Distributions of Points and Large Convex Hulls of k Points

Hanno Lefmann

Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany lefmann@informatik.tu-chemnitz.de

Abstract. We consider a variant of Heilbronn's triangle problem by asking for fixed integers $d, k \geq 2$ and any integer $n \geq k$ for a distribution of n points in the d-dimensional unit cube $[0, 1]^d$ such that the minimum volume of the convex hull of k points among these n points is as large as possible. We show that there exists a configuration of n points in $[0, 1]^d$, such that, simultaneously for $j = 2, \ldots, k$, the volume of the convex hull of any j points among these n points is $\Omega(1/n^{(j-1)/(1+|d-j+1|)})$. Moreover, for fixed $k \geq d+1$ we provide a deterministic polynomial time algorithm, which finds for any integer $n \geq k$ a configuration of n points in $[0, 1]^d$, which achieves, simultaneously for $j = d + 1, \ldots, k$, the lower bound $\Omega(1/n^{(j-1)/(1+|d-j+1|)})$ on the minimum volume of the convex hull of any j among the n points.

1 Introduction

For integers $n \geq 3$, Heilbronn's problem asks for the supremum $\Delta_2(n)$ of the minimum area of a triangle formed by three of n points over all distributions of n points in the unit square $[0,1]^2$. It has been observed by Erdős, see [16], that $\Delta_2(n) = \Omega(1/n^2)$, which can be seen by considering for primes n the points $P_k = 1/n \cdot (k \mod n, k^2 \mod n), k = 0, 1, \ldots, n-1$. Komlós, Pintz and Szemerédi [10] improved this lower bound to the currently known best lower bound $\Delta_2(n) = \Omega(\log n/n^2)$, see [4] for a deterministic polynomial time algorithm achieving this lower bound. Upper bounds were given in a series of papers by Roth [16–19] and Schmidt [20], and the currently known best upper bound is due to Komlós, Pintz and Szemerédi [9], who proved that $\Delta_2(n) = O(2^{c\sqrt{\log n}}/n^{8/7})$ for some constant c > 0. We remark that for n points, which are chosen uniformly at random in $[0,1]^2$, the expected value of the minimum area of a triangle is $\Theta(1/n^3)$, as was shown recently by Jiang, Li and Vitany [8].

A variant of Heilbronn's problem in dimension $d \geq 2$, which has been considered by Barequet, asks for the supremum $\Delta_{d+1,d}(n)$ – over all distributions of npoints in the d-dimensional unit cube $[0,1]^d$ – of the minimum volume of a (d+1)-point simplex among n points. Barequet showed in [2] the lower bound $\Delta_{d+1,d}(n) = \Omega(1/n^d)$ for fixed $d \geq 2$, see [3] for an on-line version for dimensions d = 3, 4. His lower bound was improved in [11] to $\Delta_{d+1,d}(n) = \Omega(\log n/n^d)$, and in [15] for dimension d = 3 a deterministic polynomial time algorithm was given, which achieves $\Delta_{4,3}(n) = \Omega(\log n/n^3)$. Recently, Brass [5] improved the upper bound $\Delta_{d+1,d}(n) = O(1/n)$ to $\Delta_{d+1,d}(n) = O(1/n^{(2d+1)/(2d)})$ for odd $d \geq 3$. Here we consider the following generalization of Heilbronn's problem: for fixed integers $d, k \geq 2$ and any integer $n \geq k$ find n points in the d-dimensional unit cube $[0, 1]^d$, such that the minimum volume of the convex hull of any k points among these n points is as large as possible. Let the corresponding supremum values – over all distributions of n points in $[0, 1]^d$ – on the minimum volumes of the convex hull of k points among n points be denoted by $\Delta_{k,d}(n)$.

This problem has been investigated also by Chazelle, who considered it in connection with lower bounds on the query complexity of range searching problems. He proved in [7] that for any fixed dimension $d \ge 2$ there exists a constant c > 0such that a random set of n points in the unit cube $[0,1]^d$ satisfies with probability greater than 1 - 1/n, that the volume of the convex hull of any $k \ge \log n$ points is $\Omega(k/n)$, indeed it holds $\Delta_{k,d}(n) = \Theta(k/n)$ for $\log n \le k \le n$ for fixed $d \ge 2$. An extension of the range of k might also improve his lower bounds on the query complexity, see [7].

Here we consider the case of fixed values k and d. Areas of triangles arising from n points in $[0,1]^d$ have been investigated in [12], where for fixed dimension $d \geq 2$ it has been shown that $\Delta_{3,d}(n) = \Omega((\log n)^{1/(d-1)}/n^{2/(d-1)})$ and $\Delta_{3,d}(n) = O(1/n^{2/d})$. Moreover, for fixed $k \leq d+1$ it has been proved recently in [14] that $\Delta_{k,d}(n) = \Omega((\log n)^{1/(d-k+2)}/n^{(k-1)/(d-k+2)})$. For the special case of dimension d = 2 and arbitrary $k \geq 3$ it was shown in [13] that $\Delta_{k,2}(n) = \Omega((\log n)^{1/(k-1)}/n^{(k-1)/(k-2)})$.

Here we prove the following lower bounds, in particular for k > d.

Theorem 1. Let $d, k \geq 2$ be fixed integers.

(i) Then, for any integer $n \ge k$ there exists a configuration of n points in the unit cube $[0,1]^d$, such that, simultaneously for $j = 2, \ldots, k$, the volume of the convex hull of any j points among these n points is

$$\Omega(1/n^{(j-1)/(1+|d-j+1|)}). \tag{1}$$

(ii) Moreover, for fixed $k \ge d+1$ there is a deterministic polynomial time algorithm, which finds for any integer $n \ge k$ a configuration of n points in $[0,1]^d$, which, simultaneously for $j = d+1, \ldots, k$, achieves the lower bound $\Omega(1/n^{(j-1)/(1+|d-j+1|)})$ on the volume of the convex hull of any j among the n points in $[0,1]^d$.

