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Abstract. We consider a variant of Heilbronn’s triangle problem by
asking for fixed integers d, k ≥ 2 and any integer n ≥ k for a distribution
of n points in the d-dimensional unit cube [0, 1]d such that the minimum
volume of the convex hull of k points among these n points is as large as
possible. We show that there exists a configuration of n points in [0, 1]d,
such that, simultaneously for j = 2, . . . , k, the volume of the convex
hull of any j points among these n points is Ω(1/n(j−1)/(1+|d−j+1|)).
Moreover, for fixed k ≥ d+1 we provide a deterministic polynomial time
algorithm, which finds for any integer n ≥ k a configuration of n points
in [0, 1]d, which achieves, simultaneously for j = d + 1, . . . , k, the lower

bound Ω(1/n(j−1)/(1+|d−j+1|)) on the minimum volume of the convex
hull of any j among the n points.

1 Introduction

For integers n ≥ 3, Heilbronn’s problem asks for the supremum ∆2(n) of the
minimum area of a triangle formed by three of n points over all distributions
of n points in the unit square [0, 1]2. It has been observed by Erdős, see [16],
that ∆2(n) = Ω(1/n2), which can be seen by considering for primes n the points
Pk = 1/n·(k mod n, k2 mod n), k = 0, 1, . . . , n−1. Komlós, Pintz and Szemerédi
[10] improved this lower bound to the currently known best lower bound ∆2(n) =
Ω(log n/n2), see [4] for a deterministic polynomial time algorithm achieving this
lower bound. Upper bounds were given in a series of papers by Roth [16–19] and
Schmidt [20], and the currently known best upper bound is due to Komlós, Pintz
and Szemerédi [9], who proved that ∆2(n) = O(2c

√
log n/n8/7) for some constant

c > 0. We remark that for n points, which are chosen uniformly at random in
[0, 1]2, the expected value of the minimum area of a triangle is Θ(1/n3), as was
shown recently by Jiang, Li and Vitany [8].
A variant of Heilbronn’s problem in dimension d ≥ 2, which has been considered
by Barequet, asks for the supremum ∆d+1,d(n) – over all distributions of n
points in the d-dimensional unit cube [0, 1]d – of the minimum volume of a
(d + 1)-point simplex among n points. Barequet showed in [2] the lower bound
∆d+1,d(n) = Ω(1/nd) for fixed d ≥ 2, see [3] for an on-line version for dimensions
d = 3, 4. His lower bound was improved in [11] to ∆d+1,d(n) = Ω(log n/nd), and
in [15] for dimension d = 3 a deterministic polynomial time algorithm was given,
which achieves ∆4,3(n) = Ω(log n/n3). Recently, Brass [5] improved the upper
bound ∆d+1,d(n) = O(1/n) to ∆d+1,d(n) = O(1/n(2d+1)/(2d)) for odd d ≥ 3.



Here we consider the following generalization of Heilbronn’s problem: for fixed
integers d, k ≥ 2 and any integer n ≥ k find n points in the d-dimensional unit
cube [0, 1]d, such that the minimum volume of the convex hull of any k points
among these n points is as large as possible. Let the corresponding supremum
values – over all distributions of n points in [0, 1]d – on the minimum volumes
of the convex hull of k points among n points be denoted by ∆k,d(n).
This problem has been investigated also by Chazelle, who considered it in con-
nection with lower bounds on the query complexity of range searching problems.
He proved in [7] that for any fixed dimension d ≥ 2 there exists a constant c > 0
such that a random set of n points in the unit cube [0, 1]d satisfies with proba-
bility greater than 1− 1/n, that the volume of the convex hull of any k ≥ log n
points is Ω(k/n), indeed it holds ∆k,d(n) = Θ(k/n) for log n ≤ k ≤ n for fixed
d ≥ 2. An extension of the range of k might also improve his lower bounds on
the query complexity, see [7].
Here we consider the case of fixed values k and d. Areas of triangles arising
from n points in [0, 1]d have been investigated in [12], where for fixed dimen-
sion d ≥ 2 it has been shown that ∆3,d(n) = Ω((log n)1/(d−1)/n2/(d−1)) and
∆3,d(n) = O(1/n2/d). Moreover, for fixed k ≤ d + 1 it has been proved re-
cently in [14] that ∆k,d(n) = Ω((log n)1/(d−k+2)/n(k−1)/(d−k+2). For the spe-
cial case of dimension d = 2 and arbitrary k ≥ 3 it was shown in [13] that
∆k,2(n) = Ω((log n)1/(k−1)/n(k−1)/(k−2).
Here we prove the following lower bounds, in particular for k > d.

Theorem 1. Let d, k ≥ 2 be fixed integers.

