
Generalizations of Heilbronn’s Triangle
Problem

Hanno Lefmann 1

Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany

Abstract

For integers d, j ≥ 2 and n ≥ j, distributions of n points in the d-dimensional
unit cube [0, 1]d are investigated, such that the minimum volume of the convex hull
determined by j of n points is large. Lower and upper bounds on these minimum
volumes are given. For obtaining lower bounds, results on the independence number
of non-uniform, linear hypergraphs are used, which might be of interest by their own.
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1 Introduction

Originally, Heilbronn’s triangle problem asks for the supremum value ∆3(n),
over all distributions of n points in the unit square [0, 1]2, of the mininum
area of a triangle among n points. For prime numbers n, the points (1/n) ·
(i mod n, i2 mod n), i = 0, . . . , n − 1, yield ∆3(n) = Ω(1/n2) as has been
observed by Erdös. By using results on the independence number of certain
3-uniform hypergraphs, this lower bound has been improved by Komlós, Pintz
and Szemerédi [8] to ∆3(n) = Ω(log n/n2). Earlier upper bounds on ∆3(n)
have been proved by Roth and Schmidt, and the currently best upper bound
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∆3(n) = O(2c
√

log n/n8/7) is due to Komlós, Pintz and Szemerédi [7]. A variant
of this problem, considered by Schmidt [10], asks for integers 2 ≤ j ≤ n for
the supremum value ∆j(n), over all distributions of n points in [0, 1]2, of
the mininum area of the convex hull of j among n points, and for j = 4 he
obtained ∆4(n) = Ω(1/n3/2). For fixed j ≥ 3, the currently best lower bound
∆j(n) = Ω((log n)1/(j−2)/n(j−1)/(j−2)) is due to this author. However, for fixed
j ≥ 4 only the upper bound ∆j(n) = O(1/n) is known.

An extension of Heilbronn’s triangle problem to higher dimensions has been
considered by Barequet and Naor [2,3]. For integers d, j, n ≥ 2, let ∆j,d(n)
be the supremum, over all distributions of n points in the unit cube [0, 1]d, of
the minimum ((j − 1)-dimensional for j ≤ d + 1) volume of a j-point simplex
among n points. For fixed 3 ≤ j ≤ d + 1, the currently best bounds are
∆j,d(n) = Ω((log n)1/(d−j+2)/n(j−1)/(d−j+2)) and ∆j,d(n) = O(n(j−1)/d), more-
over ∆j,d(n) = O(n((j−1)/d))+(j−2)/(2d(d−1))) for even j ≥ 4, see [9].

In connection with some range searching problems Chazelle [5] has inves-
tigated the function ∆j,d(n) for values j, which depend on n, and he showed
the asymptotically correct order Θ(j/n) with log n ≤ j ≤ n and fixed d ≥ 2.
In view of these results, it might be of interest, whether for a given range of
j, say 3 ≤ j ≤ K, there is a single configuration of n points in [0, 1]d which
yields good lower bounds on the minimum volume of any j points among the
n points, simultaneously for j = 3, . . . , K. To do so, we consider an extension
of a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] on the indepen-
dence number of hypergraphs without short cycles. Some of the probabilistic
existence arguments, which are used in the proofs, can be derandomized in
suitable discrete lattices and yield deterministic polynomial time algorithms.

2 Uncrowded and Linear Hypergraphs

Definition 2.1 For a hypergraph G the notation G = (V, E2∪ . . .∪Ek) means
that V is its vertex-set and Ei is the set of all i-element edges in G, i = 2, . . . , k.
The quantity i·|Ei|/|V |, denoted by ti−1

i , is the average degree of a vertex for the
i-element edges E ∈ Ei in G. A hypergraph G = (V, Ek) is called k-uniform, i.e.,
each edge E ∈ E contains exactly k vertices. The independence number α(G)
of a hypergraph G = (V, E) is the largest size of a subset I ⊆ V which contains
no edges from E . A j-cycle in G = (V, E) is a sequence E1, . . . , Ej of distinct
edges from E , such that Ei∩Ei+1 6= ∅, i = 1, . . . , j−1, and Ej ∩E1 6= ∅, and a
sequence v1, . . . , vj of distinct vertices with vi+1 ∈ Ei ∩ Ei+1, i = 1, . . . , j − 1,
and v1 ∈ E1 ∩Ej. An unordered pair {E, E ′} of distinct edges E,E ′ ∈ E with
|E ∩E ′| ≥ 2 is called 2-cycle. A 2-cycle {E, E ′} in G = (V, E2 ∪ . . .∪ Ek) with