Our arguments remain valid if d and k are functions of n, but then the lower bound (1) will depend on d and j. Notice that for fixed integers $d, j \geq 2$, Theorem 1 yields $\Delta_{j,d} = \Omega(1/n^{(j-1)/(1+|d-j+1|)})$. Concerning upper bounds, for fixed integers $d, j \geq 2$ a partition of $[0, 1]^d$ into d-dimensional subcubes each of volume $\Theta(n^{-1/j})$, yields $\Delta_{j,d}(n) = O(1/n^{(j-1)/d})$ for $j \leq d+1$ and $\Delta_{j,d}(n) = O(1/n)$ for $j \geq d+1$. Moreover, for even integers $j, 2 \leq j \leq d+1$, the upper bound can be improved to $\Delta_{j,d}(n) = O(1/n^{(j-1)/d+(j-2)/(2d(d-1))})$, see [14]. Somewhat surprisingly, achieving by a deterministic polynomial time algorithm for the same n points in $[0, 1]^d$ the lower bound $\Delta_{j,d}(n) = \Omega(1/n^{(j-1)/(1+|d-j+1|)})$, simultaneously for $j = 2, \ldots, k$, where $d, k \geq 2$ are fixed integers, causes so far some difficulties w.r.t. the lower dimensional simplices, i.e., for $4 \leq j \leq d$.

2 Lower Bounds

Let dist (P_i, P_j) be the Euclidean distance between the points $P_i, P_j \in [0, 1]^d$. A simplex given by the points $P_1, \ldots, P_j \in [0, 1]^d$, $2 \leq j \leq d + 1$, is the set of all points $P_1 + \sum_{i=2}^j \lambda_i \cdot (P_i - P_1)$ with $\sum_{i=2}^j \lambda_i \leq 1$ and $\lambda_2, \ldots, \lambda_j \geq 0$. The ((j-1)-dimensional) volume of a simplex given by j points $P_1, \ldots, P_j \in [0, 1]^d$, $2 \leq j \leq d + 1$, is defined by vol $(P_1, \ldots, P_j) := 1/(j-1)! \cdot \prod_{i=2}^j \text{dist} (P_i; \langle P_1, \ldots, P_{i-1} \rangle)$, where dist $(P_i; \langle P_1, \ldots, P_{i-1} \rangle)$ is the Euclidean distance of the point P_i from the affine real space $\langle P_1, \ldots, P_{i-1} \rangle$ generated by the vectors $P_2^\top - P_1^\top, \ldots, P_{i-1}^\top - P_1^\top$ attached at P_1 . For j points $P_1, \ldots, P_j \in [0, 1]^d$, $j \geq d + 1$, let vol (P_1, \ldots, P_j) be the (d-dimensional) volume of the convex hull of the points P_1, \ldots, P_j . First we prove part (i) of Theorem 1.

Proof. Let $d, k \geq 2$ be fixed integers. For arbitrary integers $n \geq k$, we select uniformly at random and independently of each other $N := k \cdot n$ points P_1, P_2, \ldots, P_N from the unit cube $[0, 1]^d$.

Set $v_j := \beta_j/n^{\gamma_j}$ for constants $\beta_j, \gamma_j > 0, j = 2, \ldots, k$, which will be fixed later. Let $V := \{P_1, P_2, \ldots, P_N\}$ be the random set of chosen points in $[0, 1]^d$. For $j = 2, \ldots, k$, let \mathcal{E}_j be the set of all *j*-element subsets $\{P_{i_1}, \ldots, P_{i_j}\} \in [V]^j$ of points in V such that vol $(P_{i_1}, \ldots, P_{i_j}) \leq v_j$. We estimate the expected numbers $E(|\mathcal{E}_j|)$ of *j*-element sets in $\mathcal{E}_j, j = 2, \ldots, k$, and we show that for a suitable choice of the parameters v_2, \ldots, v_k all numbers $E(|\mathcal{E}_j|)$ are not too big, i.e., $E(|\mathcal{E}_2|) + \cdots + E(|\mathcal{E}_k|) \leq (k-1) \cdot n$. Thus, there exists a choice of Npoints $P_1, P_2, \ldots, P_N \in [0, 1]^d$ such that $|\mathcal{E}_2| + \cdots + |\mathcal{E}_k| \leq (k-1) \cdot n$. Then, for $j = 2, \ldots, k$, we delete one point from each *j*-element set of points in \mathcal{E}_j . The remaining points yield at least n points such that the volume of the convex hull of any *j* points of these at least n points is at least v_j .

Lemma 1. Let $d, k \ge 2$ be fixed integers. For j = 2, ..., k, there exist constants $c_{j,d} > 0$ such that for every real $v_j > 0$ it is

$$E(|\mathcal{E}_j|) \le c_{j,d} \cdot N^j \cdot v_j^{1+|d-j+1|}.$$
(2)

Proof. For reals $v_j > 0$ and random points $P_1, \ldots, P_j \in [0, 1]^d$ we give an upper bound on the probability Prob (vol $(P_1, \ldots, P_j) \leq v_j$). We assume that the points P_1, \ldots, P_j are numbered such that for $2 \leq g \leq h \leq j$ and $g \leq d+1$ it is

dist
$$(P_g; \langle P_1, \dots, P_{g-1} \rangle) \ge$$
 dist $(P_h; \langle P_1, \dots, P_{g-1} \rangle)$. (3)

The point P_1 can be anywhere in $[0, 1]^d$. Given the point P_1 , the probability, that the point $P_2 \in [0, 1]^d$ has from P_1 a Euclidean distance within the infinitesimal range $[r_1, r_1 + dr_1]$, is at most the difference of the volumes of the *d*-dimensional balls with center P_1 and with radii $(r_1 + dr_1)$ and r_1 , respectively, hence

Prob
$$(r_1 \leq \text{dist } (P_1, P_2) \leq r_1 + dr_1) \leq d \cdot C_d \cdot r_1^{d-1} dr_1,$$

where C_d denotes the volume of the *d*-dimensional unit ball in \mathbb{R}^d .

Given the points P_1 and P_2 with dist $(P_1, P_2) = r_1$, the probability that the Euclidean distance of the point $P_3 \in [0, 1]^d$ from the affine line $\langle P_1, P_2 \rangle$ is within the infinitesimal range $[r_2, r_2 + dr_2]$ is at most the difference of the volumes of two cylinders centered at the line $\langle P_1, P_2 \rangle$ with radii $r_2 + dr_2$ and r_2 , respectively, and, by assumption (3), with height $2 \cdot r_1 = 2 \cdot \text{dist} (P_1, P_2)$, thus

Prob
$$(r_2 \leq \text{dist} (P_3; \langle P_1, P_2 \rangle) \leq r_2 + dr_2) \leq 2 \cdot r_1 \cdot (d-1) \cdot C_{d-1} \cdot r_2^{d-2} dr_2.$$

