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Abstract. We consider a variant of Heilbronn’s triangle problem by
investigating for fixed dimension d ≥ 2 and for integers k ≥ 2 with
k ≤ d distributions of n points in the d-dimensional unit cube [0, 1]d

such that the minimum volume of the simplices, which are determined
by (k + 1) of these n points, is as large as possible. Denoting by ∆k,d(n)
the supremum of the minimum volume of a (k +1)-point simplex among
n points over all distributions of n points in [0, 1]d, we show that ck,d ·
(log n)1/(d−k+1)/nk/(d−k+1) ≤ ∆k,d(n) ≤ c′k,d/nk/d for fixed 2 ≤ k ≤
d, and, moreover, for odd integers k ≥ 1 we show the upper bound
∆k,d(n) ≤ c′′k,d/nk/d+(k−1)/(2d(d−1)), where ck,d, c′k,d, c′′k,d > 0 are con-
stants.

1 Introduction

For integers n ≥ 3, Heilbronn’s problem asks for the supremum ∆2(n) of the
minimum area of a triangle formed by three of n points over all distributions of n
points in the unit square [0, 1]2. For primes n, no three of the points Pk = (1/n) ·
(l mod n, l2 mod n), l = 0, 1, . . . , n−1 are collinear, which gives the lower bound
∆2(n) = Ω(1/n2), as has been observed by Erdős, see [17]. Komlós, Pintz and
Szemerédi [12] improved this to the currently best known lower bound ∆2(n) =
Ω(log n/n2), and in [7] a deterministic polynomial in n time algorithm was given,
which achieves this lower bound on ∆2(n). Upper bounds on ∆2(n) have been
given in a series of papers by Roth [17–20] and Schmidt [22]. The currently best
known upper bound has been obtained by Komlós, Pintz and Szemerédi [11],
who proved for some constant c > 0 that ∆2(n) = O(2c

√
log n/n8/7). If n points

are chosen uniformly at random and independently of each other in [0, 1]2, the
expected value of the minimum area of a triangle formed by three of these n
points is Θ(1/n3), as has been shown by Jiang, Li and Vitany [10].
A variant of Heilbronn’s problem, which has been considered by Barequet in [2],
asks, for dimension d ≥ 2, for the supremum ∆d(n) of the minimum volume of a
simplex determined by (d + 1) of n points in the d-dimensional unit cube [0, 1]d,
where the supremum is taken over all distributions of n points in [0, 1]d. For
fixed d ≥ 1, he showed in [2] the lower bound ∆d(n) = Ω(1/nd). This has been
improved in [13] by a logarithmic factor to ∆d(n) = Ω(log n/nd) for fixed d ≥ 2,
and in [16], for the case of dimension d = 3 a deterministic polynomial in n time
? A preliminary version of this paper appeared in COCOON’05.



algorithm has been given, which achieves the lower bound ∆3(n) = Ω(log n/n3).
An upper bound of ∆d(n) = O(1/n) follows from the pigeonhole-principle. Re-
cently, by considering the angles between lines, which are determined by pairs
of points, Brass [8] improved this upper bound to ∆d(n) = O(1/n1+1/(2d)) for
fixed odd integers d ≥ 3.
Here we consider the following generalization of Heilbronn’s problem: given fixed
integers d, k with 1 ≤ k ≤ d, find for every integer n ≥ k a distribution of n
points in the d-dimensional unit cube [0, 1]d such that the minimum volume of
a (k + 1)-point simplex arising from these n points is as large as possible. Let
∆k,d(n) denote the supremum – over all distributions of n points in [0, 1]d – of
the minimum volume of a (k + 1)-point simplex among n points in [0, 1]d, i.e.,
∆d(n) = ∆d,d(n).
It is easy to see that ∆1,d = Θ(1/n1/d) for fixed dimension d ≥ 1: the lower
bound follows by considering the points of the standard n1/d×· · ·×n1/d-grid in
[0, 1]d, and the upper bound follows by an argument of packing balls in [0, 1]d.
Lower and upper bounds on ∆2,d(n) for fixed d ≥ 2, i.e., areas of triangles in
[0, 1]d, were given by this author in [14], where it has been shown that c2,d ·
(log n)1/(d−1)/n2/(d−1) ≤ ∆2,d(n) ≤ c′2,d/n2/d for constants c2,d, c

′
2,d > 0.