(i) Then, for any integer n ≥ k there exists a configuration of n points in the
unit cube [0, 1]d, such that, simultaneously for j = 2, . . . , k, the volume of
the convex hull of any j points among these n points is

Ω(1/n(j−1)/(1+|d−j+1|)). (1)

(ii) Moreover, for fixed k ≥ d + 1 there is a deterministic polynomial time al-
gorithm, which finds for any integer n ≥ k a configuration of n points in
[0, 1]d, which, simultaneously for j = d + 1, . . . , k, achieves the lower bound
Ω(1/n(j−1)/(1+|d−j+1|)) on the volume of the convex hull of any j among the
n points in [0, 1]d.

Our arguments remain valid if d and k are functions of n, but then the lower
bound (1) will depend on d and j. Notice that for fixed integers d, j ≥ 2, Theorem
1 yields ∆j,d = Ω(1/n(j−1)/(1+|d−j+1|)). Concerning upper bounds, for fixed
integers d, j ≥ 2 a partition of [0, 1]d into d-dimensional subcubes each of volume
Θ(n−1/j), yields ∆j,d(n) = O(1/n(j−1)/d) for j ≤ d + 1 and ∆j,d(n) = O(1/n)
for j ≥ d + 1. Moreover, for even integers j, 2 ≤ j ≤ d + 1, the upper bound can
be improved to ∆j,d(n) = O(1/n(j−1)/d+(j−2)/(2d(d−1))), see [14].
Somewhat surprisingly, achieving by a deterministic polynomial time algorithm
for the same n points in [0, 1]d the lower bound ∆j,d(n) = Ω(1/n(j−1)/(1+|d−j+1|)),
simultaneously for j = 2, . . . , k, where d, k ≥ 2 are fixed integers, causes so far
some difficulties w.r.t. the lower dimensional simplices, i.e. , for 4 ≤ j ≤ d.



2 Lower Bounds

Let dist (Pi, Pj) be the Euclidean distance between the points Pi, Pj ∈ [0, 1]d. A
simplex given by the points P1, . . . , Pj ∈ [0, 1]d, 2 ≤ j ≤ d + 1, is the set of all
points P1+

∑j
i=2 λi ·(Pi−P1) with

∑j
i=2 λi ≤ 1 and λ2, . . . , λj ≥ 0. The ((j−1)-

dimensional) volume of a simplex given by j points P1, . . . , Pj ∈ [0, 1]d, 2 ≤ j ≤
d + 1, is defined by vol (P1, . . . , Pj) := 1/(j − 1)! ·

∏j
i=2 dist (Pi; 〈P1, . . . , Pi−1〉),

where dist (Pi; 〈P1, . . . , Pi−1〉) is the Euclidean distance of the point Pi from the
affine real space 〈P1, . . . , Pi−1〉 generated by the vectors P>

2 −P>
1 , . . . , P>

i−1−P>
1

attached at P1. For j points P1, . . . , Pj ∈ [0, 1]d, j ≥ d + 1, let vol (P1, . . . , Pj)
be the (d-dimensional) volume of the convex hull of the points P1, . . . , Pj .
First we prove part (i) of Theorem 1.

Proof. Let d, k ≥ 2 be fixed integers. For arbitrary integers n ≥ k, we se-
lect uniformly at random and independently of each other N := k · n points
P1, P2, . . . , PN from the unit cube [0, 1]d.
Set vj := βj/nγj for constants βj , γj > 0, j = 2, . . . , k, which will be fixed
later. Let V := {P1, P2, . . . , PN} be the random set of chosen points in [0, 1]d.
For j = 2, . . . , k, let Ej be the set of all j-element subsets {Pi1 , . . . , Pij} ∈
[V ]j of points in V such that vol (Pi1 , . . . , Pij

) ≤ vj . We estimate the expected
numbers E(|Ej |) of j-element sets in Ej , j = 2, . . . , k, and we show that for
a suitable choice of the parameters v2, . . . , vk all numbers E(|Ej |) are not too
big, i.e. , E(|E2|) + · · · + E(|Ek|) ≤ (k − 1) · n. Thus, there exists a choice of N
points P1, P2, . . . , PN ∈ [0, 1]d such that |E2|+ · · ·+ |Ek| ≤ (k − 1) · n. Then, for
j = 2, . . . , k, we delete one point from each j-element set of points in Ej . The
remaining points yield at least n points such that the volume of the convex hull
of any j points of these at least n points is at least vj .