In general, let the points P_1, \ldots, P_g , g < j and g < d+1, be given with dist $(P_x; \langle P_1, \ldots, P_{x-1} \rangle) = r_{x-1}$ for $x = 2, \ldots, g$. For $g \leq j-2$ and $g \leq d-1$, by (3) the projection of the point P_{g+1} onto the affine space $\langle P_1, \ldots, P_g \rangle$ is contained in a (g-1)-dimensional box with volume $2^{g-1} \cdot r_1 \cdots r_{g-1}$, hence

Prob
$$(r_g \leq \text{dist } (P_{g+1}; \langle P_1, \dots, P_g \rangle) \leq r_g + dr_g)$$

 $\leq 2^{g-1} \cdot r_1 \cdots r_{g-1} \cdot (d-g+1) \cdot C_{d-g+1} \cdot r_g^{d-g} dr_g.$ (4)

For g = j - 1 < d, to satisfy vol $(P_1, \ldots, P_j) \leq v_j$, we must have $1/(j - 1)! \cdot \prod_{i=2}^{j} \text{dist} (P_i; \langle P_1, \ldots, P_{i-1} \rangle) \leq v_j$. By (3) the projection of the point P_j onto the affine space $\langle P_1, \ldots, P_{j-1} \rangle$ is contained in a (j - 2)-dimensional box with volume $2^{j-2} \cdot r_1 \cdots r_{j-2}$, and the point P_j has Euclidean distance at most $((j-1)! \cdot v_j)/(r_1 \cdots r_{j-2})$ from the affine space $\langle P_1, \ldots, P_{j-1} \rangle$, which happens with probability at most

<

$$2^{j-2} \cdot r_1 \cdots r_{j-2} \cdot C_{d-j+2} \cdot \left(\frac{(j-1)! \cdot v_j}{r_1 \cdots r_{j-2}}\right)^{d-j+2}.$$
 (5)

For $d \leq g \leq j-1$, the projection of the point P_{g+1} onto the affine space $\langle P_1, \ldots, P_d \rangle$ is contained in a (d-1)-dimensional box with volume at most $2^{d-1} \cdot r_1 \cdots r_{d-1}$. Since vol $(P_1, \ldots, P_d, P_{g+1}) \leq v_j$ by monotonicity, the point P_{g+1} has Euclidean distance at most $(d! \cdot v_j)/(r_1 \cdots r_{d-1})$ from the affine space $\langle P_1, \ldots, P_d \rangle$, which happens with probability at most

$$2^{d-1} \cdot r_1 \cdots r_{d-1} \cdot \frac{2 \cdot d! \cdot v_j}{r_1 \cdots r_{d-1}} = d! \cdot 2^d \cdot v_j \,. \tag{6}$$

Thus, for $j \leq d$ with (4) and (5) and some constants $c_{j,d}^*, c_{j,d}^{**} > 0$, we obtain

$$\begin{aligned} &\text{Prob} \left(\text{vol} \left(P_{1}, \dots, P_{j} \right) \leq v_{j} \right) \\ &\leq \int_{r_{j-2}=0}^{\sqrt{d}} \cdots \int_{r_{1}=0}^{\sqrt{d}} 2^{j-2} \cdot \frac{C_{d-j+2} \cdot \left((j-1)! \right)^{d-j+2} \cdot v_{j}^{d-j+2}}{(r_{1} \cdots r_{j-2})^{d-j+1}} \cdot \\ &\cdot \prod_{g=1}^{j-2} \left(2^{g-1} \cdot r_{1} \cdots r_{g-1} \cdot (d-g+1) \cdot C_{d-g+1} \cdot r_{g}^{d-g} \right) dr_{j-2} \dots dr_{1} \\ &\leq c_{j,d}^{**} \cdot v_{j}^{d-j+2} \cdot \int_{r_{j-2}=0}^{\sqrt{d}} \cdots \int_{r_{1}=0}^{\sqrt{d}} \prod_{g=1}^{j-2} \left(r_{g}^{2j-2g-3} \right) dr_{j-2} \dots dr_{1} \\ &\leq c_{j,d}^{*} \cdot v_{j}^{d-j+2} \quad \text{as } 2 \cdot j - 2 \cdot g - 3 \geq 1 \\ &= c_{j,d}^{*} \cdot v_{j}^{1+|d-j+1|} \qquad \text{as } j \leq d. \end{aligned}$$

Moreover, for j = d + 1, ..., k, by (4) and (6) for constants $c_{j,d}^*, c_{j,d}^{**} > 0$ we infer

Prob (vol
$$(P_1, \dots, P_j) \leq v_j$$
)

$$\leq \int_{r_{d-1}=0}^{\sqrt{d}} \cdots \int_{r_1=0}^{\sqrt{d}} (d! \cdot 2^d \cdot v_j)^{j-d} \cdot \cdots \int_{g=1}^{d-1} (2^{g-1} \cdot r_1 \cdots r_{g-1} \cdot (d-g+1) \cdot C_{d-g+1} \cdot r_g^{d-g}) dr_{d-1} \dots dr_1$$

$$\leq c_{j,d}^{**} \cdot v_j^{j-d} \cdot \int_{r_{d-1}=0}^{\sqrt{d}} \cdots \int_{r_1=0}^{\sqrt{d}} \prod_{g=1}^{d-1} (r_g^{2d-2g-1}) dr_{d-1} \dots dr_1$$

$$\leq c_{j,d}^* \cdot v_j^{j-d} \qquad \text{as } 2 \cdot d - 2 \cdot g - 1 \geq 1$$

$$= c_{j,d}^* \cdot v_j^{1+|d-j+1|} \qquad \text{as } j \geq d+1.$$
(8)

By (7) and (8) we have Prob (vol $(P_1, \ldots, P_j) \leq v_j$) $\leq c_{j,d}^* \cdot v_j^{1+|d-j+1|}$ for constants $c_{j,d}^* > 0, j = 2, \ldots, k$. Since there are $\binom{N}{j}$ choices for j out of the N random points $P_1, \ldots, P_N \in [0, 1]^d$, inequality (2) follows.