Here we prove the following lower and upper bounds on ∆k,d(n):

Theorem 1. Let d, k be fixed integers with 2 ≤ k ≤ d. Then, for constants
ck,d, c

′
k,d, c

′′
k,d > 0, for every integer n ≥ k it is

ck,d ·
(log n)

1
d−k+1

n
k

d−k+1
≤ ∆k,d(n) ≤

c′k,d

n
k
d

for every k (1)

∆k,d(n) ≤
c′′k,d

n
k
d + k−1

2d(d−1)

for k odd. (2)

For d = 2 and k = 2, the lower bound in (1) is just the result from [12]. For
k = d, the upper bound in (2) yields the bound from [8] and the lower bound
in (1) gives the result from [13]. For k = 2 and any fixed dimension d ≥ 2, the
bounds in (1) yield the above mentioned result from [14]. Indeed, our arguments
for proving Theorem 1 give a randomized polynomial in n time algorithm, which
finds a distribution of n points in [0, 1]d that achieves the lower bound in (1).
Independently from this work, in [4] Barequet and Naor showed – taking careful
attention to the involved parameters – the bounds f(k, d)/n

k
d−k+1 ≤ ∆k,d(n) ≤

(kk/d ·dk/2)/(k! ·n k
d ) for arbitrary integers 1 ≤ k ≤ d, where the function f(k, d)

only depends on d, k. Note that our bounds on ∆k,d(n) are better for fixed
2 ≤ k ≤ d: the lower bound in (1) by a factor of Θ((log n)1/(d−k+1)), and, for
odd k, the upper bound by a factor of Θ(n(k−1)/((2d(d−1))).
We remark that the on-line situation – the points are positioned one after the
other in [0, 1]d and suddenly this process stops – of the variant of Heilbronn’s
problem for (d + 1)-point simplices in [0, 1]d has been investigated by Bare-
quet [3], where he proved the existence of distributions of n points in [0, 1]d for
the cases d = 3 and d = 4, such that the volume of every (d + 1)-simplex
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is Ω(1/n10/3) and Ω(1/n127/24), respectively. In extending these results, re-
cently, Barequet and Shaikhet [5, 21] showed by packing arguments for the on-
line situation the existence of configurations of n points in [0, 1]d, where for
fixed k ≤ d the volume of each (k + 1)-point simplex among these n points is
Ω(1/n(d+1) ln d−2

d−k+1+0.735d−k+2.8881) for fixed d ≥ 5 and 3 ≤ k ≤ d. Thus, with
respect to the off-line situation as discussed above, where the number n of points
is known in advance, there is a large gap between the lower bounds.

2 Notation

We introduce some notation, which is used throughout this paper.
For points P,Q with P = (p1, . . . , pd) ∈ [0, 1]d and Q = (q1, . . . , qd) ∈ [0, 1]d let
dist (P,Q) := ((p1− q1)2 + . . .+(pd− qd)2)1/2 denote the Euclidean distance be-
tween P and Q. A (k+1)-point simplex is given by (k+1) points P1, . . . , Pk+1 ∈
[0, 1]d and is defined as the convex hull of P1, . . . , Pk+1, i.e., it is the set of all
points P1 +

∑k+1
i=2 λi · (Pi − P1) with λi ≥ 0, i = 2, . . . , k + 1, and

∑k+1
i=2 λi ≤ 1.

The (k-dimensional) volume of a (k +1)-point simplex determined by the points
P1, . . . , Pk+1 ∈ [0, 1]d, 1 ≤ k ≤ d, is defined by vol (P1, . . . , Pk+1) := (1/k!) ·∏k+1

j=2 dist (Pj ; 〈P1, . . . , Pj−1〉), where dist (Pj ; 〈P1, . . . , Pj−1〉) denotes the Eu-
clidean distance of the point Pj from the affine space 〈P1, . . . , Pj−1〉, which is
generated by the points P1, . . . , Pj−1 with 〈P1〉 := P1. Hence, if (k + 1) points
are contained in a (k − 1)-dimensional space, then vol (P1, . . . , Pk+1) = 0.
In our arguments we transform the geometrical problem into a problem on hy-
pergraphs.
A hypergraph G = (V, E) with vertex-set V and edge-set E is called k-uniform
if |E| = k for each edge E ∈ E . If the hypergraph G contains edges of different
cardinalities, then G is called non-uniform. For a hypergraph G we indicate by
G = (V, E2 ∪ · · · ∪ Ek) that Ei is the set of all i-element edges in G, i = 2, . . . , k.
A subset I ⊆ V of the vertex-set V is called independent if no edge from E is
contained in I. The largest size |I| of an independent set in G is the independence
number α(G) of G. A hypergraph G = (V, E) is called linear if |E ∩ E′| ≤ 1 for
all distinct edges E,E′ ∈ E .

3 A Lower Bound on ∆k,d(n)

In this section we prove the lower bound (1) in Theorem 1, namely, that for fixed
integers d, k with 2 ≤ k ≤ d there are constants ck,d > 0 such that for every
integer n ≥ k it is ∆k,d(n) ≥ ck,d · (log n)

1
d−k+1 /n

k
d−k+1 .