Lemma 1. Let d, k ≥ 2 be fixed integers. For j = 2, . . . , k, there exist constants
cj,d > 0 such that for every real vj > 0 it is

E(|Ej |) ≤ cj,d ·N j · v1+|d−j+1|
j . (2)

Proof. For reals vj > 0 and random points P1, . . . , Pj ∈ [0, 1]d we give an upper
bound on the probability Prob (vol (P1, . . . , Pj) ≤ vj). We assume that the
points P1, . . . , Pj are numbered such that for 2 ≤ g ≤ h ≤ j and g ≤ d + 1 it is

dist (Pg; 〈P1, . . . , Pg−1〉) ≥ dist (Ph; 〈P1, . . . , Pg−1〉) . (3)

The point P1 can be anywhere in [0, 1]d. Given the point P1, the probability, that
the point P2 ∈ [0, 1]d has from P1 a Euclidean distance within the infinitesimal
range [r1, r1 +dr1], is at most the difference of the volumes of the d-dimensional
balls with center P1 and with radii (r1 + dr1) and r1, respectively, hence

Prob (r1 ≤ dist (P1, P2) ≤ r1 + dr1) ≤ d · Cd · rd−1
1 dr1 ,

where Cd denotes the volume of the d-dimensional unit ball in Rd.



Given the points P1 and P2 with dist (P1, P2) = r1, the probability that the
Euclidean distance of the point P3 ∈ [0, 1]d from the affine line 〈P1, P2〉 is within
the infinitesimal range [r2, r2 + dr2] is at most the difference of the volumes of
two cylinders centered at the line 〈P1, P2〉 with radii r2+dr2 and r2, respectively,
and, by assumption (3), with height 2 · r1 = 2 · dist (P1, P2), thus

Prob (r2 ≤ dist (P3; 〈P1, P2〉) ≤ r2 + dr2) ≤ 2 · r1 · (d− 1) · Cd−1 · rd−2
2 dr2 .

In general, let the points P1, . . . , Pg, g < j and g < d + 1, be given with
dist (Px; 〈P1, . . . , Px−1〉) = rx−1 for x = 2, . . . , g. For g ≤ j − 2 and g ≤ d − 1,
by (3) the projection of the point Pg+1 onto the affine space 〈P1, . . . , Pg〉 is
contained in a (g − 1)-dimensional box with volume 2g−1 · r1 · · · rg−1, hence

Prob (rg ≤ dist (Pg+1; 〈P1, . . . , Pg〉) ≤ rg + drg)
≤ 2g−1 · r1 · · · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g drg . (4)

For g = j − 1 < d, to satisfy vol (P1, . . . , Pj) ≤ vj , we must have 1/(j −
1)! ·

∏j
i=2 dist (Pi; 〈P1, . . . , Pi−1〉) ≤ vj . By (3) the projection of the point Pj

onto the affine space 〈P1, . . . , Pj−1〉 is contained in a (j − 2)-dimensional box
with volume 2j−2 · r1 · · · rj−2, and the point Pj has Euclidean distance at most
((j − 1)! · vj)/(r1 · · · rj−2) from the affine space 〈P1, . . . , Pj−1〉, which happens
with probability at most

2j−2 · r1 · · · rj−2 · Cd−j+2 ·
(

(j − 1)! · vj

r1 · · · rj−2

)d−j+2

. (5)

For d ≤ g ≤ j − 1, the projection of the point Pg+1 onto the affine space
〈P1, . . . , Pd〉 is contained in a (d − 1)-dimensional box with volume at most
2d−1 · r1 · · · rd−1. Since vol (P1, . . . , Pd, Pg+1) ≤ vj by monotonicity, the point
Pg+1 has Euclidean distance at most (d! · vj)/(r1 · · · rd−1) from the affine space
〈P1, . . . , Pd〉, which happens with probability at most

2d−1 · r1 · · · rd−1 ·
2 · d! · vj

r1 · · · rd−1
= d! · 2d · vj . (6)

Thus, for j ≤ d with (4) and (5) and some constants c∗j,d, c
∗∗
j,d > 0, we obtain

Prob (vol (P1, . . . , Pj) ≤ vj)

≤
∫ √

d

rj−2=0

· · ·
∫ √

d

r1=0

2j−2 ·
Cd−j+2 · ((j − 1)!)d−j+2 · vd−j+2

j

(r1 · · · rj−2)d−j+1
·

·
j−2∏
g=1

(
2g−1 · r1 · · · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g

)
drj−2 . . . dr1

≤ c∗∗j,d · v
d−j+2
j ·

∫ √
d

rj−2=0

. . .