By (2) and Markov's inequality there exist $N = k \cdot n$ points P_1, \ldots, P_N in the unit cube $[0, 1]^d$ such that for $j = 2, \ldots, k$:

$$|\mathcal{E}_j| \le k \cdot c_{j,d} \cdot N^j \cdot v_j^{1+|d-j+1|}.$$
(9)

Lemma 2. Let $d, k \geq 2$ be fixed integers. Then, for every β_j, γ_j with $0 < \beta_j \leq 1/(c_{j,d} \cdot k^{j+1})^{1/(1+|d-j+1|)}$ and $\gamma_j \geq (j-1)/(1+|d-j+1|), j = 2, \ldots, k$, it is

$$|\mathcal{E}_j| \le N/k \,. \tag{10}$$

Proof. For j = 2, ..., k, by (9) and using $v_j = \beta_j / n^{\gamma_j}$ we infer

$$\begin{split} |\mathcal{E}_j| &\leq N/k \\ \Longleftrightarrow k \cdot c_{j,d} \cdot N^j \cdot v_j^{1+|d-j+1|} \leq N/k \\ \Leftrightarrow k^{j+1} \cdot c_{j,d} \cdot \beta_j^{1+|d-j+1|} \cdot n^{j-1-\gamma_j(1+|d-j+1|)} \leq 1 \,, \end{split}$$

which holds for $j-1 \leq \gamma_j \cdot (1+|d-j+1|)$ and $k^{j+1} \cdot c_{j,d} \cdot \beta_j^{1+|d-j+1|} \leq 1$. \Box

Fix $\gamma_j := (j-1)/(1+|d-j+1|)$ and $\beta_j := 1/(c_{j,d} \cdot k^{j+1})^{1/(1+|d-j+1|)}, j = 2, \ldots, k$. By Lemma 2 we have $|\mathcal{E}_2| + \cdots + |\mathcal{E}_k| \leq ((k-1)/k)) \cdot N$. For $j = 2, \ldots, k$, we discard one point from each *j*-element set in \mathcal{E}_j . Then, the set $I \subseteq V$ of remaining points contains a subset of size N/k = n. These *n* points in $[0, 1]^d$ satisfy, simultaneously for $j = 2, \ldots, k$, that the volume of the convex hull of each *j* of these *n* points is bigger than $v_j = \beta_j / n^{(j-1)/(1+|d-j+1|)}$, which finishes the proof of part (i) and (1) in Theorem 1.

3 A Deterministic Algorithm

Here we derandomize the probabilistic arguments from Section 2 to show Theorem 1, part (ii). Throughout this section, let $k \geq d + 1$. Let $B^d(T) \cap \mathbb{Z}^d$ is the set of all points $P \in \mathbb{Z}^d$, which have Euclidean distance at most T from the origin. To provide a deterministic polynomial time algorithm which, for any integer n > 0, finds a configuration of n points in $[0, 1]^d$, such that the volume of the convex hull of small sets of points is large, we discretize the unit cube $[0, 1]^d$ by considering, for T large enough, but bounded from above by a polynomial in n, all points in $B^d(T) \cap \mathbb{Z}^d$. This set $B^d(T) \cap \mathbb{Z}^d$ will be rescaled later by the factor T^d . However, with this discretization we have to take care of degenerate sets of points, where a set $\{P_1, \ldots, P_j\} \subset [0, 1]^d$ with $j \geq d + 1$ is called *degenerate*, if all points P_1, \ldots, P_j is called *non-degenerate*. Set $v_j := \beta_j \cdot T^d/n^{(j-1)/(j-d)}$ for suitable constants $\beta_j > 0$, $j = d + 1, \ldots, k$,

Set $v_j := \beta_j \cdot T^d / n^{(j-1)/(j-d)}$ for suitable constants $\beta_j > 0, j = d + 1, \ldots, k$, which will be fixed later. We construct for $j = d + 1, \ldots, k$ two types of *j*element edges. For points $P_{i_1}, \ldots, P_{i_j} \in B^d(T) \cap \mathbb{Z}^d$, let $\{P_{i_1}, \ldots, P_{i_j}\} \in \mathcal{E}_j$ if and only if vol $(P_{i_1}, \ldots, P_{i_j}) \leq v_j$ and $\{P_{i_1}, \ldots, P_{i_j}\}$ is not contained in a (d-1)dimensional affine subspace of \mathbb{R}^d , i.e., the set $\{P_{i_1}, \ldots, P_{i_j}\}$ is non-degenerate. Moreover, let $\{P_{i_1}, \ldots, P_{i_j}\} \in \mathcal{E}_j^0$ if and only if $\{P_{i_1}, \ldots, P_{i_j}\}$ is contained in a (d-1)-dimensional affine subspace of \mathbb{R}^d .

To give upper bounds on these numbers $|\mathcal{E}_j|$ and $|\mathcal{E}_j^0|$ of *j*-element sets, $j = d+1, \ldots, k$, we use *lattices* in \mathbb{Z}^d .

A lattice L in \mathbb{Z}^d is a subset of \mathbb{Z}^d , which is generated by all integral linear combinations of some linearly independent vectors $b_1, \ldots, b_m \in \mathbb{Z}^d$, hence $L = \mathbb{Z}b_1^\top + \cdots + \mathbb{Z}b_m^\top$. The parameter $m = \operatorname{rank}(L)$ is called the *rank* of the lattice L, and the set $\mathcal{B} = \{b_1, \ldots, b_m\}$ is called a *basis* of L. The set $F_{\mathcal{B}} := \{\sum_{i=1}^m \alpha_i \cdot b_i \mid 0 \le \alpha_i \le 1, i = 1, \ldots, m\} \subseteq \mathbb{R}^d$ is called the *fundamental parallelepiped* $F_{\mathcal{B}}$ of \mathcal{B} , its volume is $\operatorname{vol}(F_{\mathcal{B}}) := (\det(G(\mathcal{B})^\top \cdot G(\mathcal{B})))^{1/2}$, where $G(\mathcal{B}) := (b_1, \ldots, b_m)_{d \times m}$ is the $d \times m$ generator matrix of \mathcal{B} (up to the ordering of the vectors). If \mathcal{B} and \mathcal{B}' are two bases of a lattice L in \mathbb{Z}^d , then the volumes of the fundamental parallelepipeds are equal, i.e., $\operatorname{vol}(F_{\mathcal{B}}) = \operatorname{vol}(F_{\mathcal{B}'})$, see [6].