Proof. Let d, k be fixed integers with 2 ≤ k ≤ d. For arbitrary integers n ≥ k
and a suitable constant β > 0, we select uniformly at random and independently
of each other N := n1+β points P1, P2, . . . , PN from the d-dimensional unit cube
[0, 1]d.
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For suitable constants γj > 0, j = 2, . . . , k, and a number V0 > 0, which
are fixed later in connection with Lemmas 3 and 4, we form a random, non-
uniform hypergraph G = G(N−γ2 , . . . , N−γk , V0) = (V, E2 ∪ · · · ∪ Ek+1) with
vertex-set V = {1, 2, . . . , N}, where vertex i corresponds to the random point
Pi ∈ [0, 1]d, i = 1, . . . , N . For j = 2, . . . , k, let {i1, . . . , ij} ∈ Ej be a j-element
edge if and only if the (j − 1)-dimensional volume of the simplex determined
by the points Pi1 , . . . , Pij

is at most N−γj , i.e., vol (Pi1 , . . . , Pij
) ≤ N−γj .

Moreover, let {i1, . . . , ik+1} ∈ Ek+1 be a (k + 1)-element edge if and only if
vol (Pi1 , . . . , Pik+1) ≤ V0 and {i1, . . . , ik+1} does not contain any j-element edges
E ∈ Ej for j = 2, . . . , k.
Let I ⊆ V be an independent set in this hypergraph G. Then, by definition of the
edge-set of G, for distinct vertices i1, . . . , ik+1 ∈ I we infer that the volume of the
simplex, which is determined by the corresponding points Pi1 , . . . , Pik+1 ∈ [0, 1]d,
satisfies vol (Pi1 , . . . , Pik+1) > V0. Thus, an independent set I ⊆ V in G yields
|I| many points in [0, 1]d such that the volume of each simplex determined by k
of these |I| points is bigger than V0.
Our aim is to show the existence of a large independent set I ⊆ V in G. For
doing so, we use an extension by Duke, Rödl and this author [9] of a result by
Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] on the independence number
of linear, uniform hypergraphs.

Theorem 2. [1, 9] Let k ≥ 2 be a fixed integer. Let G = (V, Ek+1) be a linear,
(k + 1)-uniform hypergraph on |V | = N vertices with average degree tk := (k +
1) · |Ek+1|/N .
Then, for some constant C∗

k+1 > 0 the independence number α(G) of G satisfies

α(G) ≥ C∗
k+1 ·

N

t
· (log t)

1
k . (3)

We remark that for arbitrary (k + 1)-uniform hypergraphs G on N vertices
with average degree tk one can prove only the lower bound α(G) = Ω(N/t)
(Turán bound) and there exist (k+1)-uniform hypergraphs with an upper bound
on the independence number of O(N/t). However, as Theorem 2 shows, if the
hypergraph G is linear, then there is a bigger lower bound on the independence
number α(G).
The difficulty in our arguments is, to find a suitable uniform subhypergraph
of the random, non-uniform hypergraph G to which we can apply Theorem 2.
For doing so, we select a suitable induced (k + 1)-uniform subhypergraph G∗ of
G. For j = 2, . . . , k, let BPj(G) be the set of all ‘bad j-pairs of (k + 1)-point
simplices’ in G, which are those unordered pairs {E,E′} of distinct (k + 1)-
element edges E,E′ ∈ Ek+1 in G, which share j vertices, i.e., |E ∩ E′| = j.
We show that in the random, non-uniform hypergraph G the expected numbers
E(|Ei|) and E(|BPj(G)|) of i-element edges and bad j-pairs of (k + 1)-point
simplices, respectively, i, j = 2, . . . , k, are not too big, i.e., are of the order o(N).
Then we discard one vertex from each i-element edge E ∈ Ei, i = 2, . . . , k,
which yields a (k + 1)-uniform subhypergraph of G. Moreover, we discard one
vertex from each bad j-pair of (k+1)-point simplices, j = 2, . . . , k. This yields a
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linear, (k + 1)-uniform subhypergraph G∗ = (V ∗, E∗k+1) of G, and G∗ fulfills the
assumptions of Theorem 2 and then we apply it.
To obtain upper bounds on the expected numbers E(|Ei|) of i-element edges in
G, i = 2, . . . , k + 1, we estimate for a given number v > 0 the probability that i
points, which are chosen uniformly at random and independently of each other
in [0, 1]d, determine a simplex of volume at most v.