∫ √
d

r1=0

j−2∏
g=1

(
r2j−2g−3
g

)
drj−2 . . . dr1

≤ c∗j,d · v
d−j+2
j as 2 · j − 2 · g − 3 ≥ 1

= c∗j,d · v
1+|d−j+1|
j as j ≤ d. (7)



Moreover, for j = d+1, . . . , k, by (4) and (6) for constants c∗j,d, c
∗∗
j,d > 0 we infer

Prob (vol (P1, . . . , Pj) ≤ vj)

≤
∫ √

d

rd−1=0

· · ·
∫ √

d

r1=0

(d! · 2d · vj)j−d ·

·
d−1∏
g=1

(
2g−1 · r1 · · · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g

)
drd−1 . . . dr1

≤ c∗∗j,d · v
j−d
j ·

∫ √
d

rd−1=0

· · ·
∫ √

d

r1=0

d−1∏
g=1

(
r2d−2g−1
g

)
drd−1 . . . dr1

≤ c∗j,d · v
j−d
j as 2 · d− 2 · g − 1 ≥ 1

= c∗j,d · v
1+|d−j+1|
j as j ≥ d + 1. (8)

By (7) and (8) we have Prob (vol (P1, . . . , Pj) ≤ vj) ≤ c∗j,d · v
1+|d−j+1|
j for

constants c∗j,d > 0, j = 2, . . . , k. Since there are
(
N
j

)
choices for j out of the N

random points P1, . . . , PN ∈ [0, 1]d, inequality (2) follows. �

By (2) and Markov’s inequality there exist N = k · n points P1, . . . , PN in the
unit cube [0, 1]d such that for j = 2, . . . , k:

|Ej | ≤ k · cj,d ·N j · v1+|d−j+1|
j . (9)

Lemma 2. Let d, k ≥ 2 be fixed integers. Then, for every βj , γj with 0 < βj ≤
1/(cj,d · kj+1)1/(1+|d−j+1|) and γj ≥ (j − 1)/(1 + |d− j + 1|), j = 2, . . . , k, it is

|Ej | ≤ N/k . (10)

Proof. For j = 2, . . . , k, by (9) and using vj = βj/nγj we infer

|Ej | ≤ N/k

⇐= k · cj,d ·N j · v1+|d−j+1|
j ≤ N/k

⇐⇒ kj+1 · cj,d · β1+|d−j+1|
j · nj−1−γj(1+|d−j+1|) ≤ 1 ,

which holds for j − 1 ≤ γj · (1 + |d− j + 1|) and kj+1 · cj,d · β1+|d−j+1|
j ≤ 1. �

Fix γj := (j−1)/(1+|d−j+1|) and βj := 1/(cj,d·kj+1)1/(1+|d−j+1|), j = 2, . . . , k.
By Lemma 2 we have |E2| + · · · + |Ek| ≤ ((k − 1)/k)) · N . For j = 2, . . . , k,
we discard one point from each j-element set in Ej . Then, the set I ⊆ V of
remaining points contains a subset of size N/k = n. These n points in [0, 1]d

satisfy, simultaneously for j = 2, . . . , k, that the volume of the convex hull of
each j of these n points is bigger than vj = βj/n(j−1)/(1+|d−j+1|), which finishes
the proof of part (i) and (1) in Theorem 1. �



3 A Deterministic Algorithm

Here we derandomize the probabilistic arguments from Section 2 to show The-
orem 1, part (ii). Throughout this section, let k ≥ d + 1. Let Bd(T ) denote the
d-dimensional ball with radius T around the origin. Then Bd(T ) ∩ Zd is the set
of all points P ∈ Zd, which have Euclidean distance at most T from the origin.
To provide a deterministic polynomial time algorithm which, for any integer
n > 0, finds a configuration of n points in [0, 1]d, such that the volume of the
convex hull of small sets of points is large, we discretize the unit cube [0, 1]d by
considering, for T large enough, but bounded from above by a polynomial in n,
all points in Bd(T )∩Zd. This set Bd(T )∩Zd will be rescaled later by the factor
T d. However, with this discretization we have to take care of degenerate sets of
points, where a set {P1, . . . , Pj} ⊂ [0, 1]d with j ≥ d + 1 is called degenerate,
if all points P1, . . . , Pj are contained in a (d− 1)-dimensional affine subspace of
Rd, otherwise {P1, . . . , Pj} is called non-degenerate.
Set vj := βj · T d/n(j−1)/(j−d) for suitable constants βj > 0, j = d + 1, . . . , k,
which will be fixed later. We construct for j = d + 1, . . . , k two types of j-
element edges. For points Pi1 , . . . , Pij ∈ Bd(T ) ∩ Zd, let {Pi1 , . . . , Pij} ∈ Ej if
and only if vol (Pi1 , . . . , Pij ) ≤ vj and {Pi1 , . . . , Pij} is not contained in a (d−1)-
dimensional affine subspace of Rd, i.e. , the set {Pi1 , . . . , Pij