E ∈ Ei and E ′ ∈ Ej is called (2; (g, i, j))-cycle iff |E ∩ E ′| = g, 2 ≤ g ≤ i ≤ j
but g < j. The hypergraph G is called linear if it does not contain any 2-cycles,
and it is called uncrowded if it does not contain any 2-, 3-, or 4-cycles.

Well known is Turán’s theorem for hypergraphs:

Theorem 2.2 Let G = (V, E2 ∪ . . .∪ Ek) be a hypergraph on |V | = N vertices
and with average degree ti−1

i := i · |Ei|/N for the i-element edges, i = 2, . . . , k.
Let ti0 := max {ti | 2 ≤ i ≤ k} ≥ 1/2. Then, there exists an independent set
I ⊆ V in G with |I| = Ω(N/ti0).

The next result by Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] im-
proves on Theorem 2.2 for uncrowded, uniform hypergraphs, compare [4] for
a deterministic polynomial time algorithm.

Theorem 2.3 Let k ≥ 3 be fixed. Let G = (V, Ek) be an uncrowded, k-uniform
hypergraph on |V | = N vertices and with average degree tk−1

k := k · |Ek|/N .
Then, the independence number α(G) satisfies α(G) = Ω((N/t)·(log tk)

1/(k−1)).

Theorem 2.3 can be extended to non-uniform hypergraphs as follows:

Theorem 2.4 Let k ≥ 3 be fixed. Let G = (V, E3 ∪ . . . ∪ Ek) be an uncrowded
hypergraph on |V | = N vertices, such that for some number T ≥ 1 for i =
3, . . . , k the average degrees ti−1

i := i · |Ei|/N for the i-element edges satisfy
ti−1
i ≤ T i−1 · (log T )(k−i)/(k−1). Then, the independence number α(G) satisfies

α(G) = Ω((N/T ) · (log T )1/(k−1)).

For a certain range k < T < N of the parameters Theorem 2.4 is asymp-
totically best possible up to a constant factor, as can be seen by considering
random non-uniform hypergraphs G = (V, E3 ∪ . . . ∪ Ek) on |V | = N vertices.
Theorem 2.4 also holds for linear hypergraphs, compare [6] for the case of
uniform hypergraphs:

Theorem 2.5 Let k ≥ 3 be fixed. Let G = (V, E3 ∪ . . . ∪ Ek) be a linear
hypergraph with |V | = N , such that for some number T ≥ 1 for i = 3, . . . , K
the average degrees ti−1

i := i · |Ei|/N for the i-element edges satisfy ti−1
i ≤

T i−1 · (log T )(k−i)/(k−1). Then, there exists an independent set I ⊆ V with
|I| = Ω((N/T ) · (log T )1/(k−1)).

With Theorem 2.5 the following has been shown recently by this author:

Theorem 2.6 Let d ≥ 2 and K ≥ 3 be fixed. For integers n ≥ K there exist
n points in [0, 1]2, such that, simultaneously for j = 3, . . . , K, the area of the
convex hull of any j among the n points is Ω((log n)1/(j−2)/n(j−1)/(j−2)).



3 Volumes of the Convex Hull of j Points

In view of Theorem 2.6 we turn our attention to distributions of n points in
higher dimensional unit cubes. A simplex given by j points P1, . . . , Pj ∈ [0, 1]d,
where j ≤ d + 1, is the set of all points P1 +

∑j
i=2 λi · (Pi − P1) with λi ≥ 0,

i = 2, . . . , j, and
∑j

i=2 λi ≤ 1. The ((j − 1)-dimensional) volume of a simplex
determined by points P1, . . . , Pj ∈ [0, 1]d, 2 ≤ j ≤ d + 1, is vol (P1, . . . , Pj) :=
(1/(j − 1)!) · ∏j

i=2 dist (Pi; 〈P1, . . . , Pi−1〉), where dist (Pi; 〈P1, . . . , Pi−1〉) is
the Euclidean distance of the point Pi from the affine space 〈P1, . . . , Pi−1〉
generated by the points P1, . . . , Pi−1 with 〈P1〉 := P1.