Lemma 1. Let d, k be fixed integers with 1 ≤ k ≤ d. For i = 2, . . . , k + 1, and
random points P1, . . . , Pi ∈ [0, 1]d there are constants c∗i > 0, such that for every
number v > 0 it is

Prob (vol (P1, . . . , Pi) ≤ v) ≤ c∗i · vd−i+2. (4)

Proof. Let P1, . . . , Pi be i points, which are chosen uniformly at random and
independently of each other in [0, 1]d. We assume that these points are numbered
such that for 2 ≤ g ≤ h ≤ i it is

dist (Pg; 〈P1, . . . , Pg−1〉) ≥ dist (Ph; 〈P1, . . . , Pg−1〉). (5)

The point P1 may be anywhere in [0, 1]d. Given the point P1 ∈ [0, 1]d, the
probability, that the Euclidean distance of the point P2 ∈ [0, 1]d from P1 is in
the infinitesimal interval [r1, r1 + dr1], is at most the difference of the volumes
of the d-dimensional balls with center P1 and with radii (r1 + dr1) and r1,
respectively, hence

Prob (r1 ≤ dist (P1, P2) ≤ r1 + dr1) ≤ d · Cd · rd−1
1 dr1,

where Cl := πl/2/Γ (l/2 + 1) denotes the volume of the l-dimensional unit ball
in Rl, l = 1, . . . , d.
Given the points P1, P2 ∈ [0, 1]d with dist (P1, P2) = r1, the probability, that
the distance dist (P3; 〈P1, P2〉) of the point P3 ∈ [0, 1]d from the affine line
〈P1, P2〉 is in the interval [r2, r2 + dr2], is at most the difference of the volumes
of two cylinders, which are centered at the affine line 〈P1, P2〉 and have radii
(r2 + dr2) and r2, respectively. By assumption (5) and the triangle inequality,
both cylinders have height 2 · r1 = 2 · dist (P1, P2). Thus we infer

Prob (r2 ≤ dist (P3; 〈P1, P2〉) ≤ r2 + dr2) ≤ 2 · r1 · (d− 1) · Cd−1 · rd−2
2 dr2.

In general, given P1, . . . , Pg ∈ [0, 1]d, g < i, with dist (Pf ; 〈P1, . . . , Pf−1〉) =
rf−1, f = 2, . . . , g, by (5) and the triangle inequality the projection of the point
Pg+1 onto the affine space 〈P1, . . . , Pg〉 is contained in a (g − 1)-dimensional
parallelepiped of volume 2g−1 ·r1 · . . . ·rg−1. If dist (Pg+1; 〈P1, . . . , Pg〉) ≤ r, then
the point Pg+1 is contained in the Cartesian product of a (g − 1)-dimensional
parallelepiped of volume 2g−1 · r1 · . . . · rg−1 and a (d − g + 1)-dimensional ball
of radius r. Hence, for g < i− 1 we obtain

Prob (rg ≤ dist (Pg+1; 〈P1, . . . , Pg〉) ≤ rg + drg)
≤ 2g−1 · r1 · . . . · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g drg. (6)
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For g = i−1, given points P1, . . . , Pi−1 ∈ [0, 1]d with dist (Pf ; 〈P1, . . . , Pf−1〉) =
rf−1, f = 2, . . . , i− 1, to satisfy vol (P1, . . . , Pi) ≤ v, we must have

1
(i− 1)!

· dist (Pi; 〈P1, . . . , Pi−1〉) ·
i−1∏
f=2

rf−1 ≤ v,

hence

dist (Pi; 〈P1, . . . , Pi−1〉) ≤
(i− 1)! · v

r1 · . . . · ri−2
. (7)

With (5) the projection of the point Pi onto the affine space 〈P1, . . . , Pi−1〉 is
contained in a (i−2)-dimensional parallelepiped of volume 2i−2·r1·. . .·ri−2. Thus,
by (7) the point Pi is contained in the Cartesian product of an (i−2)-dimensional
parallelepiped of volume 2i−2 · r1 · . . . · ri−2 and a (d− i + 2)-dimensional ball of
radius (i− 1)! · v/(r1 · . . . · ri−2), which happens with probability at most

2i−2 · r1 · . . . · ri−2 · Cd−i+2 ·
(

(i− 1)! · v
r1 · . . . · ri−2

)d−i+2

. (8)

Summarizing the estimates (6) and (8), we obtain for constants c∗i , c
∗∗
i > 0:

Prob (vol (P1, . . . , Pi) ≤ v)

≤
∫ √

d

ri−2=0

. . .

∫ √
d

r1=0

2i−2 · Cd−i+2 ·
((i− 1)! · v)d−i+2

(r1 · . . . · ri−2)d−i+1
·

·
i−2∏
g=1

(
2g−1 · r1 · . . . · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g

)
dri−2 . . . dr1 ≤

≤ c∗∗i · vd−i+2 ·
∫ √

d

ri−2=0

. . .