} is non-degenerate.
Moreover, let {Pi1 , . . . , Pij

} ∈ E0
j if and only if {Pi1 , . . . , Pij

} is contained in a
(d− 1)-dimensional affine subspace of Rd.
To give upper bounds on these numbers |Ej | and |E0

j | of j-element sets, j =
d + 1, . . . , k, we use lattices in Zd.
A lattice L in Zd is a subset of Zd, which is generated by all integral linear
combinations of some linearly independent vectors b1, . . . , bm ∈ Zd, hence L =
Zb>1 + · · ·+Zb>m. The parameter m = rank(L) is called the rank of the lattice L,
and the set B = {b1, . . . , bm} is called a basis of L. The set FB := {

∑m
i=1 αi · bi |

0 ≤ αi ≤ 1, i = 1, . . . ,m} ⊆ Rd is called the fundamental parallelepiped FB of B,
its volume is vol(FB) := (det(G(B)> ·G(B)))1/2, where G(B) := (b1, . . . , bm)d×m

is the d × m generator matrix of B (up to the ordering of the vectors). If B
and B′ are two bases of a lattice L in Zd, then the volumes of the fundamental
parallelepipeds are equal, i.e., vol(FB) = vol(FB′), see [6].
For integers a1, . . . , an ∈ Z, which are not all equal to 0, let gcd(a1, . . . , an) de-
note the greatest common divisor of a1, . . . , an. For vectors a =
(a1, . . . , ad)> ∈ Rd and b = (b1, . . . , bd)> ∈ Rd let 〈a, b〉 :=

∑d
i=1 ai · bi be

the standard scalar product. The length of a vector a ∈ Rd is defined by
‖a‖ :=

√
〈a, a〉. For a lattice L in Zd let span(L) be the linear space over the

reals, which is generated by the vectors in L. For a subset S = {P1, . . . , Pk} ⊂ Rd

of points the rank of S is the dimension of the linear space over the reals, which
is generated by the vectors P>

2 − P>
1 , . . . , P>

k − P>
1 .

A vector a = (a1, . . . , ad)> ∈ Zd \ {0d} is called primitive, if gcd(a1, . . . , ad) = 1
and aj > 0 with j = min{i | ai 6= 0}. A lattice L in Zd is called m-maximal,
if rank(L) = m and no other lattice L′ 6= L in Zd with rank(L′) = m contains
L as a proper subset. There is a one-to-one correspondence between m-maximal
lattices in Zd and primitive vectors a = (a1, . . . , ad)> ∈ Zd \ {0d}:



(i) For each lattice L in Zd with rank(L) = d − 1 ≥ 1 there is exactly one
primitive vector aL = (a1, . . . , ad)> ∈ Zd \ {0d} with 〈aL, x>〉 = 0 for every
x ∈ L. This vector aL ∈ Zd \ {0d} is called the primitive normal vector of
the lattice L.

(ii) For each lattice L′ in Zd with rank(L′) = d− 1 there is exactly one (d− 1)-
maximal lattice L in Zd with L′ ⊆ L.

(iii) There exists a bijection between the set of all (d− 1)-maximal lattices L in
Zd and the set of all primitive vectors aL in Zd.

For a (d− 1)-maximal lattice L in Zd, a residue class of L is a set L′ of the form
L′ = x + L with x ∈ Zd.
The proofs of Lemmas 3 – 6 concerning lattices can be found in [15].

Lemma 3 ([15]). Let L be a (d−1)-maximal lattice in Zd with primitive normal
vector aL ∈ Zd and with basis B.

(i) There exists a point v ∈ Zk\L such that Zd can be partitioned into the residue
classes s·v+L, s ∈ Z, and, for each point x ∈ L, it is dist(s·v+x, span(L)) =
|s|/‖aL‖.

(ii) The volume of the fundamental parallelepiped FB fulfills vol(FB) = ‖aL‖.

Lemma 4 ([15]). Let d ∈ N be fixed. Let S ⊆ Bd(T ) ∩ Zd be a set of points
with rank(S) ≤ d− 1. Then there exists a (d− 1)-maximal lattice L of Zd such
that S is contained in some residue class L′ = v + L of L for some v ∈ Zd, and
L has a basis b1, . . . , bd−1 ∈ Zd with maxi=1,...,d−1 ‖bi‖ = O(T ).

The next lemma is crucial in our considerations to estimate the numbers |Ej |
and |E0

j | of j-element sets, j = d + 1, . . . , k.

Lemma 5 ([15]). Let d ∈ N be fixed. Let L be a (d− 1)-maximal lattice of Zd

with primitive normal vector aL ∈ Zd, and let B = {b1, . . . , bd−1} be a basis of
L with maxi=1,...,d−1 ‖bi‖ = O(T ). Then the following hold:

(i) The primitive normal vector aL satisfies ‖aL‖ = O(T d−1).
(ii) For every residue class L′ of L it is |L′ ∩Bd(T )| = O

(
T d−1/‖aL‖

)
.

