)/d5/3 = O(1).
To satisfy the assumptions in Theorem 2.2, we must have that for some suitable constant
γ > 0:

s2,3(G) = s2,3(G, dd) + s2,3(G, dn) + s2,3(G, nn) = O(T 3 · t4−γ) (29)

where t = O(B1/3 ·T 2). Using the estimates (25), (26) and (28), we need for some constant
γ > 0 the following:

T 11 +B · T 11 +B2 · T 29/3 = O
(
T 11−2γ ·B4/3−γ/3

)
,

where B := T 3 · lnn/n3 and T = n1+ε with ε > 0.
Since we have T 11 = O(B · T 11) and B2 · T 29/3 = O(B · T 11) for 0 < ε < 4/5, it suffices to
consider only case (b). For this case (b) with (26) and 0 < γ < ε/(2 + 3ε) we have

s2,3(G; dn) = O
(
B · T 11

)
= O

(
T 11−2γ ·B4/3−γ/3

)
,

since

B · T 11

T 11−2γ ·B4/3−γ/3 =
T 2γ

B1/3−γ/3 = O

(
1

(lnn)1/3−γ/3 · nε−3γε−2γ

)
= o(1) .

For 0 < ε < 1/11 and 0 < γ < ε/(2 + 3ε) equations (29) and (23) are satisfied, thus all
assumptions of Theorem 2.2 are fulfilled.
We finish the proof of Theorem 1.2 as follows. We apply Theorem 2.2 to our 4-uniform
hypergraph G = G(B) = (V, E) with average degree t3 = O(B · T 6) by (15), and we find
in time polynomial in T and hence in n an independent set in G(B) of size at least

Ω

(
|V |
t
· (ln t)1/3

)
= Ω

(
T 3

B1/3 · T 2
·
(

ln(B1/3 · T 2)
)1/3)

=

= Ω

(
T

(lnn)1/3 · nε
· (lnn)1/3

)
= Ω(n).

Thus we have found in polynomial time Ω(n) points in B3(T ) ∩ Z3 such that the volume
of every tetrahedron is at least T 3 · lnn/n3. After rescaling, we obtain Ω(n) points in the
unit cube [0, 1]3 such that the volume of every tetrahedron is at least Ω(lnn/n3).
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