∫ √
d

r1=0

(
i−2∏
g=1

r2i−2g−3
g

)
dri−2 . . . dr1

≤ c∗i · vd−i+2 as 2 · i− 2 · g − 3 > 0,

which proves inequality (4). ut

Corollary 1. Let d, k be fixed integers with 2 ≤ k ≤ d. For i = 2, . . . , k, there
exist constants ci, ck+1 > 0, such that

E(|Ei|) ≤ ci ·N i−γi(d−i+2) and E(|Ek+1|) ≤ ck+1 · V d−k+1
0 ·Nk+1. (9)

Proof. There are
(
N
i

)
possibilities to choose i out of the N random points

P1, . . . , PN ∈ [0, 1]d, and, using the definition of the edge-set of G, by (4) with
v := N−γi , i = 2, . . . , k, and v := V0 for i = k + 1 the inequalities (9) follow. ut

Next we give upper bounds on the expected numbers E(|BPj(G)|) of bad j-pairs
of (k + 1)-point simplices in G, j = 2, . . . , k.
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Lemma 2. Let d, k be fixed integers with 2 ≤ k ≤ d. For j = 2, . . . , k, there
exist constants cp,j > 0, such that

E(|BPj(G)|) ≤ cp,j · V 2(d−k+1)
0 ·N2k+2−j+γj(d−k+1). (10)

Proof. For j = 2, . . . , k, we show an upper bound of O(V 2(d−k+1)
0 ·Nγj(d−k+1)) on

the probability that (2k + 2− j) points, which are chosen uniformly at random
and independently of each other in [0, 1]d, form a bad j-pair of (k + 1)-point
simplices.
Note that {i1, . . . , ik+1} ∈ Ek+1 if and only if vol (Pi1 , . . . , Pik+1) ≤ V0 and
{i1, . . . , ik+1} does not contain any i-element edges E ∈ Ei, i = 2, . . . , k. Let the
two (k + 1)-point simplices, which form a bad j-pair, are given by the points
P1, . . . , Pk+1 ∈ [0, 1]d and P1, . . . , Pj , Qj+1, . . . , Qk+1 ∈ [0, 1]d, and both sets of
points determine an edge in Ek+1, hence

vol (P1, . . . , Pk+1) ≤ V0 and vol (P1, . . . , Pj , Qj+1, . . . , Qk+1) ≤ V0.

By (4) with v := V0 we know that for some constant c∗k+1 > 0:

Prob (vol (P1, . . . , Pk+1) ≤ V0) ≤ c∗k+1 · V d−k+1
0 . (11)

By construction of the hypergraph G we have vol (P1, . . . , Pj) > N−γj , and we
condition on this in the following. Given the points P1, . . . , Pj , Qj+1, . . . , Qg ∈
[0, 1]d, we infer for g = j, . . . , k − 1:

Prob (rg ≤ dist (Qg+1; 〈P1, . . . , Pj , Qj+1, . . . , Qg〉) ≤ rg + drg)

≤ (
√

d)g−1 · (d + 1− g) · Cd+1−g · rd−g
g drg, (12)

since all points Qg+1 with dist (Qg+1; 〈P1, . . . , Pj , Qj+1, . . . , Qg〉) ≤ r, are con-
tained in the Cartesian product of a (g−1)-dimensional parallelepiped of volume
at most (

√
d)g−1 and a (d + 1− g)-dimensional ball of radius r.

Finally, given the points P1, . . . , Pj , Qj+1, . . . , Qk in the unit cube [0, 1]d, such
that dist (Qf ; 〈P1, . . . , Pj , Qj+1, . . . , Qf−1〉) = rf−1, f = j + 1, . . . , k, to fulfill
vol (P1, . . . , Pj , Qj+1, . . . , Qk+1) ≤ V0, we must have

(j − 1)!
k!

· dist (Qk+1; 〈P1, . . . , Pj , Qj+1, . . . , Qk〉) · vol (P1, . . . , Pj) ·
k−1∏
g=j

rg ≤ V0,

thus, with vol (P1, . . . , Pj) > N−γj , we conclude

dist (Qk+1; 〈P1, . . . , Pj , Qj+1, . . . , Qk〉) <
k!

(j − 1)!
· V0 ·Nγj∏k−1

g=j rg

.

Hence the point Qk+1 is contained in the Cartesian product of a (k − 1)-
dimensional parallelepiped of volume (

√
d)k−1 and a (d − k + 1)-dimensional
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ball of radius (k! · V0 ·Nγj )/((j − 1)! ·
∏k−1

g=j rg), which happens with probability
at most

(
√

d)k−1 · Cd−k+1 ·

(
k!

(j − 1)!
· V0 ·Nγj∏k−1

g=j rg

)d−k+1

. (13)

Putting (11)–(13) together, we obtain for constants c∗k+1, cp,j , c
∗
p,j > 0, j =

2, . . . , k, the following upper bound

Prob ({P1, . . . , Pk+1}, {P1, . . . , Pj , Qj+1, . . . , Qk+1} is a bad j-pair)

≤ c∗k+1 · V d−k+1
0 ·

∫ √
d

rk−1=0

. . .

∫ √
d

rj=0

d
k−1
2 · Cd−k+1 ·

(k! · V0 ·Nγj )d−k+1

((j − 1)! ·
∏k−1

g=j rg)d−k+1
·

·
k−1∏
g=j

(
d

g−1
2 · (d + 1− g) · Cd+1−g · rd−g

g

)
drk−1 . . . drj ≤

≤ c∗p,j · V
2(d−k+1)
0 ·Nγj(d−k+1) ·

∫ √
d

rk−1=0

. . .