For integers g, l ∈ N let rg(l) be the number of representations x2
1 + · · ·+ x2

g = l
with x1, . . . , xg ∈ Z.

Lemma 6 ([15]). Let g, r ∈ N be fixed integers. Then, for all integers m ∈ N:

m∑
l=1

rg(l)
lr

=

O
(
mg/2−r

)
if g/2− r > 0

O (log m) if g/2− r = 0
O(1) if g/2− r < 0.

Lemma 7. Let d, k ≥ 2 be fixed integers with k ≥ d + 1. For j = d + 1, . . . , k,
there exist constants cj,0 > 0, such that the numbers |E0

j | of j-element degenerate
sets of points in Bd(T ) ∩ Zd satisfy

|E0
j | ≤ cj,0 · T (d−1)j+1 · log T. (11)



Proof. By Lemma 4, each degenerate j-element subset of points in Bd(T )∩Zd is
contained in a residue class L′ of some (d−1)-maximal lattice L in Zd, and L has
a basis b1, . . . , bd−1 ∈ Zd with ‖bi‖ = O(T ), i = 1, . . . , d− 1. By Lemma 5(i), it
suffices to consider all (d− 1)-maximal lattices L with primitive normal vectors
aL ∈ Zd of length ‖aL‖ = O(T d−1).
Having fixed a (d − 1)-maximal lattice L in Zd, which is determined by its
primitive normal vector aL ∈ Zd, by Lemma 3(i), there are O(T · ‖aL‖) residue
classes L′ of the lattice L with L′ ∩ Bd(T ) 6= ∅. By Lemma 5(ii), each set
L′ ∩ Bd(T ) contains O(T d−1/‖aL‖) points. From each set L′ ∩ Bd(T ) we can
select j points in

(
O(T d−1/‖aL‖)

j

)
ways to obtain a degenerate set of j points.

This implies

|E0
j | = O

 ∑
a∈Zd, ‖a‖=O(T d−1)

T · ‖a‖ ·
(

T d−1/‖a‖
j

)
= O

T (d−1)j+1 ·
∑

a∈Zd, ‖a‖=O(T d−1)

1
‖a‖j−1


= O

T (d−1)j+1 ·
O(T 2d−2)∑

l=1

rd(l)
l(j−1)/2

 = O
(
T (d−1)j+1 · log T

)
,

since, by Lemma 6, we have
∑m

l=1 rd(l)/l(j−1)/2 = O(log m) for j = d + 1 and∑m
l=1 rd(l)/l(j−1)/2 = O(1) for j = d + 2, . . . , k. �

Lemma 8. Let d, k ≥ 2 be fixed integers with k ≥ d + 1. For j = d + 1, . . . , k,
there exist constants cj > 0, such that the numbers |Ej | of j-element non-
degenerate sets of points in Bd(T ) ∩ Zd with the volume of their convex hull
at most vj, fulfill

|Ej | ≤ cj · T d2
· vj−d

j . (12)

Proof. For j = d + 1, . . . , k, consider j points P1, . . . , Pj ∈ Bd(T ) ∩ Zd with
vol (P1, . . . , Pj) ≤ vj , where {P1, . . . , Pj} is non-degenerate. Let these points be
numbered such that for 2 ≤ g ≤ h ≤ j and g ≤ d + 1 it is

dist (Pg; 〈P1, . . . , Pg−1〉) ≥ dist (Ph; 〈P1, . . . , Pg−1〉) . (13)

By Lemma 4, the points P1, . . . , Pd ∈ Bd(T )∩Zd are contained in a residue class
L′ of some (d−1)-maximal lattice L in Zd with primitive normal vector aL ∈ Zd,
where L has a basis b1, . . . , bd−1 ∈ Zd with ‖bi‖ = O(T ) for i = 1, . . . , d− 1. By
Lemma 5(i), it suffices to consider all (d− 1)-maximal lattices L with primitive
vectors aL ∈ Zd of length ‖aL‖ = O(T d−1).
We fix a (d − 1)-maximal lattice L in Zd, which is determined by its primitive
normal vector aL ∈ Zd. By Lemma 3(i), there are O(T · ‖aL‖) residue classes
L′ of L with L′ ∩ Bd(T ) 6= ∅. By Lemma 5(ii), from each set L′ ∩ Bd(T ) we



can select d points P1, . . . , Pd in
(
O(T d−1/‖aL‖)

d

)
ways. By (13) we infer for the

(d − 1)-dimensional volume vol (P1, . . . , Pd) > 0, as otherwise {P1, . . . , Pj} is
degenerate. Also by (13) the projection of each point Pi ∈ Bd(T ) ∩ Zd, i =
d + 1, . . . , j, onto the residue class L′ is contained in a (d− 1)-dimensional box
of volume 2d−1 · (d − 1)! · vol (P1, . . . , Pd), which, by Lemma 3(ii), contains at
most