By using Theorem 2.2 and, for an algorithmic version, results on the theory
of lattices, the following has been shown by this author:

Theorem 3.1 Let K, d ≥ 3 be fixed. For every n ≥ K there exists a con-
figuration of n points in the unit cube [0, 1]d such that, simultaneously for
j = 2, . . . , K, the volume of the convex hull of any j among the n points is
Ω(1/n(j−1)/(1+|d−j+1|)).

By Theorem 3.1 we obtain a single distribution of n points in [0, 1]d, which
is simultaneously good for small sets of points, however for 3 ≤ j ≤ d + 1
in view of the best available lower bounds we loose a polylogarithmic factor.
The next result takes care of this factor.

Theorem 3.2 Let d ≥ 2 and K ≥ 3 with K ≤ d + 1 be fixed. For every
n ≥ K there exists a configuration of n points in the unit cube [0, 1]d, such
that, simultaneously for j = 3, . . . , K, the (j − 1)-dimensional volume of any
j-point simplex among these n points is Ω((log n)1/(d−j+2)/n(j−1)/(d−j+2)).

Proof (Sketch) Let β, γ2, . . . , γK , d3, . . . , dK > 0 be suitable constants, and
set N := n1+β, and Vj := dj · (log n)1/(d−j+2)/n(j−1)/(d−j+2), j = 3, . . . , K. Uni-
formly at random and independently of each other select N points P1, . . . , PN ∈
[0, 1]d. Form a hypergraph G = (V, E∗2 ∪ E∗3 ∪ E3 ∪ · · · ∪ E∗K ∪ EK), where
E∗j , Ej ⊆ [V ]j, j = 2, . . . , K, with vertex-set V = {P1, . . . , PN} and with
two types of j-element edges. For j = 2, . . . , K, and points Pi1 , . . . , Pij ,
1 ≤ i1 < . . . < ij ≤ N , let {Pi1 , . . . , Pij} ∈ E∗j iff vol (Pi1 , . . . , Pij) ≤ N−γj .
Let E = {Pi1 , . . . , Pij} ∈ Ej iff vol (Pi1 , . . . , Pij) ≤ Vj and E ′ 6⊆ E for all edges
E ′ ∈ E∗2 ∪ · · · ∪ E∗

j−1.

Let C(g;i,j) be the set of all (2; (g; , i, j))-cycles in the hypergraph G, 2 ≤
g ≤ i ≤ j ≤ K and g < j. Set γj := (j − 1)/(d − j + 3/2), j = 2, . . . , K,
and β := 1/(5 · d · K). One can show that there exists a hypergraph G =
(V, E∗2 ∪ E∗3 ∪ E3 ∪ · · · ∪ E∗K ∪ EK), which satisfies for constants cj > 0:



|E∗j | = o(|V |) and |C(g;i,j)| = o(|V |) and |Ej| ≤ cj ·N j · V d−j+2
j .

Delete one vertex from each edge E ∈ E∗2 ∪ · · · ∪ E∗K and each (2; (g, i, j))-
cycle in C(g;i,j), 2 ≤ g ≤ i ≤ j ≤ K with g < j, and obtain an induced, linear
subhypergraph G0 = (V 0, E0

3∪· · ·∪E0
k ) of G with E0

j := Ej∩[V 0]j , j = 3, . . . , K,

on |V 0| = (1 − o(1)) · N vertices. With T := c′ · (N/n) · (log n)1/(k−1) for a
suitable constant c′ > 0 all assumptions in Theorem 2.5 are fulfilled and we
infer for the independence number α(G0) ≥ n. Thus, there exist n points such
that the volume of every j-point simplex, j = 3, . . . , K, among these n points
is Ω((log n)1/(d−j+2)/n(j−1)/(d−j+2)) as claimed. 2
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