∫ √
d

rj=0

k−1∏
g=j

rk−g−1
g drk−1 . . . drj

≤ cp,j · V 2(d−k+1)
0 ·Nγj(d−k+1) as k − g − 1 ≥ 0. (14)

As there are
(
N
j

)
possibilities to choose j out of the N random points, and less

than
(

N
k+1−j

)
choices for (k + 1 − j) out of (N − j) points, by (14) we infer for

constants cp,j > 0, j = 2, . . . , k:

E(|BPj(G)|) ≤
(

N

j

)
·
(

N

k + 1− j

)2

· cp,j · V 2(d−k+1)
0 ·Nγj(d−k+1) ≤

≤ cp,j · V 2(d−k+1)
0 ·N2k+2−j+γj(d−k+1),

which proves (10) and finishes the proof of Lemma 2. ut

By (9) and (10) and Markov’s inequality, there exist N = n1+β points P1, . . . , PN

in [0, 1]d such that the corresponding hypergraph G = (V, E2 ∪ · · · ∪ Ek+1) on
|V | = N vertices, which we consider in the following, satisfies for i, j = 2, . . . , k:

|V | = N (15)
|Ei| ≤ 2 · k · ci ·N i−γi(d−i+2) (16)

|Ek+1| ≤ 2 · k · ck+1 · V d−k+1
0 ·Nk+1 (17)

|BPj(G)| ≤ 2 · k · cp,j · V 2(d−k+1)
0 ·N2k+2−j+γj(d−k+1). (18)

Set for some suitable constant c∗ > 0, which will be fixed later in connection
with (23) :

V0 := (c∗)
k

d−k+1 · (log n)
1

d−k+1 /n
k

d−k+1 . (19)
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Lemma 3. Let d, k be fixed integers with 2 ≤ k ≤ d. For j = 2, . . . , k, and fixed
γj > 0 with γj < (2 · k)/((1 + β) · (d− k + 1))− (2 · k + 1− j)/(d− k + 1) it is

|BPj(G)| = o(|V |) . (20)

Proof. Using (15), (18), (19) and N = n1+β , we infer

|BPj(G)| = o(|V |)

⇐= V
2(d−k+1)
0 ·N2k+2−j+γj(d−k+1) = o(N)

⇐⇒ (log n)2

n2k
·N2k+1−j+γj(d−k+1) = o(1)

⇐⇒ (log n)2 · n(1+β)((2k+1−j)+γj(d−k+1))−2k = o(1)

⇐⇒ γj <
2 · k

(1 + β) · (d− k + 1)
− 2 · k + 1− j

d− k + 1
,

as claimed. ut

Lemma 4. Let d, k be fixed integers with 2 ≤ k ≤ d. For i = 2, . . . , k, and fixed
γi with γi > (i− 1)/(d− i + 2) it is

|Ei| = o(|V |) . (21)

Proof. By (15), (16) and using N = n1+β , we infer

|Ei| = o(|V |)
⇐= N i−γi(d−i+2) = o(N)

⇐⇒ γi >
i− 1

d− i + 2
,

as desired. ut

Now we fix γi := (i − 1)/(d − i + 3/2), i = 2, . . . , k, and β := 1/(8 · k · d).
Certainly, for these choices of γi, i = 2, . . . , k, the assumptions of Lemma 4 are
satisfied. To see that also the assumptions of Lemma 3 are fulfilled, notice that
for 0 < β ≤ 1/(8 · k · d) it is (2 · k)/(1 + β) ≥ 2 · k − 1/(4 · d) and that

i− 1
d− i + 3/2

<
2 · k

(d− k + 1) · (1 + β)
− 2 · k + 1− i

d− k + 1

⇐=
i− 1

d− i + 3/2
<

i− 1− 1/(4 · d)
d− k + 1

⇐⇒ i2 − i · (k + 3/2)− i/(4 · d) < −k − 3/4− 3/(8 · d) . (22)

For 2 ≤ i ≤ k, the left hand side of (22) achieves its maximum for i = 2 or
i = k. For i := 2 and i := k inequality (22) is equivalent to k > 7/4 − 1/(8 · d)
and k − 3/2 > (3 − 2 · k)/(4 · d), respectively. Both inequalities hold for k ≥ 2.
Hence, by choice of the constants γi and β, i = 2, . . . , k, the assumptions in both
Lemmas 3 and 4 are fulfilled.
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In the hypergraph G = (V, E2 ∪ · · · ∪ Ek+1) we discard one vertex from each i-
element edge and from each bad j-pair of (k +1)-point simplices, i, j = 2, . . . , k.
Let V ∗ ⊆ V be the set of remaining vertices. On the vertex-set V ∗ the induced
subhypergraph G∗ of G is (k + 1)-uniform and linear, hence G∗ = (V ∗, E∗k+1)
with E∗k+1 := Ek+1 ∩ [V ∗]k+1, and fulfills |V ∗| = (1− o(1)) · |V | by (20) and (21).
Thus, we have |V ∗| ≥ N/2 and |E∗k+1| ≤ |Ek+1| ≤ 2 · k · ck+1 · V d−k+1