2d−1 · (d− 1)! · 2d−1 · vol (P1, . . . , Pd)/‖aL‖ (14)

points of L′, since P1, . . . , Pd ∈ L′. With vol (P1, . . . , Pd, Pi) ≤ vj it follows that
dist (Pi, 〈P1, . . . , Pd〉) ≤ d · vj/vol (P1, . . . , Pd) , and, by Lemma 3(i), each point
Pi ∈ Bd(T ) ∩ Zd, i = d + 1, . . . , j, is contained in one of at most

‖aL‖ · d · vj/vol (P1, . . . , Pd) (15)

residue classes L′′ of L. By (14) in each residue class L′′ we can choose at most
(d− 1)! · 22d−2 · vol (P1, . . . , Pd)/‖aL‖ points Pi ∈ Bd(T ) ∩ Zd, hence with (15)
each point Pi, i = d + 1, . . . , j, can be chosen in at most d! · 22d−2 · vj ways.
Applying this to each point Pd+1, . . . , Pj ∈ Bd ∩ Zd, we infer the upper bound

|Ej | = O

 ∑
a∈Zd, ‖a‖=O(T d−1)

T · ‖a‖ ·
(

T d−1/‖a‖
d

)
· vj−d

j


= O

T d2−d+1 · vj−d
j ·

∑
a∈Zd, ‖a‖=O(T d−1)

1
‖a‖d−1


= O

T d2−d+1 · vj−d
j ·

O(T 2d−2)∑
l=1

rd(l)
l(d−1)/2

 = O(T d2
· vj−d

j ) ,

since, by Lemma 6, we have
∑m

l=1 rd(l)/l(d−1)/2 = O(m1/2). �

For fixed integers d, j, k ≥ 2 the sets Ej and E0
j , can easily be constructed in time

polynomial in T . Namely, by considering every j-element subset S ⊂ Bd(T )∩Zd

of points, we determine all degenerate sets of j points in Bd(T )∩Zd and all non-
degenerate sets of j points in Bd(T ) ∩ Zd with volume of their convex hulls at
most vj in time O(T dj), since there are

(
O(T d)

j

)
j-element subsets in Bd(T )∩Zd.

Let |Bd(T ) ∩ Zd| = C ′
d · T d, where C ′

d > 0 is a constant. We enumerate the
points in Bd(T )∩Zd by P1, . . . , PC′

d·T d . To each point Pi associate a parameter
pi ∈ [0, 1], i = 1, . . . , C ′

d · T d, and define a potential function F (p1, . . . , pC′
d·T d):

F (p1, . . . , pC′
d·T d) := 2pC′

dT d/2 ·
C′

dT d∏
i=1

(
1− pi

2

)
+

+
k∑

j=d+1

∑
{i1,...ij}∈Ej

pi1 · · · pij

2 · k · pj · cj · T d2 · vj−d
j

+
k∑

j=d+1

∑
{i1,...,ij}∈E0

j
pi1 · · · pij

2 · k · pj · cj,0 · T (d−1)j+1 · log T
.



With the initialisation p1 := · · · := pC′
d·T d := p = (2 · k · n)/(C ′

d · T d) ≤ 1, i.e. ,

say T d = ω(n), we infer by Lemmas 7 and 8 that F (p, . . . , p) < (2/e)pC′
dT d/2 +

(2k − 2d)/(2k), which is less than 1 for p · C ′
d · T d ≥ 7 · ln k. Using the linearity

of F (p1, . . . , pC′
d·T d) in each pi, we minimize F (p1, . . . , pC′

d·T d) by choosing one
after the other pi := 0 or pi := 1 for i = 1, . . . , C ′

d · T d, and finally we obtain
F (p1, . . . , pC′

d·T d) < 1. With V ∗ = {Pi ∈ Bd(T )∩Zd | pi = 1} this yields a subset
V ∗ ⊆ Bd(T ) ∩ Zd of points and subsets E0∗

j := [V ∗]j ∩ E0
j and E∗j := [V ∗]j ∩ Ej

of j-element sets, j = d + 1, . . . , k, such that

|V ∗| ≥ p · C ′
d · T d/2 (16)

|E∗j | ≤ 2 · k · pj · cj · T d2
· vj−d

j (17)

|E0∗
j | ≤ 2 · k · pj · cj,0 · T (d−1)j+1 · log T . (18)

By choice of the parameters vj , j = d + 1, . . . , k, the running time of this deran-
domization is O(T d +

∑k
j=d+1(|Ej |+ |E0

j |)) = O(T dk), which is polynomial in T
for fixed integers d, k ≥ 2.