For integers $a_1, \ldots, a_n \in \mathbb{Z}$, which are not all equal to 0, let $gcd(a_1, \ldots, a_n)$ denote the greatest common divisor of a_1, \ldots, a_n . For vectors $a = (a_1, \ldots, a_d)^\top \in \mathbb{R}^d$ and $b = (b_1, \ldots, b_d)^\top \in \mathbb{R}^d$ let $\langle a, b \rangle := \sum_{i=1}^d a_i \cdot b_i$ be the standard scalar product. The length of a vector $a \in \mathbb{R}^d$ is defined by $||a|| := \sqrt{\langle a, a \rangle}$. For a lattice L in \mathbb{Z}^d let span(L) be the linear space over the reals, which is generated by the vectors in L. For a subset $S = \{P_1, \ldots, P_k\} \subset \mathbb{R}^d$ of points the rank of S is the dimension of the linear space over the reals, which is generated by the vectors $P_2^\top - P_1^\top, \ldots, P_k^\top - P_1^\top$.

is generated by the vectors $P_2^{\top} - P_1^{\top}, \ldots, P_k^{\top} - P_1^{\top}$. A vector $a = (a_1, \ldots, a_d)^{\top} \in \mathbb{Z}^d \setminus \{0^d\}$ is called *primitive*, if $gcd(a_1, \ldots, a_d) = 1$ and $a_j > 0$ with $j = \min\{i \mid a_i \neq 0\}$. A lattice L in \mathbb{Z}^d is called *m*-maximal, if rank(L) = m and no other lattice $L' \neq L$ in \mathbb{Z}^d with rank(L') = m contains L as a proper subset. There is a one-to-one correspondence between *m*-maximal lattices in \mathbb{Z}^d and primitive vectors $a = (a_1, \ldots, a_d)^{\top} \in \mathbb{Z}^d \setminus \{0^d\}$:

- (i) For each lattice L in \mathbb{Z}^d with rank $(L) = d 1 \ge 1$ there is exactly one primitive vector $a_L = (a_1, \ldots, a_d)^{\top} \in \mathbb{Z}^d \setminus \{0^d\}$ with $\langle a_L, x^{\top} \rangle = 0$ for every $x \in L$. This vector $a_L \in \mathbb{Z}^d \setminus \{0^d\}$ is called the *primitive normal vector* of the lattice L.
- (ii) For each lattice L' in \mathbb{Z}^d with rank(L') = d 1 there is exactly one (d 1)maximal lattice L in \mathbb{Z}^d with $L' \subseteq L$.
- (iii) There exists a bijection between the set of all (d-1)-maximal lattices L in \mathbb{Z}^d and the set of all primitive vectors a_L in \mathbb{Z}^d .

For a (d-1)-maximal lattice L in \mathbb{Z}^d , a residue class of L is a set L' of the form L' = x + L with $x \in \mathbb{Z}^d$.

The proofs of Lemmas 3 – 6 concerning lattices can be found in [15].

Lemma 3 ([15]). Let L be a (d-1)-maximal lattice in \mathbb{Z}^d with primitive normal vector $a_L \in \mathbb{Z}^d$ and with basis \mathcal{B} .

- (i) There exists a point $v \in \mathbb{Z}^k \setminus L$ such that \mathbb{Z}^d can be partitioned into the residue classes $s \cdot v + L$, $s \in \mathbb{Z}$, and, for each point $x \in L$, it is $dist(s \cdot v + x, span(L)) =$ $|s|/||a_L||.$
- (ii) The volume of the fundamental parallelepiped $F_{\mathcal{B}}$ fulfills $\operatorname{vol}(F_{\mathcal{B}}) = ||a_L||$.

Lemma 4 ([15]). Let $d \in \mathbb{N}$ be fixed. Let $S \subseteq B^d(T) \cap \mathbb{Z}^d$ be a set of points with rank $(S) \leq d-1$. Then there exists a (d-1)-maximal lattice L of \mathbb{Z}^d such that S is contained in some residue class L' = v + L of L for some $v \in \mathbb{Z}^d$, and L has a basis $b_1, ..., b_{d-1} \in \mathbb{Z}^d$ with $\max_{i=1,...,d-1} ||b_i|| = O(T)$.

The next lemma is crucial in our considerations to estimate the numbers $|\mathcal{E}_i|$ and $|\mathcal{E}_{j}^{0}|$ of *j*-element sets, $j = d + 1, \dots, k$.

Lemma 5 ([15]). Let $d \in \mathbb{N}$ be fixed. Let L be a (d-1)-maximal lattice of \mathbb{Z}^d with primitive normal vector $a_L \in \mathbb{Z}^d$, and let $\mathcal{B} = \{b_1, \ldots, b_{d-1}\}$ be a basis of L with $\max_{i=1,\dots,d-1} \|b_i\| = O(T)$. Then the following hold:

- (i) The primitive normal vector a_L satisfies ||a_L|| = O(T^{d-1}).
 (ii) For every residue class L' of L it is |L' ∩ B^d(T)| = O(T^{d-1}/||a_L||).

For integers $g, l \in \mathbb{N}$ let $r_g(l)$ be the number of representations $x_1^2 + \cdots + x_q^2 = l$ with $x_1, \ldots, x_q \in \mathbb{Z}$.

Lemma 6 ([15]). Let $g, r \in \mathbb{N}$ be fixed integers. Then, for all integers $m \in \mathbb{N}$:

$$\sum_{l=1}^{m} \frac{r_g(l)}{l^r} = \begin{cases} O\left(m^{g/2-r}\right) & \text{if } g/2 - r > 0\\ O\left(\log m\right) & \text{if } g/2 - r = 0\\ O(1) & \text{if } g/2 - r < 0. \end{cases}$$

Lemma 7. Let $d, k \ge 2$ be fixed integers with $k \ge d+1$. For $j = d+1, \ldots, k$, there exist constants $c_{j,0} > 0$, such that the numbers $|\mathcal{E}_j^0|$ of *j*-element degenerate sets of points in $B^d(T) \cap \mathbb{Z}^d$ satisfy

$$|\mathcal{E}_{j}^{0}| \le c_{j,0} \cdot T^{(d-1)j+1} \cdot \log T.$$
(11)

Proof. By Lemma 4, each degenerate *j*-element subset of points in $B^d(T) \cap \mathbb{Z}^d$ is contained in a residue class L' of some (d-1)-maximal lattice L in \mathbb{Z}^d , and L has a basis $b_1, \ldots, b_{d-1} \in \mathbb{Z}^d$ with $||b_i|| = O(T)$, $i = 1, \ldots, d-1$. By Lemma 5(i), it suffices to consider all (d-1)-maximal lattices L with primitive normal vectors $a_L \in \mathbb{Z}^d$ of length $||a_L|| = O(T^{d-1})$.