0 · Nk+1

by (15) and (17), and G∗ has average degree tk = (k + 1) · |E∗k+1|/|V ∗| ≤ 4 · k2 ·
ck+1 · V d−k+1

0 · Nk =: tk1 , hence t1 = ω(nβ) by (19) and with N = n1+β . Now
the assumptions of Theorem 2 are fulfilled by this subhypergraph G∗, i.e., G∗ is
(k + 1)-uniform and linear, and with (3) and (19), by using that the function
f(t) = (log t)1/k/t is decreasing for t ≥ e1/k, we obtain with N = n1+β for
constants C∗

k+1, C
∗∗
k+1, c

′, ck+1, c
∗ > 0:

α(G) ≥ α(G∗) ≥ C∗
k+1 ·

|V ∗|
t

· (log t)
1
k ≥ C∗

k+1 ·
|V ∗|
t1

· (log t1)
1
k ≥

≥ C∗
k+1 ·

N/2

(4 · k2 · ck+1)
1
k · V

d−k+1
k

0 ·N
·
(

log
(
4 · k2 · ck+1 · V d−k+1

0 ·Nk
) 1

k

) 1
k

≥ C∗∗
k+1 ·

n

c∗ · (log n)
1
k

·
(
log
(
(4 · k2 · ck+1)

1
k · c∗ · nβ · (log n)

1
k

)) 1
k

≥ n , (23)

where the last inequality follows by choosing in (19) a sufficiently small constant
c∗ > 0, i.e., c∗ < (C∗

k+1 · β1/k)/(4 · k2 · ck+1)1/k. This choice is possible as the
constants β, ck+1, C

∗
k+1 do not depend on c∗. Thus the hypergraph G contains

an independent set I ⊆ V with |I| = n. These n vertices yield n points among
the N points in [0, 1]d, such that the volume of each (k+1)-point simplex among
these n points is bigger than V0, i.e., ∆k,d(n) = Ω((log n)1/(d−k+1)/nk/(d−k+1)),
which proves the lower bound (1) in Theorem 1. ut

4 Upper Bounds on ∆k,d(n)

Here we show the upper bounds (1) and (2) in Theorem 1, namely, that for fixed
1 ≤ k ≤ d and constants c′k,d, c

′′
k,d > 0 the inequalities ∆k,d(n) ≤ c′k,d/nk/d,

and, moreover, ∆k,d(n) ≤ c′′k,d/nk/d+(k−1)/(2d(d−1)) for odd k ≥ 1 hold. The first
upper bound can be obtained by the pigeonhole-principle, as has been done in
[4]. Our arguments for proving the second upper bound also give a proof for the
first upper bound.

Proof. First we prove for fixed 1 ≤ k ≤ d the general upper bound ∆k,d(n) ≤
c′k,d/nk/d for constants c′k,d > 0. Given any n points P1, P2, . . . , Pn ∈ [0, 1]d, for
some number D with 0 < D ≤ 1 we construct a graph G = G(D) = (V,E) with
vertex-set V = {1, . . . , n}, where vertex i corresponds to the point Pi ∈ [0, 1]d,
and with edge-set E, where {i, j} ∈ E if and only if dist (Pi, Pj) ≤ D.
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An independent set I ⊆ V in this graph G = G(D) yields a subset I ′ ⊆
{P1, P2, . . . , Pn} of points in [0, 1]d, such that the Euclidean distance between
any two distinct points from I ′ is bigger than D. Each ball Br(P ) with center
P ∈ [0, 1]d and radius r ≤ 1 satisfies vol (Br(P ) ∩ [0, 1]d) ≥ vol (Br(P ))/2d.
The balls with radius D/2 and centers from an independent set I ′ have pair-
wise empty intersection. Each ball BD/2(P ) has volume Cd · (D/2)d, hence
(|I ′| · Cd · (D/2)d)/2d ≤ vol ([0, 1]d) = 1, and we infer for the independence
number α(G):

α(G) ≤ 4d

Cd ·Dd
. (24)