Lemma 9. For j = d + 1, . . . , k, and 0 < βj ≤ (C ′j
d /(2j+2 · kj+1 · cj,d))1/(j−d),

it is
|E∗j | ≤ |V ∗|/(2 · k) .

Proof. By (16) and (17) with vj := βj · T d/n
j−1
j−d , and p = (2 · k · n)/(C ′

d · T d),
and with βj > 0 it is

|E∗j | ≤ |V ∗|/(2 · k)

⇐= 2 · k · pj · cj · T d2
· vj−d

j ≤ p · C ′
d · T d/(4 · k)

⇐⇒ 8 · k2 ·
(

2 · k · n
C ′

d · T d

)j−1

· cj · T d2−d ·
(

βj · T d

n
j−1
j−d

)j−d

≤ C ′
d

⇐⇒ 2j+2 · kj+1 · cj · βj−d
j ≤ C ′j

d ,

which holds for βj−d
j ≤ C ′j

d /(2j+2 · kj+1 · cj), j = d + 1, . . . , k. �

Lemma 10. For j = d + 1, . . . , k, and T/(log T )1/(j−1) = ω(n), it is

|E0∗
j | ≤ |V ∗|/(2 · k) .

Proof. By (16) and (18), with p = (2 · k · n)/(C ′
d · T d), j = d + 1, . . . , k, we infer

|E0∗
j | ≤ |V ∗|/(2 · k)

⇐= 2 · k · pj · cj,0 · T (d−1)j+1 · log T ≤ p · C ′
d · T d/(4 · k)

⇐⇒ 8 · k2 ·
(

2 · k · n
C ′

d · T d

)j−1

· cj,0 · T (d−1)j−d+1 · log T ≤ C ′
d

⇐⇒ 2j+2 · kj+1 · cj,0 ·
nj−1

T j−1
· log T ≤ C ′j

d ,

which holds for T/(log T )1/(j−1) = ω(n). �



With T := n · log n and βj := (C ′j
d /(2j+2 · kj+1 · cj)1/(j−d), j = d + 1, . . . , k,

the assumptions of Lemmas 9 and 10 are fulfilled. By deleting in time O(|V ∗|+∑k
j=d+1(|E∗j | + |E0∗

j |))O(T kd) one point from each j-element set in E∗j and E0∗
j ,

j = d + 1, . . . , k, the remaining points yield a subset V ∗∗ ⊆ V ∗ of size at least
|V ∗|/k ≥ p ·C ′

d ·T d/(2 ·k) = n. Then these at least n points in Bd(T )∩Zd satisfy
that the volume of the convex hull of any j of these points, j = d + 1, . . . , k, is
at least vj , i.e. , Ω(T d/n(j−1)/(j−d)). After rescaling by the factor T d, we have
at least n points in the unit cube [0, 1]d such that the volume of the convex hull
of any j of these points is Ω(1/n(j−1)/(j−d)), j = d + 1, . . . , k. Altogether the
running time of this deterministic algorithm is O((n · log n)dk) for fixed d, k ≥ 2,
hence polynomial in n, which finishes the proof of Theorem 1, part (ii).

4 Concluding Remarks

Our arguments yield a deterministic polynomial time algorithm for obtain-
ing a distribution of n points in [0, 1]d, which, for fixed integers j ≥ d + 1,
shows ∆j,d(n) = Ω(1/n(j−1)/(1+|d−j+1|)). With the results from [14], i.e. , us-
ing a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] on uncrowded
hypergraphs we can improve Theorem 1 slightly (Details are omitted here),
namely for fixed integers d, k ≥ 3 and a fixed integer j0 with 3 ≤ j0 ≤ d + 1
one can find in polynomial time a configuration of n points in [0, 1]d, such
that, simultaneously for j = 2, . . . , k but j 6= j0, the volume of the convex
hull of j points among these n points is at least Ω(1/n(j−1)/(1+|d−j+1|)) and
∆j0,d(n) = Ω((log n)1/(d−j0+2)/n(j0−1)/(d−j0+2). It would be interesting to get
such an improvement by a logarithmic factor for the same n points in [0, 1]d,
simultaneously for 3 ≤ j ≤ k, for fixed d, k.
Moreover, improvements of the existing upper bounds, which were given in the
introduction, are desirable. Also investigations of this problem for non-constant
values of k might be of interest in view of the results of Chazelle [7].

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded
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