Having fixed a (d-1)-maximal lattice L in \mathbb{Z}^d , which is determined by its primitive normal vector $a_L \in \mathbb{Z}^d$, by Lemma 3(i), there are $O(T \cdot ||a_L||)$ residue classes L' of the lattice L with $L' \cap B^d(T) \neq \emptyset$. By Lemma 5(ii), each set $L' \cap B^d(T)$ contains $O(T^{d-1}/||a_L||)$ points. From each set $L' \cap B^d(T)$ we can select j points in $\binom{O(T^{d-1}/||a_L||)}{j}$ ways to obtain a degenerate set of j points. This implies

$$\begin{split} |\mathcal{E}_{j}^{0}| &= O\left(\sum_{a \in \mathbb{Z}^{d}, \, \|a\| = O(T^{d-1})} T \cdot \|a\| \cdot \binom{T^{d-1}/\|a\|}{j}\right) \\ &= O\left(T^{(d-1)j+1} \cdot \sum_{a \in \mathbb{Z}^{d}, \, \|a\| = O(T^{d-1})}^{O(T^{d-1})} \frac{1}{\|a\|^{j-1}}\right) \\ &= O\left(T^{(d-1)j+1} \cdot \sum_{l=1}^{O(T^{2d-2})} \frac{r_{d}(l)}{l^{(j-1)/2}}\right) = O\left(T^{(d-1)j+1} \cdot \log T\right), \end{split}$$

since, by Lemma 6, we have $\sum_{l=1}^{m} r_d(l)/l^{(j-1)/2} = O(\log m)$ for j = d+1 and $\sum_{l=1}^{m} r_d(l)/l^{(j-1)/2} = O(1)$ for $j = d+2, \dots, k$.

Lemma 8. Let $d, k \geq 2$ be fixed integers with $k \geq d+1$. For $j = d+1, \ldots, k$, there exist constants $c_j > 0$, such that the numbers $|\mathcal{E}_j|$ of j-element nondegenerate sets of points in $B^d(T) \cap \mathbb{Z}^d$ with the volume of their convex hull at most v_j , fulfill

$$|\mathcal{E}_j| \le c_j \cdot T^{d^2} \cdot v_j^{j-d}.$$
(12)

Proof. For j = d + 1, ..., k, consider j points $P_1, ..., P_j \in B^d(T) \cap \mathbb{Z}^d$ with vol $(P_1, ..., P_j) \leq v_j$, where $\{P_1, ..., P_j\}$ is non-degenerate. Let these points be numbered such that for $2 \leq g \leq h \leq j$ and $g \leq d + 1$ it is

dist
$$(P_g; \langle P_1, \dots, P_{g-1} \rangle) \ge$$
 dist $(P_h; \langle P_1, \dots, P_{g-1} \rangle)$. (13)

By Lemma 4, the points $P_1, \ldots, P_d \in B^d(T) \cap \mathbb{Z}^d$ are contained in a residue class L' of some (d-1)-maximal lattice L in \mathbb{Z}^d with primitive normal vector $a_L \in \mathbb{Z}^d$, where L has a basis $b_1, \ldots, b_{d-1} \in \mathbb{Z}^d$ with $||b_i|| = O(T)$ for $i = 1, \ldots, d-1$. By Lemma 5(i), it suffices to consider all (d-1)-maximal lattices L with primitive vectors $a_L \in \mathbb{Z}^d$ of length $||a_L|| = O(T^{d-1})$.

We fix a (d-1)-maximal lattice L in \mathbb{Z}^d , which is determined by its primitive normal vector $a_L \in \mathbb{Z}^d$. By Lemma 3(i), there are $O(T \cdot ||a_L||)$ residue classes L' of L with $L' \cap B^d(T) \neq \emptyset$. By Lemma 5(ii), from each set $L' \cap B^d(T)$ we can select d points P_1, \ldots, P_d in $\binom{O(T^{d-1}/||a_L||)}{d}$ ways. By (13) we infer for the (d-1)-dimensional volume vol $(P_1, \ldots, P_d) > 0$, as otherwise $\{P_1, \ldots, P_j\}$ is degenerate. Also by (13) the projection of each point $P_i \in B^d(T) \cap \mathbb{Z}^d$, i = $d+1,\ldots,j$, onto the residue class L' is contained in a (d-1)-dimensional box of volume $2^{d-1} \cdot (d-1)! \cdot \text{vol}(P_1, \ldots, P_d)$, which, by Lemma 3(ii), contains at most

$$2^{d-1} \cdot (d-1)! \cdot 2^{d-1} \cdot \text{vol} \ (P_1, \dots, P_d) / \|a_L\|$$
(14)

points of L', since $P_1, \ldots, P_d \in L'$. With vol $(P_1, \ldots, P_d, P_i) \leq v_j$ it follows that dist $(P_i, \langle P_1, \ldots, P_d \rangle) \leq d \cdot v_j / \text{vol} (P_1, \ldots, P_d)$, and, by Lemma 3(i), each point $P_i \in B^d(T) \cap \mathbb{Z}^d, i = d + 1, \dots, j$, is contained in one of at most

$$||a_L|| \cdot d \cdot v_j / \text{vol} (P_1, \dots, P_d)$$
(15)

residue classes L'' of L. By (14) in each residue class L'' we can choose at most $(d-1)! \cdot 2^{2d-2} \cdot \text{vol} (P_1, \ldots, P_d)/||a_L||$ points $P_i \in B^d(T) \cap \mathbb{Z}^d$, hence with (15) each point P_i , $i = d + 1, \ldots, j$, can be chosen in at most $d! \cdot 2^{2d-2} \cdot v_j$ ways. Applying this to each point $P_{d+1}, \ldots, P_j \in B^d \cap \mathbb{Z}^d$, we infer the upper bound

$$\begin{split} |\mathcal{E}_{j}| &= O\left(\sum_{a \in \mathbb{Z}^{d}, \, \|a\| = O(T^{d-1})} T \cdot \|a\| \cdot \binom{T^{d-1}/\|a\|}{d} \cdot v_{j}^{j-d}\right) \\ &= O\left(T^{d^{2}-d+1} \cdot v_{j}^{j-d} \cdot \sum_{a \in \mathbb{Z}^{d}, \, \|a\| = O(T^{d-1})} \frac{1}{\|a\|^{d-1}}\right) \\ &= O\left(T^{d^{2}-d+1} \cdot v_{j}^{j-d} \cdot \sum_{l=1}^{O(T^{2d-2})} \frac{r_{d}(l)}{l^{(d-1)/2}}\right) = O(T^{d^{2}} \cdot v_{j}^{j-d}), \\ \text{Lemma 6, we have } \sum_{l=1}^{m} r_{d}(l)/l^{(d-1)/2} = O(m^{1/2}). \end{split}$$