Set D := c/n1/d with c ≥ ((k · 2 · 4d)/Cd)1/d a constant. Let t := (2 · |E|)/n
denote the average degree of the graph G. If t < 1, then we have |E| < n/2, and
by deleting one vertex from each edge in E we obtain α(G) > n/2. But then (24)
yields n/2 < 4d/(Cd · Dd), hence k < 1 by the choice of the constant c, which
is a contradiction. Thus, we have t ≥ 1 and Turán’s theorem for graphs yields
for the independence number the lower bound α(G) ≥ n/(2 · t). With (24) this
implies

n

2 · t
≤ α(G) ≤ 4d

Cd ·Dd
=⇒ t ≥ Cd

2 · 4d
· n ·Dd = k, (25)

hence the average degree of the graph G is at least k. Then, there exists a
vertex i1 ∈ V and k edges {i1, i2}, . . . , {i1, ik+1} ∈ E, which are incident
to i1. By construction, each point Pij ∈ [0, 1]d, j = 2, . . . , k + 1, satisfies
dist (Pi1 , Pij

) ≤ D, in particular, dist (Pij
; 〈Pi1 , Pi2 , . . . , Pij−1〉) ≤ c/n1/d, which

implies vol (Pi1 , . . . , Pik+1) ≤ ((1/k!) · ck)/nk/d, i.e., ∆k,d(n) = O(1/nk/d).
For odd integers k ≥ 3 we are able to improve this upper bound by taking into
account also the angles between the directions, which are determined by the
edges in the graph G. From (25) we obtain |E| = n ·t/2 ≥ (Cd ·n2 ·Dd)/4d+1. We
use a modification of an argument of Brass [8]. Each edge {i, j} ∈ E determines
an affine line 〈PiPj〉 and this line determines a direction (PiPj), which is viewed
as a vector of length 1. The volume of the surface of the d dimensional unit
ball is equal to d · Cd. Let φ be such that |E| · (sin(φ/2))d−1 · Cd−1 ≥

(
k+1
2

)
·

d · Cd, say, sinφ = ck,d/n1/(d−1) for a constant ck,d > 0. Then there exist
(
k+1
2

)
directions (PiPj), {i, j} ∈ E, with pairwise angle between them at most φ. The
corresponding set E∗ ⊆ E of

(
k+1
2

)
edges covers a subset S ⊆ V of at least

(k + 1) vertices. Consider a minimum subset E∗∗ ⊆ E∗ of edges, which covers
a subset S∗ ⊆ S of exactly (k + 1) vertices in G. Since (k + 1) is even, this set
E∗∗ exists and contains only isolated edges and stars, thus |E∗∗| ≥ (k + 1)/2.
We pick one vertex from each isolated edge E ∈ E∗∗ and the center of each star.
Let S∗∗ ⊆ S∗ be the set of chosen vertices with |S∗∗| = s ≤ (k + 1)/2.
For each vertex v ∈ S∗ \ S∗∗ there exists an edge {v, w} ∈ E∗∗ for some vertex
w ∈ S∗∗, hence dist (Pv, Pw) ≤ D. Having fixed such vertices v ∈ S∗ \ S∗∗ and
w ∈ S∗∗, for each vertex u ∈ S∗ \ (S∗∗ ∪ {v}) there exists some vertex t ∈ S∗∗
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such that {u, t} ∈ E∗∗ and the angle between the directions (PuPt) and (PvPw)
is at most φ. Thus, the Euclidean distance of the point Pu from the affine space
generated by the points Pr, r ∈ S∗∗ ∪ {v}, is at most D · sinφ. The vertices in
S∗∗ pairwise have Euclidean distance at most

√
d, hence the (s− 1)-dimensional

volume of the corresponding simplex satisfies (s − 1)! · vol (pq : q ∈ S∗∗) ≤
(
√

d)s−1.
With D = c/n1/d and sinφ = ck,d/n1/(d−1) we obtain for the volume of the
simplex determined by the (k + 1) points Ps, s ∈ S∗, for a constant c′′k,d > 0 the
following upper bound

vol (Ps∗ ; s∗ ∈ S∗) ≤ 1
k!
· (
√

d)s−1 ·D · (D · sinφ)k−s ≤

≤ 1
k!
· d

k−1
4 ·D ·

(
ck,d ·D
n

1
d−1

) k−1
2

=
c′′k,d

n
k
d + k−1

2d(d−1)

,

which finishes the proof of Theorem 1. ut

5 Concluding Remarks

The arguments, which were presented here, together with an algorithmic version
of Theorem 2, see [6], yield a randomized polynomial in n time algorithm for
obtaining a distribution of n points in [0, 1]d, which shows the lower bound
∆k,d(n) = Ω((log n)1/k/nk/(d−k+1)) for fixed 2 ≤ k ≤ d. In view of the recent
results of Barequet and Shaikhet [5] it might be of some interest to achieve
similar lower bounds, say Ω(1/nk/(d−k+1)) in the on-line situation. Moreover,
it might be of interest to get a deterministic polynomial in n time algorithm,
which achieves the lower bound ∆k,d(n) = Ω((log n)1/k/nk/(d−k+1)), as well as
investigating the case k > d + 1, but so far concerning this case only partial
results are known, compare [15] for dimension d = 2, where the area of the
convex hull of (k + 1) points among n points in [0, 1]2 has been considered.
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