since, by Lemma 6, we have $\sum_{l=1}^{m} r_d(l)/l^{(d-1)/2} = O(m^{1/2}).$

For fixed integers
$$d, j, k \geq 2$$
 the sets \mathcal{E}_j and \mathcal{E}_j^0 , can easily be constructed in time
polynomial in T . Namely, by considering every j -element subset $S \subset B^d(T) \cap \mathbb{Z}^d$
of points, we determine all degenerate sets of j points in $B^d(T) \cap \mathbb{Z}^d$ and all non-
degenerate sets of j points in $B^d(T) \cap \mathbb{Z}^d$ with volume of their convex hulls at
most v_j in time $O(T^{dj})$, since there are $\binom{O(T^d)}{j}$ j -element subsets in $B^d(T) \cap \mathbb{Z}^d$.
Let $|B^d(T) \cap \mathbb{Z}^d| = C'_d \cdot T^d$, where $C'_d > 0$ is a constant. We enumerate the
points in $B^d(T) \cap \mathbb{Z}^d$ by $P_1, \ldots, P_{C'_d \cdot T^d}$. To each point P_i associate a parameter
 $p_i \in [0, 1], i = 1, \ldots, C'_d \cdot T^d$, and define a potential function $F(p_1, \ldots, p_{C'_d \cdot T^d})$:

$$F(p_1, \dots, p_{C'_d \cdot T^d}) := 2^{pC'_d T^d/2} \cdot \prod_{i=1}^{C'_d T^d} \left(1 - \frac{p_i}{2}\right) + \sum_{j=d+1}^k \frac{\sum_{\{i_1,\dots,i_j\} \in \mathcal{E}_j} p_{i_1} \cdots p_{i_j}}{2 \cdot k \cdot p^j \cdot c_j \cdot T^{d^2} \cdot v_j^{j-d}} + \sum_{j=d+1}^k \frac{\sum_{\{i_1,\dots,i_j\} \in \mathcal{E}_j} p_{i_1} \cdots p_{i_j}}{2 \cdot k \cdot p^j \cdot c_{j,0} \cdot T^{(d-1)j+1} \cdot \log T}.$$

With the initialisation $p_1 := \cdots := p_{C'_d:T^d} := p = (2 \cdot k \cdot n)/(C'_d \cdot T^d) \leq 1$, i.e., say $T^d = \omega(n)$, we infer by Lemmas 7 and 8 that $F(p, \ldots, p) < (2/e)^{pC'_dT^d/2} + (2k - 2d)/(2k)$, which is less than 1 for $p \cdot C'_d \cdot T^d \geq 7 \cdot \ln k$. Using the linearity of $F(p_1, \ldots, p_{C'_d:T^d})$ in each p_i , we minimize $F(p_1, \ldots, p_{C'_d:T^d})$ by choosing one after the other $p_i := 0$ or $p_i := 1$ for $i = 1, \ldots, C'_d \cdot T^d$, and finally we obtain $F(p_1, \ldots, p_{C'_d:T^d}) < 1$. With $V^* = \{P_i \in B^d(T) \cap \mathbb{Z}^d \mid p_i = 1\}$ this yields a subset $V^* \subseteq B^d(T) \cap \mathbb{Z}^d$ of points and subsets $\mathcal{E}_j^{0*} := [V^*]^j \cap \mathcal{E}_j^0$ and $\mathcal{E}_j^* := [V^*]^j \cap \mathcal{E}_j$ of *j*-element sets, $j = d + 1, \ldots, k$, such that

$$|V^*| \ge p \cdot C'_d \cdot T^d/2 \tag{16}$$

$$|\mathcal{E}_j^*| \le 2 \cdot k \cdot p^j \cdot c_j \cdot T^{d^2} \cdot v_j^{j-d} \tag{17}$$

$$|\mathcal{E}_{j}^{0*}| \leq 2 \cdot k \cdot p^{j} \cdot c_{j,0} \cdot T^{(d-1)j+1} \cdot \log T.$$

$$(18)$$

By choice of the parameters v_j , j = d + 1, ..., k, the running time of this derandomization is $O(T^d + \sum_{j=d+1}^k (|\mathcal{E}_j| + |\mathcal{E}_j^0|)) = O(T^{dk})$, which is polynomial in T for fixed integers $d, k \geq 2$.

Lemma 9. For j = d + 1, ..., k, and $0 < \beta_j \le (C_d^{\prime j}/(2^{j+2} \cdot k^{j+1} \cdot c_{j,d}))^{1/(j-d)}$, it is

$$|\mathcal{E}_i^*| \le |V^*|/(2 \cdot k)$$

Proof. By (16) and (17) with $v_j := \beta_j \cdot T^d / n^{\frac{j-1}{j-d}}$, and $p = (2 \cdot k \cdot n) / (C'_d \cdot T^d)$, and with $\beta_j > 0$ it is

$$\begin{aligned} |\mathcal{E}_{j}^{*}| &\leq |V^{*}|/(2 \cdot k) \\ &\Leftarrow 2 \cdot k \cdot p^{j} \cdot c_{j} \cdot T^{d^{2}} \cdot v_{j}^{j-d} \leq p \cdot C_{d}' \cdot T^{d}/(4 \cdot k) \\ &\iff 8 \cdot k^{2} \cdot \left(\frac{2 \cdot k \cdot n}{C_{d}' \cdot T^{d}}\right)^{j-1} \cdot c_{j} \cdot T^{d^{2}-d} \cdot \left(\frac{\beta_{j} \cdot T^{d}}{n^{\frac{j-1}{j-d}}}\right)^{j-d} \leq C_{d}' \\ &\iff 2^{j+2} \cdot k^{j+1} \cdot c_{j} \cdot \beta_{j}^{j-d} \leq C_{d}'^{j}, \end{aligned}$$

which holds for $\beta_j^{j-d} \leq C_d^{\prime j}/(2^{j+2} \cdot k^{j+1} \cdot c_j), \ j = d+1, \dots, k.$ **Lemma 10.** For $j = d+1, \dots, k$, and $T/(\log T)^{1/(j-1)} = \omega(n)$, it is $|\mathcal{E}_i^{0*}| \leq |V^*|/(2 \cdot k).$

Proof. By (16) and (18), with $p = (2 \cdot k \cdot n)/(C'_d \cdot T^d)$, $j = d + 1, \dots, k$, we infer

$$\begin{aligned} |\mathcal{E}_{j}^{0*}| &\leq |V^{*}|/(2 \cdot k) \\ &\Leftarrow 2 \cdot k \cdot p^{j} \cdot c_{j,0} \cdot T^{(d-1)j+1} \cdot \log T \leq p \cdot C'_{d} \cdot T^{d}/(4 \cdot k) \\ &\iff 8 \cdot k^{2} \cdot \left(\frac{2 \cdot k \cdot n}{C'_{d} \cdot T^{d}}\right)^{j-1} \cdot c_{j,0} \cdot T^{(d-1)j-d+1} \cdot \log T \leq C'_{d} \\ &\iff 2^{j+2} \cdot k^{j+1} \cdot c_{j,0} \cdot \frac{n^{j-1}}{T^{j-1}} \cdot \log T \leq C'_{d} , \end{aligned}$$

which holds for $T/(\log T)^{1/(j-1)} = \omega(n)$.

With $T := n \cdot \log n$ and $\beta_j := (C_d'^j/(2^{j+2} \cdot k^{j+1} \cdot c_j)^{1/(j-d)}, j = d + 1, \ldots, k$, the assumptions of Lemmas 9 and 10 are fulfilled. By deleting in time $O(|V^*| + \sum_{j=d+1}^k (|\mathcal{E}_j^*| + |\mathcal{E}_j^{0*}|))O(T^{kd})$ one point from each *j*-element set in \mathcal{E}_j^* and $\mathcal{E}_j^{0*}, j = d + 1, \ldots, k$, the remaining points yield a subset $V^{**} \subseteq V^*$ of size at least $|V^*|/k \ge p \cdot C_d' \cdot T^d/(2 \cdot k) = n$. Then these at least *n* points in $B^d(T) \cap \mathbb{Z}^d$ satisfy that the volume of the convex hull of any *j* of these points, $j = d + 1, \ldots, k$, is at least v_j , i.e., $\Omega(T^d/n^{(j-1)/(j-d)})$. After rescaling by the factor T^d , we have at least *n* points in the unit cube $[0, 1]^d$ such that the volume of the convex hull of any *j* of these points is $\Omega(1/n^{(j-1)/(j-d)}), j = d + 1, \ldots, k$. Altogether the running time of this deterministic algorithm is $O((n \cdot \log n)^{dk})$ for fixed $d, k \ge 2$, hence polynomial in *n*, which finishes the proof of Theorem 1, part (ii).

4 Concluding Remarks

Our arguments yield a deterministic polynomial time algorithm for obtaining a distribution of n points in $[0,1]^d$, which, for fixed integers $j \ge d+1$, shows $\Delta_{j,d}(n) = \Omega(1/n^{(j-1)/(1+|d-j+1|)})$. With the results from [14], i.e., using a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] on uncrowded hypergraphs we can improve Theorem 1 slightly (Details are omitted here), namely for fixed integers $d, k \ge 3$ and a fixed integer j_0 with $3 \le j_0 \le d+1$ one can find in polynomial time a configuration of n points in $[0,1]^d$, such that, simultaneously for $j = 2, \ldots, k$ but $j \ne j_0$, the volume of the convex hull of j points among these n points is at least $\Omega(1/n^{(j-1)/(1+|d-j+1|)})$ and $\Delta_{j_0,d}(n) = \Omega((\log n)^{1/(d-j_0+2)}/n^{(j_0-1)/(d-j_0+2)})$. It would be interesting to get such an improvement by a logarithmic factor for the same n points in $[0,1]^d$, simultaneously for $3 \le j \le k$, for fixed d, k.

Moreover, improvements of the existing upper bounds, which were given in the introduction, are desirable. Also investigations of this problem for non-constant values of k might be of interest in view of the results of Chazelle [7].

References

- 1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, *Extremal Uncrowded Hypergraphs*, Journal of Combinatorial Theory Ser. A, 32, 1982, 321–335.
- 2. G. Barequet, A Lower Bound for Heilbronn's Triangle Problem in d Dimensions, SIAM Journal on Discrete Mathematics 14, 2001, 230–236.
- G. Barequet, The On-Line Heilbronn's Triangle Problem in Three and Four Dimensions, Proceedings '8rd Annual International Computing and Combinatorics Conference COCOON'02', LNCS 2387, Springer, 2002, 360–369.
- C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heilbronn's Problem, SIAM Journal on Computing 30, 2000, 383–390.
- P. Brass, An Upper Bound for the d-Dimensional Heilbronn Triangle Problem, SIAM Journal on Discrete Mathematics 19, 192–195, 2005.
- J. W. S. CASSELS, An Introduction to the Geometry of Numbers, Vol. 99, Springer-Verlag, New York, 1971.

- 7. B. CHAZELLE, Lower Bounds on the Complexity of Polytope Range Searching, Journal of the American Mathematical Society 2, 637–666, 1989.
- T. Jiang, M. Li and P. Vitany, *The Average Case Area of Heilbronn-type Triangles*, Random Structures & Algorithms 20, 2002, 206–219.
- 9. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn's Triangle Problem, Journal of the London Mathematical Society, 24, 1981, 385–396.
- J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn's Problem, Journal of the London Mathematical Society, 25, 1982, 13–24.
- H. Lefmann, On Heilbronn's Problem in Higher Dimension, Combinatorica 23, 2003, 669–680.
- H. Lefmann, Large Triangles in the d-Dimensional Unit-Cube, Proceedings 10th Annual International Conference Computing and Combinatorics COCOON'04, eds. K.-Y. Chwa and J. I. Munro, LNCS 3106, Springer, 2004, 43–52.
- H. Lefmann, Distributions of Points in the Unit-Square and Large k-Gons, Proceedings ACM-SIAM Syposium on Discrete Algorithms, SODA'05, ACM und SIAM, 241–250, 2005.
- H. Lefmann, Large Simplices in the d-Dimensional Unit-Cube (Extended Abstract), Proceedings 11th Annual International Conference Computing and Combinatorics COCOON'05, ed. L. Wang, LNCS 3595, Springer, 2005, 514–523.
- H. Lefmann and N. Schmitt, A Deterministic Polynomial Time Algorithm for Heilbronn's Problem in Three Dimensions, SIAM Journal on Computing 31, 2002, 1926–1947.
- K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical Society 26, 1951, 198–204.
- 17. K. F. Roth, On a Problem of Heilbronn, II, and III, Proc. of the London Mathematical Society (3), 25, 1972, 193–212, and 543–549.
- K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of n Points in a Disc of Unit Area, Proc. of Symposia in Pure Mathematics, 24, 1973, AMS, Providence, 251–262.
- K. F. Roth, Developments in Heilbronn's Triangle Problem, Advances in Mathematics, 22, 1976, 364–385.
- W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical Society (2), 4, 1972, 545–550.